metal-organic compounds
μ-Biphenyl-3,3′,4,4′-tetracarboxylato-κ2O3:O3′-bis[triaqua(2,2′-bipyridyl-κ2N,N′)nickel(II)] hexahydrate
aDepartment of Chemistry, Shanghai University, Shanghai 200444, People's Republic of China, and bInstrumental Analysis Center, Shanghai University, Shanghai 200444, People's Republic of China
*Correspondence e-mail: shourongzhu@shu.edu.cn
The 2(C16H6O8)(C10H8N2)2(H2O)6]·6H2O, contains one NiII atom, one 2,2′-bipyridine ligand, three coordinated water molecules, one-half of a fully deprotonated biphenyl-3,3′,4,4′-tetracarboxylate anion and three lattice water molecules. The NiII atom displays a distorted NiN2O4 octahedral coordination formed by one carboxylate O atom, three water O atoms and two N atoms of the chelating ligand. The complete biphenyl-3,3′,4,4′-tetracarboxylate ligand displays inversion symmetry and links two symmetry-related NiII atoms into a binuclear complex. Neighbouring complex molecules are linked through O—H⋯O hydrogen bonds into a three-dimensional structure. Additional O—H⋯O hydrogen bonds between the lattice water molecules help to consolidate the crystal packing.
of the title complex, [NiRelated literature
For other metal complexes with biphenyl-3,3′,4,4′-tetracarboxylate as ligand, see: Hao et al. (2005); Wang et al. (2005, 2006, 2007). For related structures containing biphenyl-3,3′,4,4′-tetracarboxylate and neutral chelating ligands, see: Zhu et al. (2008a,b).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536809014639/wm2225sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809014639/wm2225Isup2.hkl
A mixture of biphenyl-3,3',4,4'-tetracarboxylic acid dianhydride (0.5 mmol), 2,2'-bipyridine (0.5 mmol), NaOH (2 mmol) and Ni(NO3)2 (1 mmol) in 8 ml H2O was placed in a 25 ml Teflon reactor, which was sealed and heated in a oven at 433 K for 72 h. Then the autoclave was cooled to room temperature at the rate of 10 K to get light-blue flat crystals of the title compound (in ca 85% yield based on biphenyltetracarboxylic dianhydride). The crystals were isolated by filtration and washed with water.
The aromatic H atoms were generated geometrically and were included in the
in the riding model approximation (d(C—H) = 0.93 Å, Uiso=1.2Ueq(C)). The H atoms of the water molecules were identified in difference Fourier syntheses and were refined with distance restraints of d(O—H) = 0.85 Å.Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The asymmetric unit in the structure of complex (I), displayed with ellipsoids at the 50% probability level. Dashed lines represent hydrogen bonds. | |
Fig. 2. Crystal packing in the crystal structure of compound (I) viewed down the a axis with ellipsoids ath the 30% probability level. | |
Fig. 3. (a) The π—π interaction between adjacent 2, 2'-bipyridine molecules. (b) The crystal lattice water molecules arranged in chains via H -bonds; other atoms are omitted for clarity. |
[Ni2(C16H6O8)(C10H8N2)2(H2O)6]·6H2O | Z = 1 |
Mr = 972.19 | F(000) = 506 |
Triclinic, P1 | Dx = 1.521 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.5126 (14) Å | Cell parameters from 1042 reflections |
b = 12.088 (2) Å | θ = 2.8–21.2° |
c = 12.285 (2) Å | µ = 0.97 mm−1 |
α = 105.445 (2)° | T = 296 K |
β = 98.075 (2)° | Flat, light-blue |
γ = 92.162 (3)° | 0.20 × 0.20 × 0.15 mm |
V = 1061.4 (3) Å3 |
Bruker SMART CCD area-detector diffractometer | 3698 independent reflections |
Radiation source: fine-focus sealed tube | 2526 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ϕ and ω scans | θmax = 25.1°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −8→8 |
Tmin = 0.829, Tmax = 0.868 | k = −11→14 |
5556 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.172 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0835P)2 + 0.0076P] |
3698 reflections | (Δ/σ)max < 0.001 |
280 parameters | Δρmax = 0.61 e Å−3 |
0 restraints | Δρmin = −0.53 e Å−3 |
[Ni2(C16H6O8)(C10H8N2)2(H2O)6]·6H2O | γ = 92.162 (3)° |
Mr = 972.19 | V = 1061.4 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.5126 (14) Å | Mo Kα radiation |
b = 12.088 (2) Å | µ = 0.97 mm−1 |
c = 12.285 (2) Å | T = 296 K |
α = 105.445 (2)° | 0.20 × 0.20 × 0.15 mm |
β = 98.075 (2)° |
Bruker SMART CCD area-detector diffractometer | 3698 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 2526 reflections with I > 2σ(I) |
Tmin = 0.829, Tmax = 0.868 | Rint = 0.037 |
5556 measured reflections |
R[F2 > 2σ(F2)] = 0.062 | 0 restraints |
wR(F2) = 0.172 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.61 e Å−3 |
3698 reflections | Δρmin = −0.53 e Å−3 |
280 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.76324 (9) | 0.27456 (6) | 0.46907 (5) | 0.0292 (2) | |
C1 | 0.8729 (8) | 0.3451 (5) | 0.2678 (4) | 0.0353 (13) | |
C2 | 0.8455 (7) | 0.4289 (4) | 0.1965 (4) | 0.0279 (12) | |
C3 | 0.7072 (7) | 0.5022 (4) | 0.2062 (4) | 0.0271 (11) | |
C4 | 0.6778 (8) | 0.5682 (5) | 0.1309 (5) | 0.0390 (14) | |
H4 | 0.5816 | 0.6146 | 0.1345 | 0.047* | |
C5 | 0.7894 (8) | 0.5668 (5) | 0.0497 (5) | 0.0439 (16) | |
H5 | 0.7662 | 0.6122 | −0.0002 | 0.053* | |
C6 | 0.9365 (7) | 0.4985 (4) | 0.0411 (4) | 0.0294 (12) | |
C7 | 0.9582 (7) | 0.4283 (4) | 0.1148 (4) | 0.0325 (13) | |
H7 | 1.0511 | 0.3793 | 0.1095 | 0.039* | |
C8 | 0.5935 (8) | 0.5223 (4) | 0.3010 (5) | 0.0319 (13) | |
C9 | 0.7786 (9) | 0.2720 (6) | 0.7187 (5) | 0.0498 (16) | |
H9 | 0.7915 | 0.3519 | 0.7363 | 0.060* | |
C10 | 0.7713 (11) | 0.2212 (7) | 0.8067 (6) | 0.071 (2) | |
H10 | 0.7805 | 0.2658 | 0.8820 | 0.086* | |
C11 | 0.7506 (12) | 0.1055 (7) | 0.7801 (7) | 0.078 (2) | |
H11 | 0.7430 | 0.0692 | 0.8374 | 0.093* | |
C12 | 0.7407 (10) | 0.0414 (6) | 0.6699 (6) | 0.064 (2) | |
H12 | 0.7271 | −0.0385 | 0.6516 | 0.077* | |
C13 | 0.7509 (7) | 0.0962 (5) | 0.5854 (5) | 0.0384 (14) | |
C14 | 0.7468 (7) | 0.0348 (5) | 0.4639 (5) | 0.0362 (13) | |
C15 | 0.7461 (9) | −0.0842 (5) | 0.4239 (6) | 0.0596 (19) | |
H15 | 0.7454 | −0.1292 | 0.4745 | 0.072* | |
C16 | 0.7463 (11) | −0.1351 (6) | 0.3104 (7) | 0.075 (2) | |
H16 | 0.7468 | −0.2147 | 0.2837 | 0.091* | |
C17 | 0.7460 (10) | −0.0692 (6) | 0.2371 (6) | 0.070 (2) | |
H17 | 0.7472 | −0.1023 | 0.1597 | 0.084* | |
C18 | 0.7437 (8) | 0.0492 (5) | 0.2803 (5) | 0.0490 (16) | |
H18 | 0.7395 | 0.0946 | 0.2297 | 0.059* | |
N1 | 0.7680 (6) | 0.2112 (4) | 0.6097 (4) | 0.0375 (11) | |
N2 | 0.7472 (6) | 0.1002 (4) | 0.3901 (4) | 0.0333 (10) | |
O1 | 0.7508 (5) | 0.3349 (3) | 0.3258 (3) | 0.0327 (9) | |
O2 | 1.0074 (6) | 0.2870 (4) | 0.2630 (4) | 0.0519 (12) | |
O3 | 0.6703 (5) | 0.5796 (3) | 0.3995 (3) | 0.0357 (9) | |
O4 | 0.4305 (5) | 0.4876 (3) | 0.2757 (3) | 0.0414 (10) | |
O1W | 0.7793 (5) | 0.4475 (3) | 0.5584 (3) | 0.0378 (9) | |
H1WA | 0.7075 | 0.4576 | 0.6039 | 0.045* | |
H1WB | 0.7528 | 0.4864 | 0.5108 | 0.045* | |
O2W | 1.0407 (5) | 0.2754 (3) | 0.4820 (3) | 0.0366 (9) | |
H2WA | 1.0698 | 0.2647 | 0.4183 | 0.044* | |
H2WB | 1.0810 | 0.3312 | 0.5383 | 0.044* | |
O3W | 0.4835 (5) | 0.2653 (3) | 0.4440 (3) | 0.0372 (9) | |
H3WA | 0.4238 | 0.3141 | 0.4852 | 0.045* | |
H3WB | 0.4455 | 0.2638 | 0.3776 | 0.045* | |
O4W | 0.3480 (6) | 0.2550 (4) | 0.2175 (4) | 0.0662 (13) | |
H4WA | 0.2365 | 0.2698 | 0.2201 | 0.079* | |
H4WB | 0.3472 | 0.2363 | 0.1454 | 0.079* | |
O5W | 0.3527 (11) | 0.0578 (6) | 0.0358 (6) | 0.141 (3) | |
H5WA | 0.4255 | 0.1162 | 0.0371 | 0.169* | |
H5WB | 0.3141 | −0.0088 | −0.0025 | 0.169* | |
