organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2,3-Bis(4-meth­oxy­phen­yl)acrylic acid

aState Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: zhuhl@nju.edu.cn

(Received 25 March 2009; accepted 30 March 2009; online 2 April 2009)

In the title mol­ecule, C17H16O4, the angle between the aromatic ring planes is 69.1 (6)°. The crystal structure is stabilized by inter­molecular O—H⋯O hydrogen bonds; mol­ecules related by a centre of symmetry are linked to form inversion dimers.

Related literature

For the biological properties and synthesis of resveratrol (trans-3,4′,5-trihydroxy­stilbene) and its derivatives, see: Huang, Ruan et al. (2007[Huang, X.-F., Ruan, B.-F., Wang, X.-T., Xu, C., Ge, H.-M., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem. 42, 263-267.]); Huang et al. (2008[Huang, X.-F., Li, H.-Q., Shi, L., Xue, J.-Y., Ruan, B.-F. & Zhu, H.-L. (2008). Chem. Biodiver. 5, 636-642.]); Jang et al. (1997[Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W. W., Fong, H. H. S., Farnsworth, N. R., Kinghorn, A. D., Mehta, R. G., Moon, R. C. & Pezztuo, J. M. (1997). Science, 275, 218-220.]); Ruan et al. (2006[Ruan, B.-F., Huang, X.-F., Ding, H., Xu, C., Ge, H.-M., Zhu, H.-L. & Tan, R.-X. (2006). Chem. Biodiver. 3, 975-981.]); Schulze et al. (2005[Schulze, K., Schreiber, L. & Szankowski, I. (2005). J. Agric. Food Chem. 53, 356-362.]); Shi et al. (2005[Shi, L., Huang, X.-F., Shi, L., Zhu, Z.-W., Li, H.-Q., Xue, J.-Y., Zhu, H.-L. & Liu, C.-H. (2008). Aust. J. Chem. 61, 472-475.]). For related crystal structures, see: Huang, Li et al. (2007[Huang, X.-F., Li, H.-Q., Shi, L., Li, H.-Q. & Zhu, H.-L. (2007). J. Chem. Crystallogr. 37, 739-742.]); Stomberg et al. (2001[Stomberg, R., Li, S.-M., Lundquist, K. & Norinder, U. (2001). J. Chem. Crystallogr. 31, 321-328.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16O4

  • Mr = 284.30

  • Triclinic, [P \overline 1]

  • a = 5.8690 (12) Å

  • b = 9.1480 (18) Å

  • c = 13.992 (3) Å

  • α = 83.65 (3)°

  • β = 85.43 (3)°

  • γ = 80.92 (3)°

  • V = 735.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.973, Tmax = 0.991

  • 3196 measured reflections

  • 2895 independent reflections

  • 1779 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.151

  • S = 1.08

  • 2895 reflections

  • 194 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.82 1.80 2.608 (2) 169
Symmetry code: (i) -x+3, -y+2, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Resveratrol (trans-3, 4',5-trihydroxystilbene) and its derivatives have attracted much attention since it was first isolated in 1939, because of their physiological properties and potential therapeutic values (Schulze et al., 2005; Jang et al., 1997). In our laboratory, we have synthesized two series of resveratrol derivatives (Ruan et al., 2006; Huang et al., 2007). As part of an extensive structure-activity relationship (SAR) study on resveratrol derivatives, another series of analogues of resveratrol has been synthesized. One of them, namely the title compound, was obtained as single crystals and its crystal structure determined to establish its configuration.

The crystal structure demonstrated that it had the E configuration (Fig. 1). All bond lengths are within normal ranges and very similar to those in related crystal structures (Stomberg et al., 2001). The torsion angles C5—C8—C10—C11 and C9—C8—C10—C11 are 5.9 (4)° and -176.6 (2)°, respectively. The angle between the aromatic ring planes is 69.1 (6)°. In the crystal structure, molecules related by a centre of symmetry are linked to form dimers via intermolecular O—H—O hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For the biological properties and synthesis of resveratrol (trans-3, 4',5-trihydroxystilbene) and its derivatives, see: Huang, Ruan et al. (2007, 2008); Jang et al. (1997); Ruan et al. (2006); Schulze et al. (2005); Shi et al. (2008). For related crystal structures, see: Huang, Li et al. (2007; Stomberg et al. (2001).

Experimental top

2-(4-Methoxyphenyl)acetic acid (1.66 g, 0.01 mol), 4-methoxybenzaldehyde (1.36 g, 0.01 mol) and acetic anhydride (15 ml) were added to a three-necked flask in an icewater bath with stirring. Triethylamine (5 ml) was added dropwise into this solution and the mixture was allowed to react at 100°C for 12 h. After cooling to room temperature, the mixture was slowly poured into 50 ml 10% NaOH solution, yielding a white precipitate. This was collected by vacuum filtration, washed with a large amount of water and dried in air. Colorless single crystals were obtained after a week upon evaporation of a solution of the reaction product in a mixture of ethyl acetate (10 ml) and petroleum ether (5 ml).

