metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­bis­­(methacrylato-κO)bis­(pyridine-κN)copper(II)

aDepartment of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: chemdpwu@yahoo.com.cn

(Received 27 February 2009; accepted 2 April 2009; online 8 April 2009)

In the crystal structure of the title complex, [Cu(C4H5O2)2(C5H5N)2(H2O)], the CuII cation is located on a twofold rotation axis and coordinated by two methyl­acrylate anions, two pyridine ligands and one water mol­ecule in a distorted square-pyramidal geometry. The coordinated water mol­ecule is also located on the twofold axis. In the crystal structure O—H⋯O hydrogen bonds link the mol­ecules, forming chains along the c axis.

Related literature

For general background to copper complexes, see: Du et al. (2004[Du, M., Cai, H. & Zhao, X.-J. (2004). Acta Cryst. E60, m1139-m1141.]); Hu et al. (2004[Hu, R.-Z., Liu, Z.-D., Tan, M.-Y. & Zhu, H.-L. (2004). Acta Cryst. E60, m946-m947.]); Zhu et al. (2007[Zhu, X.-F., Zhao, L.-M., Hou, G.-F. & Gao, J.-S. (2007). Acta Cryst. E63, m1809.]). For a related structure, see: Wu & Wang (2004[Wu, B. & Wang, G. (2004). Acta Cryst. E60, m1764-m1765.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C4H5O2)2(C5H5N)2(H2O)]

  • Mr = 409.92

  • Orthorhombic, F d d 2

  • a = 15.619 (3) Å

  • b = 40.200 (8) Å

  • c = 6.0576 (12) Å

  • V = 3803.4 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 293 K

  • 0.50 × 0.36 × 0.08 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan ABSCOR (Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.612, Tmax = 0.913

  • 7925 measured reflections

  • 1808 independent reflections

  • 1740 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.055

  • S = 1.09

  • 1808 reflections

  • 124 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 797 Friedel pairs

  • Flack parameter: 0.006 (13)

Table 1
Selected bond lengths (Å)

Cu—O1 2.281 (2)
Cu—O2 1.9389 (12)
Cu—N1 2.0254 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.83 (3) 1.96 (3) 2.783 (2) 178 (2)
Symmetry code: (i) x, y, z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Copper complexes with organic acids and other donor ligands exist extensively in living things, playing an important role in a vast range of chemical and biochemical catalytic systems. A series of copper-carboxylate complexes has been reported (Du et al., 2004; Hu et al., 2004; Zhu et al., 2007).

The molecular structure is shown in Fig. 1. The Cu atom is located on a twofold axis and coordinated with two methylacrylate, two pyridine ligands and one coordinated water molecule in a distorted square-pyramidal geometry (Table 1).

The compound is an infinite one-dimensional network structure connected by hydrogen bonds. It forms hydrogen bonds between coordination waters and carboxy group (Table 2).

The corresponding complex with one pyridine ligand has binuclear cage structural unit, two Cu atoms are bridged by four µ2–O,O'α-methacrylate groups, forming a cage structure (Wu et al., 2004).

Related literature top

For general background to copper complexes, see: Du et al. (2004); Hu et al. (2004); Zhu et al. (2007). For a related structure, see: Wu et al. (2004).

Experimental top

HL, CH2C(CH3)COOH, (0.5 ml, 6.0 mmol) and Cu(NO3)2.3H2O (240 mg, 1.0 mmol) were dissolved in 60 ml H2O, and the pH adjusted to 4.0 using 0.5 M NaOH. Two mililiters of 1.0 M pyridine solution were added into the mixed solution with stirring. After filtration, the filtrate was allowed to stand at room temperature and single crystals were obtained after one week.