O6W | 0.9624 (19) | 0.0848 (9) | 0.0429 (9) | 0.288 (7) | |
H6WA | 0.9844 | 0.1042 | 0.1156 | 0.345* | |
H6WB | 0.9808 | 0.1578 | 0.0631 | 0.345* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0322 (4) | 0.0294 (4) | 0.0321 (4) | 0.0051 (3) | 0.0127 (3) | 0.0145 (3) |
C1 | 0.038 (3) | 0.042 (3) | 0.033 (3) | 0.006 (3) | 0.016 (3) | 0.015 (3) |
C2 | 0.028 (3) | 0.033 (3) | 0.027 (3) | 0.006 (2) | 0.012 (2) | 0.012 (2) |
C3 | 0.030 (3) | 0.028 (3) | 0.026 (3) | 0.004 (2) | 0.014 (2) | 0.008 (2) |
C4 | 0.038 (3) | 0.048 (4) | 0.041 (3) | 0.019 (3) | 0.023 (3) | 0.019 (3) |
C5 | 0.047 (4) | 0.056 (4) | 0.047 (4) | 0.016 (3) | 0.022 (3) | 0.036 (3) |
C6 | 0.034 (3) | 0.036 (3) | 0.023 (3) | 0.007 (2) | 0.015 (2) | 0.012 (2) |
C7 | 0.038 (3) | 0.037 (3) | 0.032 (3) | 0.013 (3) | 0.017 (2) | 0.019 (2) |
C8 | 0.038 (3) | 0.027 (3) | 0.038 (3) | 0.009 (2) | 0.018 (3) | 0.015 (2) |
C9 | 0.061 (4) | 0.049 (4) | 0.042 (4) | 0.002 (3) | 0.011 (3) | 0.017 (3) |
C10 | 0.098 (6) | 0.083 (6) | 0.038 (4) | 0.000 (5) | 0.012 (4) | 0.025 (4) |
C11 | 0.118 (7) | 0.074 (6) | 0.056 (5) | −0.004 (5) | 0.015 (5) | 0.044 (4) |
C12 | 0.091 (6) | 0.059 (5) | 0.055 (5) | 0.005 (4) | 0.014 (4) | 0.038 (4) |
C13 | 0.034 (3) | 0.039 (3) | 0.046 (4) | 0.000 (3) | 0.004 (3) | 0.018 (3) |
C14 | 0.029 (3) | 0.029 (3) | 0.053 (4) | 0.002 (2) | 0.007 (3) | 0.016 (3) |
C15 | 0.066 (5) | 0.041 (4) | 0.077 (5) | 0.003 (3) | −0.003 (4) | 0.031 (4) |
C16 | 0.111 (7) | 0.037 (4) | 0.069 (5) | 0.010 (4) | 0.000 (5) | 0.005 (4) |
C17 | 0.086 (6) | 0.057 (5) | 0.058 (5) | 0.007 (4) | 0.017 (4) | −0.003 (4) |
C18 | 0.063 (4) | 0.046 (4) | 0.038 (4) | 0.009 (3) | 0.012 (3) | 0.009 (3) |
N1 | 0.038 (3) | 0.043 (3) | 0.038 (3) | 0.011 (2) | 0.012 (2) | 0.017 (2) |
N2 | 0.031 (3) | 0.034 (3) | 0.037 (3) | 0.004 (2) | 0.008 (2) | 0.013 (2) |
O1 | 0.037 (2) | 0.038 (2) | 0.032 (2) | 0.0107 (17) | 0.0208 (17) | 0.0162 (17) |
O2 | 0.051 (3) | 0.065 (3) | 0.065 (3) | 0.036 (2) | 0.039 (2) | 0.042 (2) |
O3 | 0.038 (2) | 0.039 (2) | 0.029 (2) | 0.0016 (18) | 0.0134 (17) | 0.0021 (17) |
O4 | 0.031 (2) | 0.054 (3) | 0.039 (2) | 0.0020 (19) | 0.0156 (18) | 0.0096 (19) |
O1W | 0.043 (2) | 0.039 (2) | 0.040 (2) | 0.0053 (18) | 0.0209 (18) | 0.0157 (18) |
O2W | 0.033 (2) | 0.044 (2) | 0.036 (2) | 0.0058 (18) | 0.0107 (17) | 0.0136 (18) |
O3W | 0.033 (2) | 0.045 (2) | 0.039 (2) | 0.0084 (18) | 0.0172 (18) | 0.0134 (18) |
O4W | 0.048 (3) | 0.075 (3) | 0.071 (3) | 0.005 (2) | 0.015 (2) | 0.009 (3) |
O5W | 0.189 (8) | 0.116 (6) | 0.113 (6) | 0.008 (5) | 0.038 (5) | 0.019 (5) |
O6W | 0.42 (2) | 0.237 (14) | 0.165 (11) | −0.049 (13) | 0.054 (12) | −0.011 (9) |
Ni1—N2 | 2.063 (4) | C11—H11 | 0.9300 |
Ni1—N1 | 2.064 (4) | C12—C13 | 1.380 (8) |
Ni1—O2W | 2.067 (3) | C12—H12 | 0.9300 |
Ni1—O1 | 2.069 (3) | C13—N1 | 1.340 (7) |
Ni1—O3W | 2.075 (3) | C13—C14 | 1.475 (8) |
Ni1—O1W | 2.076 (4) | C14—N2 | 1.352 (7) |
C1—O2 | 1.252 (6) | C14—C15 | 1.390 (8) |
C1—O1 | 1.259 (6) | C15—C16 | 1.366 (9) |
C1—C2 | 1.508 (7) | C15—H15 | 0.9300 |
C2—C3 | 1.388 (7) | C16—C17 | 1.351 (10) |
C2—C7 | 1.400 (6) | C16—H16 | 0.9300 |
C3—C4 | 1.375 (7) | C17—C18 | 1.390 (8) |
C3—C8 | 1.513 (7) | C17—H17 | 0.9300 |
C4—C5 | 1.387 (7) | C18—N2 | 1.322 (7) |
C4—H4 | 0.9300 | C18—H18 | 0.9300 |
C5—C6 | 1.403 (7) | O1W—H1WA | 0.8201 |
C5—H5 | 0.9300 | O1W—H1WB | 0.8498 |
C6—C7 | 1.394 (7) | O2W—H2WA | 0.8201 |
C6—C6i | 1.489 (9) | O2W—H2WB | 0.8379 |
C7—H7 | 0.9300 | O3W—H3WA | 0.8542 |
C8—O4 | 1.248 (6) | O3W—H3WB | 0.8200 |
C8—O3 | 1.266 (6) | O4W—H4WA | 0.8664 |
C9—N1 | 1.334 (7) | O4W—H4WB | 0.8528 |
C9—C10 | 1.384 (8) | O5W—H5WA | 0.8722 |
C9—H9 | 0.9300 | O5W—H5WB | 0.8339 |
C10—C11 | 1.347 (9) | O6W—H6WA | 0.8500 |
C10—H10 | 0.9300 | O6W—H6WB | 0.8500 |
C11—C12 | 1.359 (10) | ||
N2—Ni1—N1 | 80.00 (17) | C9—C10—H10 | 120.9 |
N2—Ni1—O2W | 88.41 (16) | C10—C11—C12 | 120.3 (6) |
N1—Ni1—O2W | 91.05 (16) | C10—C11—H11 | 119.9 |
N2—Ni1—O1 | 98.95 (15) | C12—C11—H11 | 119.9 |
N1—Ni1—O1 | 178.17 (17) | C11—C12—C13 | 119.4 (7) |
O2W—Ni1—O1 | 90.43 (14) | C11—C12—H12 | 120.3 |
N2—Ni1—O3W | 88.32 (16) | C13—C12—H12 | 120.3 |
N1—Ni1—O3W | 91.12 (16) | N1—C13—C12 | 121.3 (6) |
O2W—Ni1—O3W | 175.71 (14) | N1—C13—C14 | 115.0 (5) |
O1—Ni1—O3W | 87.34 (14) | C12—C13—C14 | 123.7 (6) |
N2—Ni1—O1W | 176.34 (15) | N2—C14—C15 | 119.8 (6) |
N1—Ni1—O1W | 96.33 (16) | N2—C14—C13 | 116.8 (5) |
O2W—Ni1—O1W | 91.76 (15) | C15—C14—C13 | 123.4 (5) |
O1—Ni1—O1W | 84.71 (14) | C16—C15—C14 | 120.2 (6) |
O3W—Ni1—O1W | 91.67 (14) | C16—C15—H15 | 119.9 |
O2—C1—O1 | 123.8 (5) | C14—C15—H15 | 119.9 |
O2—C1—C2 | 119.8 (4) | C17—C16—C15 | 119.6 (7) |
O1—C1—C2 | 116.3 (5) | C17—C16—H16 | 120.2 |
C3—C2—C7 | 119.6 (4) | C15—C16—H16 | 120.2 |
C3—C2—C1 | 121.8 (4) | C16—C17—C18 | 118.4 (7) |
C7—C2—C1 | 118.6 (4) | C16—C17—H17 | 120.8 |
C4—C3—C2 | 119.0 (4) | C18—C17—H17 | 120.8 |
C4—C3—C8 | 116.6 (4) | N2—C18—C17 | 122.8 (6) |
C2—C3—C8 | 124.2 (4) | N2—C18—H18 | 118.6 |
C3—C4—C5 | 121.1 (5) | C17—C18—H18 | 118.6 |
C3—C4—H4 | 119.5 | C9—N1—C13 | 118.1 (5) |
C5—C4—H4 | 119.5 | C9—N1—Ni1 | 127.2 (4) |
C4—C5—C6 | 121.6 (5) | C13—N1—Ni1 | 114.7 (4) |
C4—C5—H5 | 119.2 | C18—N2—C14 | 119.1 (5) |
C6—C5—H5 | 119.2 | C18—N2—Ni1 | 127.5 (4) |
C7—C6—C5 | 116.1 (4) | C14—N2—Ni1 | 113.3 (4) |
C7—C6—C6i | 121.8 (6) | C1—O1—Ni1 | 129.2 (3) |
C5—C6—C6i | 122.1 (6) | Ni1—O1W—H1WA | 109.6 |
C6—C7—C2 | 122.5 (5) | Ni1—O1W—H1WB | 108.5 |
C6—C7—H7 | 118.8 | H1WA—O1W—H1WB | 109.4 |
C2—C7—H7 | 118.8 | Ni1—O2W—H2WA | 109.7 |
O4—C8—O3 | 125.0 (5) | Ni1—O2W—H2WB | 105.3 |
O4—C8—C3 | 118.2 (5) | H2WA—O2W—H2WB | 124.6 |
O3—C8—C3 | 116.7 (5) | Ni1—O3W—H3WA | 122.7 |
N1—C9—C10 | 122.8 (6) | Ni1—O3W—H3WB | 109.6 |
N1—C9—H9 | 118.6 | H3WA—O3W—H3WB | 105.8 |
C10—C9—H9 | 118.6 | H4WA—O4W—H4WB | 100.3 |
C11—C10—C9 | 118.1 (7) | H5WA—O5W—H5WB | 143.0 |
C11—C10—H10 | 120.9 | H6WA—O6W—H6WB | 74.3 |
Symmetry code: (i) −x+2, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O4ii | 0.82 | 1.91 | 2.720 (5) | 168 |
O1W—H1WB···O3 | 0.85 | 2.04 | 2.889 (5) | 176 |
O2W—H2WA···O2 | 0.82 | 1.99 | 2.708 (5) | 146 |
O2W—H2WB···O3iii | 0.84 | 2.06 | 2.715 (5) | 135 |
O3W—H3WA···O3ii | 0.85 | 1.88 | 2.723 (5) | 168 |
O3W—H3WB···O4W | 0.82 | 1.97 | 2.793 (6) | 178 |
O4W—H4WA···O2iv | 0.87 | 1.87 | 2.715 (6) | 164 |
O4W—H4WB···O5W | 0.85 | 2.22 | 2.803 (8) | 125 |
O5W—H5WB···O6Wv | 0.83 | 2.18 | 2.770 (15) | 128 |
O6W—H6WA···O2 | 0.85 | 2.44 | 3.091 (11) | 134 |
O6W—H6WA···O2 | 0.85 | 2.44 | 3.091 (11) | 134 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z+1; (iv) x−1, y, z; (v) −x+1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [Ni2(C16H6O8)(C10H8N2)2(H2O)6]·6H2O |
Mr | 972.19 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 7.5126 (14), 12.088 (2), 12.285 (2) |
α, β, γ (°) | 105.445 (2), 98.075 (2), 92.162 (3) |
V (Å3) | 1061.4 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.97 |
Crystal size (mm) | 0.20 × 0.20 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.829, 0.868 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5556, 3698, 2526 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.062, 0.172, 1.05 |
No. of reflections | 3698 |
No. of parameters | 280 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.61, −0.53 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2006) and ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).
Ni1—N2 | 2.063 (4) | Ni1—O1 | 2.069 (3) |
Ni1—N1 | 2.064 (4) | Ni1—O3W | 2.075 (3) |
Ni1—O2W | 2.067 (3) | Ni1—O1W | 2.076 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O4i | 0.82 | 1.91 | 2.720 (5) | 167.6 |
O1W—H1WB···O3 | 0.85 | 2.04 | 2.889 (5) | 175.8 |
O2W—H2WA···O2 | 0.82 | 1.99 | 2.708 (5) | 145.6 |
O2W—H2WB···O3ii | 0.84 | 2.06 | 2.715 (5) | 134.6 |
O3W—H3WA···O3i | 0.85 | 1.88 | 2.723 (5) | 168.2 |
O3W—H3WB···O4W | 0.82 | 1.97 | 2.793 (6) | 177.9 |
O4W—H4WA···O2iii | 0.87 | 1.87 | 2.715 (6) | 163.7 |
O4W—H4WB···O5W | 0.85 | 2.22 | 2.803 (8) | 125.2 |
O5W—H5WB···O6Wiv | 0.83 | 2.18 | 2.770 (15) | 128.3 |
O6W—H6WA···O2 | 0.85 | 2.44 | 3.091 (11) | 134.2 |
O6W—H6WA···O2 | 0.85 | 2.44 | 3.091 (11) | 134.2 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x−1, y, z; (iv) −x+1, −y, −z. |
Acknowledgements
The authors thank Shanghai University for financial support.
References
Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hao, X.-R., Su, Z.-M., Zhao, Y.-H., Shao, K.-Z. & Wang, Y. (2005). Acta Cryst. C61, m469–m471. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, X. L., Cao, Q. & Wang, E. B. (2005). Eur. J. Inorg. Chem. pp 3418–3421. Google Scholar
Wang, X. L., Cao, Q. & Wang, E. B. (2006). Cryst. Growth Des. 6, 439–433. Web of Science CSD CrossRef CAS Google Scholar
Wang, J. J., Yang, M. L. & Hu, H. M. (2007). Z. Anorg. Allg. Chem. 633, 341–345. Web of Science CSD CrossRef CAS Google Scholar
Zhu, S., Zhang, H. & Shao, M. (2008a). Transition Met. Chem. 33, 669–680. Web of Science CSD CrossRef CAS Google Scholar
Zhu, S., Zhang, H. & Zhao, Y. (2008b). J. Mol. Struct. 892, 420–426. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Coordination compounds of biphenyl-3,3',4,4'-tetracarboxylic acid have been investigated previously. As expected, the deprotonated ligand coordinates to metal ions in a versatile mode due to its multidentate character (Hao et al., 2005; Wang et al., 2005; 2006; 2007). Upon adding chelating ligands, such as 2,2'-bipyridine or 1,10-phenanthroline, ternary coordination polymers can be formed (Zhu et al., 2008a). In all these complexes, biphenyl-3,3',4,4'-tetracarboxylate acts as counter ion and/or multidentate ligand. Here we present the crystal structure of the dinuclear complex [Ni2(C10H8N2)2(C16H6O8)(H2O)6].6H2O, (I).
The unique Ni atom in the structure of complex (I) (Fig. 1) is in a distorted octahedral coordination sphere formed by one carboxylate O, three water O and two N atoms with Ni—O and Ni—N bond lengths in the range 2.063 (4) Å - 2.076 (4) Å with σ=0.87 (Zhu et al., 2008b). The fully deprotonated biphenyl-3,3',4,4'-tetracarboxylate ligand displays inversion symmetry and links two symmetry-related NiII atoms. Due to symmetric reason, the two benzene rings of the biphenyl ligand are coplanar. The two pyridine rings in the 2,2'-bipyridine molecule have a torsion angle of 4.7 (8)°. The carboxylate group that coordinate to nickel is almost coplanar with the benzene ring (torsion angle 8.6 (8)°), while the free carboxylate has a torsion angle of 72.2 (7)° with the benzene ring which is almost perpendicular each other. The intramolecular distance between the two nickel(II) ions is 14.788 (11) Å.
As expected, there are considerable hydrogen bonds in the structure. Table 2 lists bond distances and angles. These H-bonds link dinuclear complex together to a three-dimensional structure (Fig 2.). The uncoordinated crystal lattice water molecules interact through additional hydrogen bonds, as shown in Fig. 3, and thus help to consolidate the crystal packing.