Refinement top

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å (Csp2), 0.96 Å (methyl) and O—H = 0.82 Å. Uiso(H) = 1.2Ueq(Csp2), 1.5Ueq(methyl C and hydroxyl O).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. All H atoms have been omitted.
[Figure 2] Fig. 2. A view of the hydrogen-bonded dimer of the title compound. Dashed lines indicate hydrogen bonds. [Symmetry code: (A) -x + 3, -y + 2, -z + 1]
(E)-2,3-Bis(4-methoxyphenyl)acrylic acid top
Crystal data top
C17H16O4Z = 2
Mr = 284.30F(000) = 300
Triclinic, P1Dx = 1.283 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8690 (12) ÅCell parameters from 1625 reflections
b = 9.1480 (18) Åθ = 2.2–24.8°
c = 13.992 (3) ŵ = 0.09 mm1
α = 83.65 (3)°T = 298 K
β = 85.43 (3)°Block, colorless
γ = 80.92 (3)°0.30 × 0.20 × 0.10 mm
V = 735.8 (3) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2895 independent reflections
Radiation source: fine-focus sealed tube1779 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω/2θ scansθmax = 26.0°, θmin = 1.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 07
Tmin = 0.973, Tmax = 0.991k = 1111
3196 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0675P)2 + 0.024P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2895 reflectionsΔρmax = 0.18 e Å3
194 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.044 (7)
Crystal data top
C17H16O4γ = 80.92 (3)°
Mr = 284.30V = 735.8 (3) Å3
Triclinic, P1Z = 2
a = 5.8690 (12) ÅMo Kα radiation
b = 9.1480 (18) ŵ = 0.09 mm1
c = 13.992 (3) ÅT = 298 K
α = 83.65 (3)°0.30 × 0.20 × 0.10 mm
β = 85.43 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2895 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
1779 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.991Rint = 0.027
3196 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.08Δρmax = 0.18 e Å3
2895 reflectionsΔρmin = 0.17 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7983 (6)1.3447 (4)0.0150 (2)0.0938 (11)
H1A0.67741.28480.01320.141*
H1B0.81081.39930.07740.141*
H1C0.76291.41300.03330.141*
C21.0269 (4)1.1661 (3)0.08912 (15)0.0505 (6)
C30.8532 (4)1.1641 (3)0.16030 (17)0.0565 (6)
H3A0.71031.22250.15130.068*
C40.8905 (4)1.0754 (3)0.24524 (17)0.0548 (6)
H40.77051.07520.29290.066*
C51.0983 (4)0.9870 (2)0.26254 (15)0.0423 (5)
C61.2741 (4)0.9919 (3)0.19039 (16)0.0553 (6)
H61.41820.93570.20010.066*
C71.2382 (4)1.0786 (3)0.10484 (17)0.0621 (7)
H71.35731.07860.05680.074*
C81.1324 (4)0.8926 (2)0.35563 (15)0.0462 (6)
C91.2916 (4)0.9385 (3)0.41980 (16)0.0495 (6)
C101.0275 (4)0.7750 (2)0.38730 (16)0.0500 (6)
H101.05820.73490.44980.060*
C110.8736 (4)0.6996 (2)0.34031 (15)0.0466 (6)
C120.7562 (4)0.5977 (3)0.39652 (17)0.0563 (7)
H120.77700.58210.46230.068*
C130.6106 (4)0.5188 (3)0.35884 (17)0.0577 (7)
H130.53540.45050.39850.069*
C140.5767 (4)0.5414 (2)0.26176 (17)0.0495 (6)
C150.6987 (4)0.6386 (3)0.20313 (16)0.0550 (6)
H150.68260.65040.13700.066*
C160.8418 (4)0.7169 (2)0.24152 (16)0.0521 (6)
H160.91980.78310.20130.063*
C170.2995 (5)0.3745 (3)0.2726 (2)0.0746 (8)
H17A0.39980.29480.30530.112*
H17B0.20670.33450.23150.112*
H17C0.20090.42830.31920.112*
O11.0108 (3)1.2517 (2)0.00292 (12)0.0753 (6)
O21.3849 (3)1.04878 (19)0.39719 (11)0.0674 (6)
O31.3251 (3)0.85636 (19)0.50110 (11)0.0691 (6)
H31.40250.89580.53410.104*
O40.4348 (3)0.47241 (18)0.21611 (12)0.0641 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.091 (2)0.104 (2)0.074 (2)0.007 (2)0.0214 (18)0.0273 (18)
C20.0525 (15)0.0561 (14)0.0426 (12)0.0126 (12)0.0038 (11)0.0029 (10)
C30.0391 (13)0.0660 (16)0.0582 (14)0.0010 (12)0.0025 (11)0.0085 (12)
C40.0350 (12)0.0696 (16)0.0543 (14)0.0040 (11)0.0048 (10)0.0067 (12)
C50.0397 (12)0.0455 (12)0.0429 (12)0.0120 (10)0.0034 (9)0.0004 (9)
C60.0366 (13)0.0690 (16)0.0543 (14)0.0024 (11)0.0015 (11)0.0018 (12)
C70.0468 (15)0.0817 (18)0.0506 (14)0.0023 (13)0.0095 (12)0.0054 (13)
C80.0419 (13)0.0483 (13)0.0475 (12)0.0076 (10)0.0032 (10)0.0010 (10)
C90.0472 (13)0.0552 (14)0.0451 (13)0.0108 (11)0.0061 (11)0.0061 (11)
C100.0515 (14)0.0544 (14)0.0432 (12)0.0101 (11)0.0037 (11)0.0034 (10)
C110.0437 (13)0.0481 (13)0.0465 (13)0.0074 (10)0.0032 (10)0.0030 (10)
C120.0595 (16)0.0638 (16)0.0461 (13)0.0183 (13)0.0028 (11)0.0053 (11)
C130.0527 (15)0.0620 (15)0.0595 (15)0.0223 (12)0.0017 (12)0.0050 (12)
C140.0434 (13)0.0456 (13)0.0588 (14)0.0050 (11)0.0071 (11)0.0009 (11)
C150.0662 (16)0.0519 (14)0.0475 (13)0.0145 (12)0.0108 (12)0.0059 (11)
C160.0544 (14)0.0522 (14)0.0502 (14)0.0178 (12)0.0027 (11)0.0064 (11)
C170.0668 (18)0.0648 (17)0.097 (2)0.0284 (15)0.0050 (16)0.0028 (15)
O10.0737 (13)0.0920 (14)0.0513 (10)0.0045 (11)0.0040 (9)0.0201 (9)
O20.0759 (12)0.0728 (12)0.0594 (11)0.0376 (10)0.0217 (9)0.0176 (9)
O30.0865 (14)0.0735 (12)0.0535 (10)0.0355 (10)0.0255 (9)0.0150 (9)
O40.0639 (11)0.0610 (11)0.0720 (11)0.0240 (9)0.0171 (9)0.0030 (9)
Geometric parameters (Å, º) top
C1—O11.418 (3)C9—O31.303 (2)
C1—H1A0.9600C10—C111.455 (3)
C1—H1B0.9600C10—H100.9300
C1—H1C0.9600C11—C121.384 (3)
C2—O11.364 (3)C11—C161.398 (3)
C2—C31.368 (3)C12—C131.371 (3)
C2—C71.385 (3)C12—H120.9300
C3—C41.375 (3)C13—C141.377 (3)
C3—H3A0.9300C13—H130.9300
C4—C51.376 (3)C14—O41.356 (3)
C4—H40.9300C14—C151.386 (3)
C5—C61.387 (3)C15—C161.362 (3)
C5—C81.490 (3)C15—H150.9300
C6—C71.372 (3)C16—H160.9300
C6—H60.9300C17—O41.423 (3)
C7—H70.9300C17—H17A0.9600
C8—C101.339 (3)C17—H17B0.9600
C8—C91.482 (3)C17—H17C0.9600
C9—O21.222 (3)O3—H30.8200
O1—C1—H1A109.5C8—C10—C11130.8 (2)
O1—C1—H1B109.5C8—C10—H10114.6
H1A—C1—H1B109.5C11—C10—H10114.6
O1—C1—H1C109.5C12—C11—C16116.9 (2)
H1A—C1—H1C109.5C12—C11—C10117.9 (2)
H1B—C1—H1C109.5C16—C11—C10125.1 (2)
O1—C2—C3124.8 (2)C13—C12—C11122.4 (2)
O1—C2—C7116.4 (2)C13—C12—H12118.8
C3—C2—C7118.8 (2)C11—C12—H12118.8
C2—C3—C4119.8 (2)C12—C13—C14119.5 (2)
C2—C3—H3A120.1C12—C13—H13120.3
C4—C3—H3A120.1C14—C13—H13120.3
C3—C4—C5122.6 (2)O4—C14—C13125.2 (2)
C3—C4—H4118.7O4—C14—C15115.5 (2)
C5—C4—H4118.7C13—C14—C15119.3 (2)
C4—C5—C6117.04 (19)C16—C15—C14120.6 (2)
C4—C5—C8121.03 (19)C16—C15—H15119.7
C6—C5—C8121.9 (2)C14—C15—H15119.7
C7—C6—C5121.0 (2)C15—C16—C11121.2 (2)
C7—C6—H6119.5C15—C16—H16119.4
C5—C6—H6119.5C11—C16—H16119.4
C6—C7—C2120.8 (2)O4—C17—H17A109.5
C6—C7—H7119.6O4—C17—H17B109.5
C2—C7—H7119.6H17A—C17—H17B109.5
C10—C8—C9117.8 (2)O4—C17—H17C109.5
C10—C8—C5126.2 (2)H17A—C17—H17C109.5
C9—C8—C5115.95 (18)H17B—C17—H17C109.5
O2—C9—O3122.1 (2)C2—O1—C1118.0 (2)
O2—C9—C8121.2 (2)C9—O3—H3109.5
O3—C9—C8116.7 (2)C14—O4—C17118.3 (2)
O1—C2—C3—C4178.7 (2)C9—C8—C10—C11176.6 (2)
C7—C2—C3—C40.3 (4)C5—C8—C10—C115.9 (4)
C2—C3—C4—C50.1 (4)C8—C10—C11—C12168.2 (2)
C3—C4—C5—C60.9 (4)C8—C10—C11—C1614.8 (4)
C3—C4—C5—C8179.8 (2)C16—C11—C12—C131.5 (4)
C4—C5—C6—C71.7 (4)C10—C11—C12—C13178.8 (2)
C8—C5—C6—C7179.4 (2)C11—C12—C13—C140.5 (4)
C5—C6—C7—C21.5 (4)C12—C13—C14—O4178.9 (2)
O1—C2—C7—C6178.1 (2)C12—C13—C14—C152.9 (4)
C3—C2—C7—C60.4 (4)O4—C14—C15—C16178.3 (2)
C4—C5—C8—C1066.9 (3)C13—C14—C15—C163.3 (4)
C6—C5—C8—C10114.2 (3)C14—C15—C16—C111.3 (4)
C4—C5—C8—C9110.7 (2)C12—C11—C16—C151.1 (3)
C6—C5—C8—C968.2 (3)C10—C11—C16—C15178.2 (2)
C10—C8—C9—O2176.7 (2)C3—C2—O1—C10.5 (4)
C5—C8—C9—O21.1 (3)C7—C2—O1—C1178.9 (2)
C10—C8—C9—O32.9 (3)C13—C14—O4—C173.6 (3)
C5—C8—C9—O3179.4 (2)C15—C14—O4—C17178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.802.608 (2)169
Symmetry code: (i) x+3, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC17H16O4
Mr284.30
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.8690 (12), 9.1480 (18), 13.992 (3)
α, β, γ (°)83.65 (3), 85.43 (3), 80.92 (3)
V3)735.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.973, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
3196, 2895, 1779
Rint0.027
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.151, 1.08
No. of reflections2895
No. of parameters194
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.802.608 (2)168.7
Symmetry code: (i) x+3, y+2, z+1.
 

Acknowledgements

This work was financed by a grant (Project 30772627) from the National Natural Science Foundation of China.

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHuang, X.-F., Li, H.-Q., Shi, L., Li, H.-Q. & Zhu, H.-L. (2007). J. Chem. Crystallogr. 37, 739–742.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, X.-F., Li, H.-Q., Shi, L., Xue, J.-Y., Ruan, B.-F. & Zhu, H.-L. (2008). Chem. Biodiver. 5, 636–642.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, X.-F., Ruan, B.-F., Wang, X.-T., Xu, C., Ge, H.-M., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem. 42, 263–267.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W. W., Fong, H. H. S., Farnsworth, N. R., Kinghorn, A. D., Mehta, R. G., Moon, R. C. & Pezztuo, J. M. (1997). Science, 275, 218–220.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRuan, B.-F., Huang, X.-F., Ding, H., Xu, C., Ge, H.-M., Zhu, H.-L. & Tan, R.-X. (2006). Chem. Biodiver. 3, 975–981.  Web of Science CrossRef CAS Google Scholar
First citationSchulze, K., Schreiber, L. & Szankowski, I. (2005). J. Agric. Food Chem. 53, 356–362.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, L., Huang, X.-F., Shi, L., Zhu, Z.-W., Li, H.-Q., Xue, J.-Y., Zhu, H.-L. & Liu, C.-H. (2008). Aust. J. Chem. 61, 472–475.  Web of Science CrossRef CAS Google Scholar
First citationStomberg, R., Li, S.-M., Lundquist, K. & Norinder, U. (2001). J. Chem. Crystallogr. 31, 321–328.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds