organic compounds
2-[1-(1-Naphthyl)-1H-1,2,3-triazol-4-yl]pyridine
aLaboratory of Organic and Macromolecular Chemistry, Friedrich-Schiller-Universität Jena, Humboldtstrasse 10, 07743 Jena, Germany, bEindhoven University of Technology, Laboratory of Macromolecular Chemistry and Nanoscience, Den Dolech 2, NL-5612AZ Eindhoven, The Netherlands, and cVienna University of Technology, Institute of Materials Chemistry, Getreidemarkt 9/165, 1060 Wien, Austria
*Correspondence e-mail: ulrich.schubert@uni-jena.de
In the 17H12N4, the angle between the naphthalene and 1H-1,2,3-triazole ring systems is 71.02 (4)° and that between the pyridine and triazole rings is 8.30 (9)°.
of the title compound, CRelated literature
For related literature on the synthesis of polypyridyl ligands and 1,2,3-triazole-containing compounds, see: Marin et al. (2007); Winter et al. (2007); Balzani et al. (1996); Newkome et al. (2004); Chan et al. (2004); Rostovtsev et al. (2002); Kolb et al. (2001). The synthesis of the title compound is reported in Happ et al. (2009). For related crystal structures, see: Obata et al. (2008); Schweinfurth et al. (2008); Schulze et al. (2009); Li et al. (2007); Richardson et al. (2008); Angell & Burgess (2007).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: CARINE (Boudias & Monceau, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).
Supporting information
10.1107/S160053680901407X/wn2322sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680901407X/wn2322Isup2.hkl
The title compound, C17H12N4, was synthesized as reported previously (Happ et al., 2009): Sodium azide (6 mmol) and anhydrous CuSO4 (62 mg, 0.4 mmol) were dissolved in dry methanol (15 ml) in a 20 ml microwave vial. (Naphthalen-1-yl)boronic acid (663 mg, 3.84 mmol) was added to the brown solution and the mixture was stirred for 17 h at room temperature. The progress of the reaction was monitored by TLC (SiO2, CHCl3 as eluent). Then CuSO4.5H2O (30 mg, 0.2 mmol), sodium ascorbate (384 mg, 1.95 mmol), 2-ethynylpyridine (435 mg, 4.2 mmol) and water (5 ml) were added. The reaction mixture was heated under microwave irradiation at 100 °C for 1 h. Water (30 ml) was added and the product was extracted with toluene (3 × 15 ml). After drying (MgSO4) and evaporation of the solvent, the crude product was purified by
[Al2O3, CH2Cl2/EtOAc (1:1 ratio) as eluent]. The title compound was isolated as a white crystalline solid (673 mg, 64%). Single crystals of the purified compound were obtained by slow evaporation of a CH2Cl2/n-hexane solution (2:1 ratio).H atoms were placed in idealized positions with C—H = 0.93 Å and refined as riding on their parent atoms with Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: CARINE (Boudias & Monceau, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).C17H12N4 | Dx = 1.330 Mg m−3 |
Mr = 272.31 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 4456 reflections |
a = 11.6378 (4) Å | θ = 2.4–20.9° |
b = 9.3228 (4) Å | µ = 0.08 mm−1 |
c = 25.0592 (9) Å | T = 296 K |
V = 2718.84 (18) Å3 | Stick, colourless |
Z = 8 | 0.63 × 0.18 × 0.07 mm |
F(000) = 1136 |
Bruker Kappa APEXII diffractometer | 2391 independent reflections |
Radiation source: fine-focus sealed tube | 1934 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ω scans | θmax = 25.0°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | h = −13→13 |
Tmin = 0.950, Tmax = 0.994 | k = −10→11 |
14517 measured reflections | l = −28→29 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.120 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0842P)2 + 0.1848P] where P = (Fo2 + 2Fc2)/3 |
2391 reflections | (Δ/σ)max < 0.001 |
190 parameters | Δρmax = 0.14 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C17H12N4 | V = 2718.84 (18) Å3 |
Mr = 272.31 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 11.6378 (4) Å | µ = 0.08 mm−1 |
b = 9.3228 (4) Å | T = 296 K |
c = 25.0592 (9) Å | 0.63 × 0.18 × 0.07 mm |
Bruker Kappa APEXII diffractometer | 2391 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | 1934 reflections with I > 2σ(I) |
Tmin = 0.950, Tmax = 0.994 | Rint = 0.027 |
14517 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.120 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.14 e Å−3 |
2391 reflections | Δρmin = −0.18 e Å−3 |
190 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.20019 (9) | 0.39250 (12) | 0.37942 (4) | 0.0428 (3) | |
N2 | 0.31490 (10) | 0.36728 (14) | 0.37933 (5) | 0.0509 (3) | |
N3 | 0.35790 (10) | 0.43998 (13) | 0.33925 (5) | 0.0489 (3) | |
C4 | 0.27219 (11) | 0.51071 (14) | 0.31370 (5) | 0.0403 (3) | |
C5 | 0.17170 (12) | 0.48053 (15) | 0.33923 (5) | 0.0450 (4) | |
H5 | 0.0987 | 0.5139 | 0.3306 | 0.054* | |
N6 | 0.19978 (11) | 0.66666 (14) | 0.24668 (5) | 0.0530 (4) | |
C7 | 0.29352 (12) | 0.60832 (15) | 0.26887 (5) | 0.0411 (3) | |
C8 | 0.40394 (13) | 0.64153 (17) | 0.25220 (5) | 0.0495 (4) | |
H8 | 0.4672 | 0.5971 | 0.2678 | 0.059* | |
C9 | 0.41850 (15) | 0.74114 (18) | 0.21229 (6) | 0.0590 (4) | |
H9 | 0.4918 | 0.7662 | 0.2008 | 0.071* | |
C10 | 0.32349 (16) | 0.80283 (19) | 0.18976 (7) | 0.0635 (5) | |
H10 | 0.3310 | 0.8711 | 0.1629 | 0.076* | |
C11 | 0.21677 (15) | 0.76197 (19) | 0.20758 (7) | 0.0619 (5) | |
H11 | 0.1526 | 0.8030 | 0.1915 | 0.074* | |
C12 | 0.12717 (11) | 0.32768 (14) | 0.41875 (5) | 0.0420 (3) | |
C13 | 0.13387 (11) | 0.37575 (14) | 0.47248 (5) | 0.0405 (3) | |
C14 | 0.20520 (12) | 0.48862 (16) | 0.48997 (6) | 0.0482 (4) | |
H14 | 0.2525 | 0.5357 | 0.4657 | 0.058* | |
C15 | 0.20518 (14) | 0.52911 (18) | 0.54222 (7) | 0.0573 (4) | |
H15 | 0.2519 | 0.6044 | 0.5532 | 0.069* | |
C16 | 0.13572 (14) | 0.4588 (2) | 0.57950 (6) | 0.0607 (4) | |
H16 | 0.1381 | 0.4860 | 0.6152 | 0.073* | |
C17 | 0.06506 (14) | 0.35138 (18) | 0.56387 (6) | 0.0552 (4) | |
H17 | 0.0187 | 0.3060 | 0.5890 | 0.066* | |
C18 | 0.06071 (12) | 0.30717 (15) | 0.50993 (5) | 0.0445 (4) | |
C19 | −0.01489 (14) | 0.19830 (16) | 0.49262 (7) | 0.0554 (4) | |
H19 | −0.0625 | 0.1532 | 0.5173 | 0.066* | |
C20 | −0.01924 (15) | 0.15834 (17) | 0.44059 (7) | 0.0587 (4) | |
H20 | −0.0703 | 0.0872 | 0.4298 | 0.070* | |
C21 | 0.05301 (13) | 0.22392 (16) | 0.40296 (6) | 0.0523 (4) | |
H21 | 0.0500 | 0.1963 | 0.3673 | 0.063* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0377 (6) | 0.0483 (6) | 0.0423 (6) | 0.0049 (5) | 0.0060 (5) | 0.0034 (5) |
N2 | 0.0405 (7) | 0.0621 (8) | 0.0501 (7) | 0.0109 (6) | 0.0055 (5) | 0.0043 (6) |
N3 | 0.0401 (7) | 0.0593 (8) | 0.0472 (7) | 0.0042 (6) | 0.0065 (5) | −0.0002 (6) |
C4 | 0.0378 (7) | 0.0452 (7) | 0.0378 (7) | 0.0007 (6) | 0.0040 (5) | −0.0052 (6) |
C5 | 0.0374 (7) | 0.0524 (8) | 0.0451 (8) | 0.0036 (6) | 0.0028 (6) | 0.0066 (6) |
N6 | 0.0468 (8) | 0.0585 (8) | 0.0536 (8) | 0.0012 (6) | 0.0035 (5) | 0.0076 (6) |
C7 | 0.0415 (8) | 0.0447 (7) | 0.0371 (7) | −0.0040 (6) | 0.0043 (5) | −0.0063 (6) |
C8 | 0.0425 (9) | 0.0630 (9) | 0.0429 (8) | −0.0055 (7) | 0.0058 (6) | −0.0039 (6) |
C9 | 0.0571 (10) | 0.0706 (10) | 0.0493 (9) | −0.0173 (8) | 0.0161 (7) | −0.0035 (8) |
C10 | 0.0792 (12) | 0.0613 (10) | 0.0500 (9) | −0.0061 (9) | 0.0136 (8) | 0.0087 (8) |
C11 | 0.0632 (11) | 0.0660 (10) | 0.0566 (10) | 0.0047 (8) | 0.0022 (8) | 0.0104 (8) |
C12 | 0.0403 (7) | 0.0404 (7) | 0.0454 (8) | 0.0062 (6) | 0.0061 (6) | 0.0045 (6) |
C13 | 0.0383 (8) | 0.0397 (7) | 0.0437 (7) | 0.0086 (6) | 0.0013 (5) | 0.0054 (6) |
C14 | 0.0421 (8) | 0.0502 (8) | 0.0524 (9) | 0.0010 (6) | 0.0019 (6) | 0.0040 (7) |
C15 | 0.0517 (9) | 0.0619 (10) | 0.0581 (9) | 0.0027 (7) | −0.0055 (7) | −0.0072 (8) |
C16 | 0.0589 (10) | 0.0774 (11) | 0.0459 (9) | 0.0123 (9) | −0.0010 (7) | −0.0057 (8) |
C17 | 0.0543 (9) | 0.0658 (10) | 0.0455 (8) | 0.0103 (8) | 0.0089 (7) | 0.0093 (7) |
C18 | 0.0427 (8) | 0.0440 (8) | 0.0469 (8) | 0.0088 (6) | 0.0070 (6) | 0.0089 (6) |
C19 | 0.0540 (9) | 0.0483 (8) | 0.0639 (10) | −0.0024 (7) | 0.0152 (7) | 0.0106 (7) |
C20 | 0.0588 (10) | 0.0460 (8) | 0.0713 (11) | −0.0111 (7) | 0.0087 (8) | −0.0034 (8) |
C21 | 0.0562 (9) | 0.0477 (9) | 0.0529 (9) | 0.0017 (7) | 0.0047 (7) | −0.0053 (6) |
N1—C5 | 1.3408 (17) | C12—C21 | 1.355 (2) |
N1—N2 | 1.3556 (16) | C12—C13 | 1.4212 (19) |
N1—C12 | 1.4348 (17) | C13—C14 | 1.410 (2) |
N2—N3 | 1.3110 (16) | C13—C18 | 1.4195 (19) |
N3—C4 | 1.3563 (18) | C14—C15 | 1.363 (2) |
C4—C5 | 1.3623 (19) | C14—H14 | 0.9300 |
C4—C7 | 1.4669 (19) | C15—C16 | 1.398 (2) |
C5—H5 | 0.9300 | C15—H15 | 0.9300 |
N6—C11 | 1.337 (2) | C16—C17 | 1.354 (2) |
N6—C7 | 1.3398 (19) | C16—H16 | 0.9300 |
C7—C8 | 1.386 (2) | C17—C18 | 1.414 (2) |
C8—C9 | 1.375 (2) | C17—H17 | 0.9300 |
C8—H8 | 0.9300 | C18—C19 | 1.411 (2) |
C9—C10 | 1.368 (2) | C19—C20 | 1.357 (2) |
C9—H9 | 0.9300 | C19—H19 | 0.9300 |
C10—C11 | 1.374 (2) | C20—C21 | 1.403 (2) |
C10—H10 | 0.9300 | C20—H20 | 0.9300 |
C11—H11 | 0.9300 | C21—H21 | 0.9300 |
C5—N1—N2 | 110.40 (11) | C13—C12—N1 | 119.05 (12) |
C5—N1—C12 | 128.86 (11) | C14—C13—C12 | 124.20 (12) |
N2—N1—C12 | 120.75 (11) | C14—C13—C18 | 118.92 (13) |
N3—N2—N1 | 106.70 (11) | C12—C13—C18 | 116.84 (13) |
N2—N3—C4 | 109.41 (11) | C15—C14—C13 | 120.35 (14) |
N3—C4—C5 | 108.01 (12) | C15—C14—H14 | 119.8 |
N3—C4—C7 | 122.59 (12) | C13—C14—H14 | 119.8 |
C5—C4—C7 | 129.27 (12) | C14—C15—C16 | 120.81 (16) |
N1—C5—C4 | 105.48 (12) | C14—C15—H15 | 119.6 |
N1—C5—H5 | 127.3 | C16—C15—H15 | 119.6 |
C4—C5—H5 | 127.3 | C17—C16—C15 | 120.30 (15) |
C11—N6—C7 | 116.96 (13) | C17—C16—H16 | 119.9 |
N6—C7—C8 | 122.62 (13) | C15—C16—H16 | 119.9 |
N6—C7—C4 | 115.59 (12) | C16—C17—C18 | 120.93 (14) |
C8—C7—C4 | 121.75 (13) | C16—C17—H17 | 119.5 |
C9—C8—C7 | 118.96 (15) | C18—C17—H17 | 119.5 |
C9—C8—H8 | 120.5 | C19—C18—C17 | 121.72 (13) |
C7—C8—H8 | 120.5 | C19—C18—C13 | 119.63 (13) |
C10—C9—C8 | 118.97 (15) | C17—C18—C13 | 118.64 (14) |
C10—C9—H9 | 120.5 | C20—C19—C18 | 121.07 (14) |
C8—C9—H9 | 120.5 | C20—C19—H19 | 119.5 |
C9—C10—C11 | 118.68 (16) | C18—C19—H19 | 119.5 |
C9—C10—H10 | 120.7 | C19—C20—C21 | 120.23 (15) |
C11—C10—H10 | 120.7 | C19—C20—H20 | 119.9 |
N6—C11—C10 | 123.78 (16) | C21—C20—H20 | 119.9 |
N6—C11—H11 | 118.1 | C12—C21—C20 | 119.76 (14) |
C10—C11—H11 | 118.1 | C12—C21—H21 | 120.1 |
C21—C12—C13 | 122.44 (13) | C20—C21—H21 | 120.1 |
C21—C12—N1 | 118.51 (13) | ||
C5—N1—N2—N3 | 0.24 (15) | C5—N1—C12—C13 | −109.53 (16) |
C12—N1—N2—N3 | 179.90 (12) | N2—N1—C12—C13 | 70.88 (16) |
N1—N2—N3—C4 | −0.21 (15) | C21—C12—C13—C14 | −176.38 (14) |
N2—N3—C4—C5 | 0.12 (16) | N1—C12—C13—C14 | 2.65 (19) |
N2—N3—C4—C7 | 176.41 (12) | C21—C12—C13—C18 | 1.60 (19) |
N2—N1—C5—C4 | −0.16 (15) | N1—C12—C13—C18 | −179.37 (12) |
C12—N1—C5—C4 | −179.79 (13) | C12—C13—C14—C15 | 179.13 (13) |
N3—C4—C5—N1 | 0.03 (16) | C18—C13—C14—C15 | 1.2 (2) |
C7—C4—C5—N1 | −175.93 (13) | C13—C14—C15—C16 | 0.7 (2) |
C11—N6—C7—C8 | −1.1 (2) | C14—C15—C16—C17 | −1.7 (2) |
C11—N6—C7—C4 | 176.54 (13) | C15—C16—C17—C18 | 0.6 (2) |
N3—C4—C7—N6 | 177.95 (12) | C16—C17—C18—C19 | −178.08 (14) |
C5—C4—C7—N6 | −6.6 (2) | C16—C17—C18—C13 | 1.3 (2) |
N3—C4—C7—C8 | −4.4 (2) | C14—C13—C18—C19 | 177.22 (13) |
C5—C4—C7—C8 | 171.04 (14) | C12—C13—C18—C19 | −0.87 (18) |
N6—C7—C8—C9 | 1.8 (2) | C14—C13—C18—C17 | −2.18 (19) |
C4—C7—C8—C9 | −175.67 (13) | C12—C13—C18—C17 | 179.73 (12) |
C7—C8—C9—C10 | −0.9 (2) | C17—C18—C19—C20 | 179.09 (14) |
C8—C9—C10—C11 | −0.5 (3) | C13—C18—C19—C20 | −0.3 (2) |
C7—N6—C11—C10 | −0.5 (3) | C18—C19—C20—C21 | 0.8 (2) |
C9—C10—C11—N6 | 1.3 (3) | C13—C12—C21—C20 | −1.1 (2) |
C5—N1—C12—C21 | 69.54 (19) | N1—C12—C21—C20 | 179.83 (13) |
N2—N1—C12—C21 | −110.05 (15) | C19—C20—C21—C12 | −0.1 (2) |
Experimental details
Crystal data | |
Chemical formula | C17H12N4 |
Mr | 272.31 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 296 |
a, b, c (Å) | 11.6378 (4), 9.3228 (4), 25.0592 (9) |
V (Å3) | 2718.84 (18) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.63 × 0.18 × 0.07 |
Data collection | |
Diffractometer | Bruker Kappa APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008a) |
Tmin, Tmax | 0.950, 0.994 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14517, 2391, 1934 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.120, 1.01 |
No. of reflections | 2391 |
No. of parameters | 190 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.14, −0.18 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), CARINE (Boudias & Monceau, 1998), SHELXTL (Sheldrick, 2008b).
Acknowledgements
This structure examination is part of ongoing work financially supported by the Dutch Polymer Institute (DPI), the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO, VICI award to USS) and the Fonds der Chemischen Industrie.
References
Angell, Y. & Burgess, K. (2007). Angew. Chem. Int. Ed. 46, 3649–3651. Web of Science CrossRef CAS Google Scholar
Balzani, V., Juris, A. & Venturi, M. (1996). Chem. Rev. 96, 759–833. CrossRef PubMed CAS Web of Science Google Scholar
Boudias, C. & Monceau, D. (1998). CARINE. Carine Crystallography, Divergent S. A., Compiègne, France. Google Scholar
Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chan, T. R., Hilgraf, R., Sharpless, K. B. & Fokin, V. V. (2004). Org. Lett. 6, 2853–2855. Web of Science CrossRef PubMed CAS Google Scholar
Happ, B., Friebe, C., Winter, A., Hager, M. D., Hoogenboom, R. & Schubert, U. S. (2009). Chem. Asian J. 4, 154–163. Web of Science CrossRef PubMed CAS Google Scholar
Kolb, H. C., Finn, M. G. & Sharpless, K. B. (2001). Angew. Chem. Int. Ed. 40, 2004–2021. Web of Science CrossRef CAS Google Scholar
Li, Y., Huffman, J. C. & Flood, A. H. (2007). Chem. Commun. pp. 2692–2694. Web of Science CSD CrossRef Google Scholar
Marin, V., Holder, E., Hoogenboom, R. & Schubert, U. S. (2007). Chem. Soc. Rev. 36, 618–635. Web of Science CrossRef PubMed CAS Google Scholar
Newkome, G. R., Patri, A. K., Holder, E. & Schubert, U. S. (2004). Eur. J. Org. Chem. pp. 235–254. Web of Science CrossRef Google Scholar
Obata, M., Kitamura, A., Mori, A., Kameyama, C., Czaplewska, J. A., Tanaka, R., Kinoshita, I., Kusumoto, T., Hashimoto, H., Harada, M., Mikata, Y., Funabiki, T. & Yano, S. (2008). Dalton Trans. pp. 3292–3300. Web of Science CSD CrossRef Google Scholar
Richardson, C., Fitchett, C. M., Keene, F. R. & Steel, P. J. (2008). Dalton Trans. pp. 2534–2537. Web of Science CSD CrossRef PubMed Google Scholar
Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. (2002). Angew. Chem. Int. Ed. 41, 2596–2599. CrossRef CAS Google Scholar
Schulze, B., Friebe, C., Hager, M. D., Winter, A., Hoogenboom, R., Goerls, H. & Schubert, U. S. (2009). Dalton Trans. pp. 787–794. Web of Science CSD CrossRef Google Scholar
Schweinfurth, D., Hardcastle, K. I. & Bunz, U. H. F. (2008). Chem. Commun. pp. 2203–2205. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Winter, A., Egbe, D. A. M. & Schubert, U. S. (2007). Org. Lett. 9, 2345–2348. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The development of novel functional materials for applications in solar cells or LEDs represents a major challenge in current materials science. Transition metal complexes have been investigated to extend the application possibilities in modern device technology (Marin et al., 2007; Ulbricht et al., 2009). RuII complexes of bipyridine-type ligands are highly interesting due to their predictable electro-optical properties (Balzani et al., 1996). The syntheses of functionalized 2,2'-bipyridines have been reviewed, revealing that the selective and easy synthesis of mono-functionalized ligands remains a synthetic challenge (Marin et al., 2007; Newkome et al., 2004). Li et al. (2007) and Obata et al. (2008) showed that the 1H-1,2,3-triazole ring system can serve as an alternative for pyridine in oligopyridine ligands. As comparable structures to 2,2':6',2''-terpyridines these examples have demonstrated the versatility of this approach to substitute pyridine rings of the oligopyridine ligands by functionalized triazoles (Schulze et al., 2009; Li et al., 2007). In order to explore the properties of such functionalized bidentate ligands, we have synthesized a library of pyridin-2-yl substituted 1H-1,2,3-triazole systems (Happ et al., 2009), utlizing the so-called Click reaction (Chan et al., 2004; Rostovtsev et al., 2002; Kolb et al., 2001) and their RuII complexes.
The crystal structures of 1-substituted 2-(1H-1,2,3-triazol-4-yl)pyridines have thus far been rarely discussed in the literature. The crystal structures of derivatives bearing a 4'-butyloxybenzene (Schweinfurth et al., 2008) or benzyl group (Obata et al., 2008) in the 1-position of the 1H-1,2,3-triazole ring have been reported. The structure of an unsubstituted derivative was studied by Richardson et al. (2008). Furthermore, the crystal structure of a dimeric species was discussed by Angell & Burgess (2007). The crystal structures of metal complexes of 2-(1H-1,2,3-triazol-4-yl)pyridines have been more extensively investigated. The structures of various RuII (Schulze et al., 2009; Li et al., 2007), FeII (Li et al., 2007) and ReI complexes (Obata et al., 2008) were reported recently.
Here we report the crystal structure of the title compound. The geometric parameters are in good agreement with literature values (Schweinfurth et al., 2008). The pyridine ring and the triazole ring are nearly coplanar and the N atoms N3 and N6 show the expected anti configuration. The planes through these two heterocyclic ring systems (N1–C5 and N6–C11) deviate only by an angle of 8.30 (9)°. The naphthalene (C12–C21) and triazole (N1–C5) ring systems are inclined at an angle of 71.02 (4)°.