Refinement top

Methyl H atoms were constrained to an ideal geometry with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C—C bond. The methylene H atoms and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level for non-H atoms.
Aquabis(methacrylato-κO)bis(pyridine-κN)copper(II) top
Crystal data top
[Cu(C4H5O2)2(C5H5N)2(H2O)]F(000) = 1704
Mr = 409.92Dx = 1.432 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71069 Å
Hall symbol: F 2 -2dCell parameters from 8692 reflections
a = 15.619 (3) Åθ = 3.0–27.5°
b = 40.200 (8) ŵ = 1.18 mm1
c = 6.0576 (12) ÅT = 293 K
V = 3803.4 (13) Å3Platelet, blue
Z = 80.50 × 0.36 × 0.08 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1808 independent reflections
Radiation source: fine-focus sealed tube1740 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.00 pixels mm-1θmax = 25.8°, θmin = 3.3°
ω scansh = 1818
Absorption correction: multi-scan
ABSCOR (Higashi, 1995)
k = 4848
Tmin = 0.612, Tmax = 0.913l = 77
7925 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0325P)2 + 0.6515P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1808 reflectionsΔρmax = 0.15 e Å3
124 parametersΔρmin = 0.19 e Å3
1 restraintAbsolute structure: Flack (1983), 797 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (13)
Crystal data top
[Cu(C4H5O2)2(C5H5N)2(H2O)]V = 3803.4 (13) Å3
Mr = 409.92Z = 8
Orthorhombic, Fdd2Mo Kα radiation
a = 15.619 (3) ŵ = 1.18 mm1
b = 40.200 (8) ÅT = 293 K
c = 6.0576 (12) Å0.50 × 0.36 × 0.08 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1808 independent reflections
Absorption correction: multi-scan
ABSCOR (Higashi, 1995)
1740 reflections with I > 2σ(I)
Tmin = 0.612, Tmax = 0.913Rint = 0.027
7925 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.055Δρmax = 0.15 e Å3
S = 1.09Δρmin = 0.19 e Å3
1808 reflectionsAbsolute structure: Flack (1983), 797 Friedel pairs
124 parametersAbsolute structure parameter: 0.006 (13)
1 restraint
Special details top

Experimental. Analysis: calculated C 52.74, H 5.41, N 6.83%; found C 52.61, H 5.22, N 6.69%. Spectroscopic analysis: IR (KBr, ν cm-1): 700, 832, 936, 1036, 1214, 1243, 1368, 1417, 1599, 1642.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu1.00000.00000.11357 (7)0.03375 (10)
O11.00000.00000.4901 (4)0.0450 (5)
O21.05574 (8)0.04310 (3)0.1163 (3)0.0442 (3)
O31.03022 (11)0.05452 (4)0.2378 (3)0.0529 (4)
N10.88531 (9)0.02292 (3)0.0789 (3)0.0361 (3)
C11.05091 (11)0.06268 (5)0.0494 (3)0.0371 (4)
C21.07255 (14)0.09857 (5)0.0019 (4)0.0460 (5)
C31.0791 (3)0.10857 (7)0.2115 (5)0.0967 (13)
H3A1.09220.13060.24390.116*
H3B1.07050.09340.32520.116*
C41.0850 (2)0.12071 (5)0.1829 (5)0.0694 (7)
H4A1.10000.14230.12810.104*
H4B1.03310.12220.26720.104*
H4C1.13020.11250.27520.104*
C50.83858 (12)0.01819 (5)0.1017 (3)0.0431 (5)
H50.86070.00500.21430.052*
C60.75841 (12)0.03207 (5)0.1284 (8)0.0485 (4)
H60.72750.02860.25760.058*
C70.72506 (13)0.05110 (5)0.0387 (4)0.0493 (5)
H70.67050.06020.02620.059*
C80.77349 (15)0.05649 (5)0.2250 (5)0.0523 (6)
H80.75250.06950.33970.063*
C90.85367 (14)0.04220 (4)0.2390 (4)0.0443 (4)
H90.88680.04610.36400.053*
H11.0098 (15)0.0163 (6)0.569 (6)0.052 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.02640 (14)0.04033 (15)0.03451 (15)0.00130 (13)0.0000.000
O10.0619 (14)0.0422 (12)0.0309 (11)0.0041 (9)0.0000.000
O20.0355 (6)0.0454 (6)0.0516 (8)0.0031 (5)0.0055 (7)0.0079 (7)
O30.0684 (10)0.0493 (7)0.0410 (8)0.0091 (7)0.0044 (8)0.0081 (7)
N10.0290 (7)0.0405 (7)0.0389 (9)0.0003 (6)0.0015 (7)0.0002 (7)
C10.0287 (9)0.0394 (9)0.0432 (10)0.0040 (7)0.0049 (8)0.0027 (8)
C20.0534 (12)0.0379 (9)0.0468 (11)0.0101 (8)0.0090 (10)0.0030 (9)
C30.185 (4)0.0516 (14)0.0534 (16)0.0172 (18)0.027 (2)0.0070 (12)
C40.109 (2)0.0436 (10)0.0552 (16)0.0013 (12)0.0059 (15)0.0058 (11)
C50.0357 (9)0.0541 (10)0.0394 (12)0.0002 (8)0.0002 (8)0.0046 (8)
C60.0362 (9)0.0556 (10)0.0538 (11)0.0010 (8)0.0128 (11)0.0031 (17)
C70.0319 (9)0.0450 (10)0.0711 (15)0.0064 (8)0.0002 (10)0.0046 (10)
C80.0475 (12)0.0461 (11)0.0634 (14)0.0101 (9)0.0061 (11)0.0088 (11)
C90.0419 (11)0.0457 (9)0.0453 (11)0.0022 (8)0.0027 (9)0.0038 (9)
Geometric parameters (Å, º) top
Cu—O12.281 (2)C3—H3B0.9300
Cu—O21.9389 (12)C4—H4A0.9600
Cu—O2i1.9391 (12)C4—H4B0.9600
Cu—N12.0254 (14)C4—H4C0.9600
Cu—N1i2.0254 (14)C5—C61.380 (3)
O1—H10.82 (3)C5—H50.9300
O2—C11.278 (2)C6—C71.371 (5)
O3—C11.230 (3)C6—H60.9300
N1—C51.329 (3)C7—C81.376 (4)
N1—C91.336 (3)C7—H70.9300
C1—C21.510 (3)C8—C91.380 (3)
C2—C31.357 (4)C8—H80.9300
C2—C41.425 (3)C9—H90.9300
C3—H3A0.9300
O2—Cu—O2i179.03 (10)H3A—C3—H3B120.0
O2—Cu—N189.51 (5)C2—C4—H4A109.5
O2i—Cu—N190.59 (5)C2—C4—H4B109.5
O2—Cu—N1i90.59 (5)H4A—C4—H4B109.5
O2i—Cu—N1i89.51 (5)C2—C4—H4C109.5
N1—Cu—N1i168.08 (10)H4A—C4—H4C109.5
O2—Cu—O189.51 (5)H4B—C4—H4C109.5
O2i—Cu—O189.51 (5)N1—C5—C6122.5 (3)
N1—Cu—O195.96 (5)N1—C5—H5118.8
N1i—Cu—O195.96 (5)C6—C5—H5118.8
Cu—O1—H1126 (2)C7—C6—C5118.9 (3)
C1—O2—Cu121.15 (13)C7—C6—H6120.5
C5—N1—C9118.52 (16)C5—C6—H6120.5
C5—N1—Cu120.41 (13)C6—C7—C8119.0 (2)
C9—N1—Cu121.03 (14)C6—C7—H7120.5
O3—C1—O2125.43 (17)C8—C7—H7120.5
O3—C1—C2119.36 (18)C7—C8—C9118.9 (2)
O2—C1—C2115.21 (18)C7—C8—H8120.5
C3—C2—C4122.5 (2)C9—C8—H8120.5
C3—C2—C1118.8 (2)N1—C9—C8122.1 (2)
C4—C2—C1118.7 (2)N1—C9—H9118.9
C2—C3—H3A120.0C8—C9—H9118.9
C2—C3—H3B120.0
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3ii0.83 (3)1.96 (3)2.783 (2)178 (2)
Symmetry code: (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C4H5O2)2(C5H5N)2(H2O)]
Mr409.92
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)293
a, b, c (Å)15.619 (3), 40.200 (8), 6.0576 (12)
V3)3803.4 (13)
Z8
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.50 × 0.36 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
ABSCOR (Higashi, 1995)
Tmin, Tmax0.612, 0.913
No. of measured, independent and
observed [I > 2σ(I)] reflections
7925, 1808, 1740
Rint0.027
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.055, 1.09
No. of reflections1808
No. of parameters124
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.19
Absolute structureFlack (1983), 797 Friedel pairs
Absolute structure parameter0.006 (13)

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008, SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cu—O12.281 (2)O2—C11.278 (2)
Cu—O21.9389 (12)O3—C11.230 (3)
Cu—N12.0254 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.83 (3)1.96 (3)2.783 (2)178 (2)
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Zhejiang Province, China (M203105).

References

First citationDu, M., Cai, H. & Zhao, X.-J. (2004). Acta Cryst. E60, m1139–m1141.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHu, R.-Z., Liu, Z.-D., Tan, M.-Y. & Zhu, H.-L. (2004). Acta Cryst. E60, m946–m947.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, B. & Wang, G. (2004). Acta Cryst. E60, m1764–m1765.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhu, X.-F., Zhao, L.-M., Hou, G.-F. & Gao, J.-S. (2007). Acta Cryst. E63, m1809.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds