metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m562-m563

μ-Bi­phenyl-3,3′,4,4′-tetra­carboxyl­ato-κ2O3:O3′-bis­­[tri­aqua­(2,2′-bi­pyridyl-κ2N,N′)nickel(II)] hexa­hydrate

aDepartment of Chemistry, Shanghai University, Shanghai 200444, People's Republic of China, and bInstrumental Analysis Center, Shanghai University, Shanghai 200444, People's Republic of China
*Correspondence e-mail: shourongzhu@shu.edu.cn

(Received 13 March 2009; accepted 20 April 2009; online 25 April 2009)

The asymmetric unit of the title complex, [Ni2(C16H6O8)(C10H8N2)2(H2O)6]·6H2O, contains one NiII atom, one 2,2′-bipyridine ligand, three coordinated water mol­ecules, one-half of a fully deprotonated biphenyl-3,3′,4,4′-tetra­carboxyl­ate anion and three lattice water mol­ecules. The NiII atom displays a distorted NiN2O4 octa­hedral coordination formed by one carboxyl­ate O atom, three water O atoms and two N atoms of the chelating ligand. The complete biphenyl-3,3′,4,4′-tetra­carboxyl­ate ligand displays inversion symmetry and links two symmetry-related NiII atoms into a binuclear complex. Neighbouring complex mol­ecules are linked through O—H⋯O hydrogen bonds into a three-dimensional structure. Additional O—H⋯O hydrogen bonds between the lattice water mol­ecules help to consolidate the crystal packing.

Related literature

For other metal complexes with biphenyl-3,3′,4,4′-tetra­carboxyl­ate as ligand, see: Hao et al. (2005[Hao, X.-R., Su, Z.-M., Zhao, Y.-H., Shao, K.-Z. & Wang, Y. (2005). Acta Cryst. C61, m469-m471.]); Wang et al. (2005[Wang, X. L., Cao, Q. & Wang, E. B. (2005). Eur. J. Inorg. Chem. pp 3418-3421.], 2006[Wang, X. L., Cao, Q. & Wang, E. B. (2006). Cryst. Growth Des. 6, 439-433.], 2007[Wang, J. J., Yang, M. L. & Hu, H. M. (2007). Z. Anorg. Allg. Chem. 633, 341-345.]). For related structures containing biphenyl-3,3′,4,4′-tetra­carboxyl­ate and neutral chelating ligands, see: Zhu et al. (2008a[Zhu, S., Zhang, H. & Shao, M. (2008a). Transition Met. Chem. 33, 669-680.],b[Zhu, S., Zhang, H. & Zhao, Y. (2008b). J. Mol. Struct. 892, 420-426.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C16H6O8)(C10H8N2)2(H2O)6]·6H2O

  • Mr = 972.19

  • Triclinic, [P \overline 1]

  • a = 7.5126 (14) Å

  • b = 12.088 (2) Å

  • c = 12.285 (2) Å

  • α = 105.445 (2)°

  • β = 98.075 (2)°

  • γ = 92.162 (3)°

  • V = 1061.4 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.829, Tmax = 0.868

  • 5556 measured reflections

  • 3698 independent reflections

  • 2526 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.172

  • S = 1.05

  • 3698 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N2 2.063 (4)
Ni1—N1 2.064 (4)
Ni1—O2W 2.067 (3)
Ni1—O1 2.069 (3)
Ni1—O3W 2.075 (3)
Ni1—O1W 2.076 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O4i 0.82 1.91 2.720 (5) 168
O1W—H1WB⋯O3 0.85 2.04 2.889 (5) 176
O2W—H2WA⋯O2 0.82 1.99 2.708 (5) 146
O2W—H2WB⋯O3ii 0.84 2.06 2.715 (5) 135
O3W—H3WA⋯O3i 0.85 1.88 2.723 (5) 168
O3W—H3WB⋯O4W 0.82 1.97 2.793 (6) 178
O4W—H4WA⋯O2iii 0.87 1.87 2.715 (6) 164
O4W—H4WB⋯O5W 0.85 2.22 2.803 (8) 125
O5W—H5WB⋯O6Wiv 0.83 2.18 2.770 (15) 128
O6W—H6WA⋯O2 0.85 2.44 3.091 (11) 134
O6W—H6WA⋯O2 0.85 2.44 3.091 (11) 134
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) x-1, y, z; (iv) -x+1, -y, -z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Coordination compounds of biphenyl-3,3',4,4'-tetracarboxylic acid have been investigated previously. As expected, the deprotonated ligand coordinates to metal ions in a versatile mode due to its multidentate character (Hao et al., 2005; Wang et al., 2005; 2006; 2007). Upon adding chelating ligands, such as 2,2'-bipyridine or 1,10-phenanthroline, ternary coordination polymers can be formed (Zhu et al., 2008a). In all these complexes, biphenyl-3,3',4,4'-tetracarboxylate acts as counter ion and/or multidentate ligand. Here we present the crystal structure of the dinuclear complex [Ni2(C10H8N2)2(C16H6O8)(H2O)6].6H2O, (I).

The unique Ni atom in the structure of complex (I) (Fig. 1) is in a distorted octahedral coordination sphere formed by one carboxylate O, three water O and two N atoms with Ni—O and Ni—N bond lengths in the range 2.063 (4) Å - 2.076 (4) Å with σ=0.87 (Zhu et al., 2008b). The fully deprotonated biphenyl-3,3',4,4'-tetracarboxylate ligand displays inversion symmetry and links two symmetry-related NiII atoms. Due to symmetric reason, the two benzene rings of the biphenyl ligand are coplanar. The two pyridine rings in the 2,2'-bipyridine molecule have a torsion angle of 4.7 (8)°. The carboxylate group that coordinate to nickel is almost coplanar with the benzene ring (torsion angle 8.6 (8)°), while the free carboxylate has a torsion angle of 72.2 (7)° with the benzene ring which is almost perpendicular each other. The intramolecular distance between the two nickel(II) ions is 14.788 (11) Å.

As expected, there are considerable hydrogen bonds in the structure. Table 2 lists bond distances and angles. These H-bonds link dinuclear complex together to a three-dimensional structure (Fig 2.). The uncoordinated crystal lattice water molecules interact through additional hydrogen bonds, as shown in Fig. 3, and thus help to consolidate the crystal packing.

Related literature top

For other metal complexes with biphenyl-3,3',4,4'-tetracarboxylate as ligand, see: Hao et al. (2005); Wang et al. (2005, 2006, 2007). For related structures containing biphenyl-3,3',4,4'-tetracarboxylate and neutral chelating ligands, see: Zhu et al. (2008a,b).

Experimental top

A mixture of biphenyl-3,3',4,4'-tetracarboxylic acid dianhydride (0.5 mmol), 2,2'-bipyridine (0.5 mmol), NaOH (2 mmol) and Ni(NO3)2 (1 mmol) in 8 ml H2O was placed in a 25 ml Teflon reactor, which was sealed and heated in a oven at 433 K for 72 h. Then the autoclave was cooled to room temperature at the rate of 10 K to get light-blue flat crystals of the title compound (in ca 85% yield based on biphenyltetracarboxylic dianhydride). The crystals were isolated by filtration and washed with water.

Refinement top

The aromatic H atoms were generated geometrically and were included in the refinement in the riding model approximation (d(C—H) = 0.93 Å, Uiso=1.2Ueq(C)). The H atoms of the water molecules were identified in difference Fourier syntheses and were refined with distance restraints of d(O—H) = 0.85 Å.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit in the structure of complex (I), displayed with ellipsoids at the 50% probability level. Dashed lines represent hydrogen bonds.
[Figure 2] Fig. 2. Crystal packing in the crystal structure of compound (I) viewed down the a axis with ellipsoids ath the 30% probability level.
[Figure 3] Fig. 3. (a) The ππ interaction between adjacent 2, 2'-bipyridine molecules. (b) The crystal lattice water molecules arranged in chains via H -bonds; other atoms are omitted for clarity.
µ-Biphenyl-3,3',4,4'-tetracarboxylato-κ2O3:O3'- bis[triaqua(2,2'-bipyridyl-κ2N,N')nickel(II)] hexahydrate top
Crystal data top
[Ni2(C16H6O8)(C10H8N2)2(H2O)6]·6H2OZ = 1
Mr = 972.19F(000) = 506
Triclinic, P1Dx = 1.521 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5126 (14) ÅCell parameters from 1042 reflections
b = 12.088 (2) Åθ = 2.8–21.2°
c = 12.285 (2) ŵ = 0.97 mm1
α = 105.445 (2)°T = 296 K
β = 98.075 (2)°Flat, light-blue
γ = 92.162 (3)°0.20 × 0.20 × 0.15 mm
V = 1061.4 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3698 independent reflections
Radiation source: fine-focus sealed tube2526 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 88
Tmin = 0.829, Tmax = 0.868k = 1114
5556 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0835P)2 + 0.0076P]
3698 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Ni2(C16H6O8)(C10H8N2)2(H2O)6]·6H2Oγ = 92.162 (3)°
Mr = 972.19V = 1061.4 (3) Å3
Triclinic, P1Z = 1
a = 7.5126 (14) ÅMo Kα radiation
b = 12.088 (2) ŵ = 0.97 mm1
c = 12.285 (2) ÅT = 296 K
α = 105.445 (2)°0.20 × 0.20 × 0.15 mm
β = 98.075 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3698 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2526 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 0.868Rint = 0.037
5556 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.05Δρmax = 0.61 e Å3
3698 reflectionsΔρmin = 0.53 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.76324 (9)0.27456 (6)0.46907 (5)0.0292 (2)
C10.8729 (8)0.3451 (5)0.2678 (4)0.0353 (13)
C20.8455 (7)0.4289 (4)0.1965 (4)0.0279 (12)
C30.7072 (7)0.5022 (4)0.2062 (4)0.0271 (11)
C40.6778 (8)0.5682 (5)0.1309 (5)0.0390 (14)
H40.58160.61460.13450.047*
C50.7894 (8)0.5668 (5)0.0497 (5)0.0439 (16)
H50.76620.61220.00020.053*
C60.9365 (7)0.4985 (4)0.0411 (4)0.0294 (12)
C70.9582 (7)0.4283 (4)0.1148 (4)0.0325 (13)
H71.05110.37930.10950.039*
C80.5935 (8)0.5223 (4)0.3010 (5)0.0319 (13)
C90.7786 (9)0.2720 (6)0.7187 (5)0.0498 (16)
H90.79150.35190.73630.060*
C100.7713 (11)0.2212 (7)0.8067 (6)0.071 (2)
H100.78050.26580.88200.086*
C110.7506 (12)0.1055 (7)0.7801 (7)0.078 (2)
H110.74300.06920.83740.093*
C120.7407 (10)0.0414 (6)0.6699 (6)0.064 (2)
H120.72710.03850.65160.077*
C130.7509 (7)0.0962 (5)0.5854 (5)0.0384 (14)
C140.7468 (7)0.0348 (5)0.4639 (5)0.0362 (13)
C150.7461 (9)0.0842 (5)0.4239 (6)0.0596 (19)
H150.74540.12920.47450.072*
C160.7463 (11)0.1351 (6)0.3104 (7)0.075 (2)
H160.74680.21470.28370.091*
C170.7460 (10)0.0692 (6)0.2371 (6)0.070 (2)
H170.74720.10230.15970.084*
C180.7437 (8)0.0492 (5)0.2803 (5)0.0490 (16)
H180.73950.09460.22970.059*
N10.7680 (6)0.2112 (4)0.6097 (4)0.0375 (11)
N20.7472 (6)0.1002 (4)0.3901 (4)0.0333 (10)
O10.7508 (5)0.3349 (3)0.3258 (3)0.0327 (9)
O21.0074 (6)0.2870 (4)0.2630 (4)0.0519 (12)
O30.6703 (5)0.5796 (3)0.3995 (3)0.0357 (9)
O40.4305 (5)0.4876 (3)0.2757 (3)0.0414 (10)
O1W0.7793 (5)0.4475 (3)0.5584 (3)0.0378 (9)
H1WA0.70750.45760.60390.045*
H1WB0.75280.48640.51080.045*
O2W1.0407 (5)0.2754 (3)0.4820 (3)0.0366 (9)
H2WA1.06980.26470.41830.044*
H2WB1.08100.33120.53830.044*
O3W0.4835 (5)0.2653 (3)0.4440 (3)0.0372 (9)
H3WA0.42380.31410.48520.045*
H3WB0.44550.26380.37760.045*
O4W0.3480 (6)0.2550 (4)0.2175 (4)0.0662 (13)
H4WA0.23650.26980.22010.079*
H4WB0.34720.23630.14540.079*
O5W0.3527 (11)0.0578 (6)0.0358 (6)0.141 (3)
H5WA0.42550.11620.03710.169*
H5WB0.31410.00880.00250.169*
O6W0.9624 (19)0.0848 (9)0.0429 (9)0.288 (7)
H6WA0.98440.10420.11560.345*
H6WB0.98080.15780.06310.345*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0322 (4)0.0294 (4)0.0321 (4)0.0051 (3)0.0127 (3)0.0145 (3)
C10.038 (3)0.042 (3)0.033 (3)0.006 (3)0.016 (3)0.015 (3)
C20.028 (3)0.033 (3)0.027 (3)0.006 (2)0.012 (2)0.012 (2)
C30.030 (3)0.028 (3)0.026 (3)0.004 (2)0.014 (2)0.008 (2)
C40.038 (3)0.048 (4)0.041 (3)0.019 (3)0.023 (3)0.019 (3)
C50.047 (4)0.056 (4)0.047 (4)0.016 (3)0.022 (3)0.036 (3)
C60.034 (3)0.036 (3)0.023 (3)0.007 (2)0.015 (2)0.012 (2)
C70.038 (3)0.037 (3)0.032 (3)0.013 (3)0.017 (2)0.019 (2)
C80.038 (3)0.027 (3)0.038 (3)0.009 (2)0.018 (3)0.015 (2)
C90.061 (4)0.049 (4)0.042 (4)0.002 (3)0.011 (3)0.017 (3)
C100.098 (6)0.083 (6)0.038 (4)0.000 (5)0.012 (4)0.025 (4)
C110.118 (7)0.074 (6)0.056 (5)0.004 (5)0.015 (5)0.044 (4)
C120.091 (6)0.059 (5)0.055 (5)0.005 (4)0.014 (4)0.038 (4)
C130.034 (3)0.039 (3)0.046 (4)0.000 (3)0.004 (3)0.018 (3)
C140.029 (3)0.029 (3)0.053 (4)0.002 (2)0.007 (3)0.016 (3)
C150.066 (5)0.041 (4)0.077 (5)0.003 (3)0.003 (4)0.031 (4)
C160.111 (7)0.037 (4)0.069 (5)0.010 (4)0.000 (5)0.005 (4)
C170.086 (6)0.057 (5)0.058 (5)0.007 (4)0.017 (4)0.003 (4)
C180.063 (4)0.046 (4)0.038 (4)0.009 (3)0.012 (3)0.009 (3)
N10.038 (3)0.043 (3)0.038 (3)0.011 (2)0.012 (2)0.017 (2)
N20.031 (3)0.034 (3)0.037 (3)0.004 (2)0.008 (2)0.013 (2)
O10.037 (2)0.038 (2)0.032 (2)0.0107 (17)0.0208 (17)0.0162 (17)
O20.051 (3)0.065 (3)0.065 (3)0.036 (2)0.039 (2)0.042 (2)
O30.038 (2)0.039 (2)0.029 (2)0.0016 (18)0.0134 (17)0.0021 (17)
O40.031 (2)0.054 (3)0.039 (2)0.0020 (19)0.0156 (18)0.0096 (19)
O1W0.043 (2)0.039 (2)0.040 (2)0.0053 (18)0.0209 (18)0.0157 (18)
O2W0.033 (2)0.044 (2)0.036 (2)0.0058 (18)0.0107 (17)0.0136 (18)
O3W0.033 (2)0.045 (2)0.039 (2)0.0084 (18)0.0172 (18)0.0134 (18)
O4W0.048 (3)0.075 (3)0.071 (3)0.005 (2)0.015 (2)0.009 (3)
O5W0.189 (8)0.116 (6)0.113 (6)0.008 (5)0.038 (5)0.019 (5)
O6W0.42 (2)0.237 (14)0.165 (11)0.049 (13)0.054 (12)0.011 (9)
Geometric parameters (Å, º) top
Ni1—N22.063 (4)C11—H110.9300
Ni1—N12.064 (4)C12—C131.380 (8)
Ni1—O2W2.067 (3)C12—H120.9300
Ni1—O12.069 (3)C13—N11.340 (7)
Ni1—O3W2.075 (3)C13—C141.475 (8)
Ni1—O1W2.076 (4)C14—N21.352 (7)
C1—O21.252 (6)C14—C151.390 (8)
C1—O11.259 (6)C15—C161.366 (9)
C1—C21.508 (7)C15—H150.9300
C2—C31.388 (7)C16—C171.351 (10)
C2—C71.400 (6)C16—H160.9300
C3—C41.375 (7)C17—C181.390 (8)
C3—C81.513 (7)C17—H170.9300
C4—C51.387 (7)C18—N21.322 (7)
C4—H40.9300C18—H180.9300
C5—C61.403 (7)O1W—H1WA0.8201
C5—H50.9300O1W—H1WB0.8498
C6—C71.394 (7)O2W—H2WA0.8201
C6—C6i1.489 (9)O2W—H2WB0.8379
C7—H70.9300O3W—H3WA0.8542
C8—O41.248 (6)O3W—H3WB0.8200
C8—O31.266 (6)O4W—H4WA0.8664
C9—N11.334 (7)O4W—H4WB0.8528
C9—C101.384 (8)O5W—H5WA0.8722
C9—H90.9300O5W—H5WB0.8339
C10—C111.347 (9)O6W—H6WA0.8500
C10—H100.9300O6W—H6WB0.8500
C11—C121.359 (10)
N2—Ni1—N180.00 (17)C9—C10—H10120.9
N2—Ni1—O2W88.41 (16)C10—C11—C12120.3 (6)
N1—Ni1—O2W91.05 (16)C10—C11—H11119.9
N2—Ni1—O198.95 (15)C12—C11—H11119.9
N1—Ni1—O1178.17 (17)C11—C12—C13119.4 (7)
O2W—Ni1—O190.43 (14)C11—C12—H12120.3
N2—Ni1—O3W88.32 (16)C13—C12—H12120.3
N1—Ni1—O3W91.12 (16)N1—C13—C12121.3 (6)
O2W—Ni1—O3W175.71 (14)N1—C13—C14115.0 (5)
O1—Ni1—O3W87.34 (14)C12—C13—C14123.7 (6)
N2—Ni1—O1W176.34 (15)N2—C14—C15119.8 (6)
N1—Ni1—O1W96.33 (16)N2—C14—C13116.8 (5)
O2W—Ni1—O1W91.76 (15)C15—C14—C13123.4 (5)
O1—Ni1—O1W84.71 (14)C16—C15—C14120.2 (6)
O3W—Ni1—O1W91.67 (14)C16—C15—H15119.9
O2—C1—O1123.8 (5)C14—C15—H15119.9
O2—C1—C2119.8 (4)C17—C16—C15119.6 (7)
O1—C1—C2116.3 (5)C17—C16—H16120.2
C3—C2—C7119.6 (4)C15—C16—H16120.2
C3—C2—C1121.8 (4)C16—C17—C18118.4 (7)
C7—C2—C1118.6 (4)C16—C17—H17120.8
C4—C3—C2119.0 (4)C18—C17—H17120.8
C4—C3—C8116.6 (4)N2—C18—C17122.8 (6)
C2—C3—C8124.2 (4)N2—C18—H18118.6
C3—C4—C5121.1 (5)C17—C18—H18118.6
C3—C4—H4119.5C9—N1—C13118.1 (5)
C5—C4—H4119.5C9—N1—Ni1127.2 (4)
C4—C5—C6121.6 (5)C13—N1—Ni1114.7 (4)
C4—C5—H5119.2C18—N2—C14119.1 (5)
C6—C5—H5119.2C18—N2—Ni1127.5 (4)
C7—C6—C5116.1 (4)C14—N2—Ni1113.3 (4)
C7—C6—C6i121.8 (6)C1—O1—Ni1129.2 (3)
C5—C6—C6i122.1 (6)Ni1—O1W—H1WA109.6
C6—C7—C2122.5 (5)Ni1—O1W—H1WB108.5
C6—C7—H7118.8H1WA—O1W—H1WB109.4
C2—C7—H7118.8Ni1—O2W—H2WA109.7
O4—C8—O3125.0 (5)Ni1—O2W—H2WB105.3
O4—C8—C3118.2 (5)H2WA—O2W—H2WB124.6
O3—C8—C3116.7 (5)Ni1—O3W—H3WA122.7
N1—C9—C10122.8 (6)Ni1—O3W—H3WB109.6
N1—C9—H9118.6H3WA—O3W—H3WB105.8
C10—C9—H9118.6H4WA—O4W—H4WB100.3
C11—C10—C9118.1 (7)H5WA—O5W—H5WB143.0
C11—C10—H10120.9H6WA—O6W—H6WB74.3
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4ii0.821.912.720 (5)168
O1W—H1WB···O30.852.042.889 (5)176
O2W—H2WA···O20.821.992.708 (5)146
O2W—H2WB···O3iii0.842.062.715 (5)135
O3W—H3WA···O3ii0.851.882.723 (5)168
O3W—H3WB···O4W0.821.972.793 (6)178
O4W—H4WA···O2iv0.871.872.715 (6)164
O4W—H4WB···O5W0.852.222.803 (8)125
O5W—H5WB···O6Wv0.832.182.770 (15)128
O6W—H6WA···O20.852.443.091 (11)134
O6W—H6WA···O20.852.443.091 (11)134
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x1, y, z; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni2(C16H6O8)(C10H8N2)2(H2O)6]·6H2O
Mr972.19
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.5126 (14), 12.088 (2), 12.285 (2)
α, β, γ (°)105.445 (2), 98.075 (2), 92.162 (3)
V3)1061.4 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.20 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.829, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
5556, 3698, 2526
Rint0.037
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.172, 1.05
No. of reflections3698
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.53

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2006) and ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—N22.063 (4)Ni1—O12.069 (3)
Ni1—N12.064 (4)Ni1—O3W2.075 (3)
Ni1—O2W2.067 (3)Ni1—O1W2.076 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4i0.821.912.720 (5)167.6
O1W—H1WB···O30.852.042.889 (5)175.8
O2W—H2WA···O20.821.992.708 (5)145.6
O2W—H2WB···O3ii0.842.062.715 (5)134.6
O3W—H3WA···O3i0.851.882.723 (5)168.2
O3W—H3WB···O4W0.821.972.793 (6)177.9
O4W—H4WA···O2iii0.871.872.715 (6)163.7
O4W—H4WB···O5W0.852.222.803 (8)125.2
O5W—H5WB···O6Wiv0.832.182.770 (15)128.3
O6W—H6WA···O20.852.443.091 (11)134.2
O6W—H6WA···O20.852.443.091 (11)134.2
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x1, y, z; (iv) x+1, y, z.
 

Acknowledgements

The authors thank Shanghai University for financial support.

References

First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHao, X.-R., Su, Z.-M., Zhao, Y.-H., Shao, K.-Z. & Wang, Y. (2005). Acta Cryst. C61, m469–m471.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. L., Cao, Q. & Wang, E. B. (2005). Eur. J. Inorg. Chem. pp 3418–3421.  Google Scholar
First citationWang, X. L., Cao, Q. & Wang, E. B. (2006). Cryst. Growth Des. 6, 439–433.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, J. J., Yang, M. L. & Hu, H. M. (2007). Z. Anorg. Allg. Chem. 633, 341–345.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, S., Zhang, H. & Shao, M. (2008a). Transition Met. Chem. 33, 669–680.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, S., Zhang, H. & Zhao, Y. (2008b). J. Mol. Struct. 892, 420–426.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m562-m563
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds