metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-2-(2-naphth­­oxy)acetato]bis­­{aqua[2-(2-naphth­­oxy)acetato]zinc(II)}

aDepartment of Chemistry, Central South University, Changsha 410083, People's Republic of China
*Correspondence e-mail: xhisaac@gmail.com

(Received 7 March 2009; accepted 13 April 2009; online 22 April 2009)

The title binuclear ZnII compound, [Zn2(C12H9O3)4(H2O)2], is centrosymmetric. Each Zn atom is coordinated by two bridging 2-naphthoxyacetate anions, one terminal 2-naphth­oxy­acetate anion and one water mol­ecule in a distorted ZnO4 tetra­hedral geometry. The naphthalene system of the bridging ligand is nearly perpendicular to the naphthalene of the terminal ligand, with a dihedral angle of 78.26 (6)°. Within the binuclear mol­ecule the Zn⋯Zn separation is 3.815 (5) Å. In the crystal structure, inter­molecular O—H⋯O hydrogen bonding between the water mol­ecule and carboxyl­ate groups helps to stabilize the crystal structure.

Related literature

For general background, see: Harrison et al. (2002[Harrison, R. G., Fox, O. D. & Meng, M. O. (2002). Inorg. Chem. 41, 838-843.]); Ma et al. (2004[Ma, C. L., Han, Y. F. & Zhang, R. F. (2004). J. Organomet. Chem. 689, 1675-1683.]). For a related structure, see: Li et al. (2008[Li, W. Q., Feng, X., Feng, Y. L. & Weng, Y. H. (2008). Chin. J. Inorg. Chem. 24, 873-879.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C12H9O3)4(H2O)2]

  • Mr = 971.54

  • Triclinic, [P \overline 1]

  • a = 5.3241 (5) Å

  • b = 9.2189 (10) Å

  • c = 20.722 (2) Å

  • α = 86.055 (6)°

  • β = 89.351 (6)°

  • γ = 89.277 (6)°

  • V = 1014.54 (18) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 296 K

  • 0.35 × 0.19 × 0.10 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Goëttingen, Germany.]) Tmin = 0.75, Tmax = 0.88

  • 17599 measured reflections

  • 4580 independent reflections

  • 4038 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.068

  • S = 1.04

  • 4580 reflections

  • 295 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O2i 1.9492 (12)
Zn1—O3 2.0143 (12)
Zn1—O6 1.9567 (11)
Zn1—O1W 1.9496 (12)
Symmetry code: (i) -x+2, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O5ii 0.821 (15) 1.810 (15) 2.6284 (18) 174 (2)
O1W—H1WB⋯O1iii 0.791 (15) 2.53 (2) 3.1087 (17) 131 (2)
O1W—H1WB⋯O3iii 0.791 (15) 2.122 (17) 2.8724 (16) 158 (2)
Symmetry codes: (ii) -x+2, -y, -z+1; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis of metal–organic hybrid materials has been deeply researched as their interesting structural diversity and potential functions (Harrison et al., 2002). In particular, carboxylate ligands, especially aromatic carboxylate ligands, have been shown to be good building blocks in the synthesis of metal–organic materials with desired topologies, owing to their rich coordination modes. The coordination chemistry of flexible aromatic carboxylic acids such as 2-naphthoxyacetic acid (Ma et al., 2004) has captured the attention of chemist for many years. Herein we report the crystal structure of the title compound incorporating 2-naphthoxyacetate ligands.

The binuclear molecule of the title complex is centrosymmetric. The coordination environment of the Zn atom displays a distorted ZnO4 tetrahedron (Fig. 1). The molecule contains two Zn atoms connected by two bridge 2-naphthoxyacetate anions and two terminal 2-naphthoxyacetate anions and two coordinate water molecules. Within the binuclear molecule the dihedral angle between bridge naphthalene ring systems is 1.77 (3)°, and that between terminal naphthalene systems is 2.59 (2)°. The C1-containg naphthalene is nearly perpendicular to the C13-containig naphthalene with a dihedral angle of 78.26 (6)°. The bond angles at the Zn center range from 95.10 (5)° to 138.94 (5)°. The coordinate bond distances (Table 1) range from 1.949 (3) to 2.014 (4) Å, which are comparable to those found in a ZnII complex (Li et al., 2008). Within the binuclear molecule the Zn···Zn distance is 3.815 (5) Å.

In the crystal structure there are intermolecular O—H···O hydrogen bonds between water O and 2-naphthoxyacetate O atoms (Table 2), which helps to stabilize the crystal structure.

Related literature top

For general background, see: Harrison et al. (2002); Ma et al. (2004). For a related structure, see: Li et al. (2008).

Experimental top

A mixture of Zn(CH3COO)2.2H2O (0.2195 g, 1 mmol), NaOH (0.021 g, 0.5 mmol), 2-naphthoxyacetic acid (0.202 g, 1 mmol), 2,2'-bipyridine (0.078 g, 0.5 mmol) was dissolved in 17 ml of 15:2 water/ethanol. The solution was placed in a 25 ml Teflon-lined stainless steel bomb. The bomb was heated to 433 K for 3 d. Then it was cooled to room temperature over 3 d. The colorless crystals of the title compound suitable for X-ray diffraction structure analysis were isolated from the solution.

Refinement top

The carbon-bound H atoms were positioned geometrically and included in the refinement using a riding model with C—H = 0.93 Å for aromatic and C—H = 0.97 Å for the others, and Uiso(H) = 1.2Ueq(C). The water H atoms were located from a different map and their positions were refined with restraints of O—H = 0.80 (2) Å and H···H = 1.30 (2) Å, their displacement parameters were set to 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids [symmetry code: (A) -x + 2, -y + 1, -z + 1].
Bis[µ-2-(2-naphthoxy)acetato]bis{aqua[2-(2-naphthoxy)acetato]zinc(II)} top
Crystal data top
[Zn2(C12H9O3)4(H2O)2]Z = 1
Mr = 971.54F(000) = 500
Triclinic, P1Dx = 1.590 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.3241 (5) ÅCell parameters from 6935 reflections
b = 9.2189 (10) Åθ = 2.0–27.7°
c = 20.722 (2) ŵ = 1.26 mm1
α = 86.055 (6)°T = 296 K
β = 89.351 (6)°Block, colourless
γ = 89.277 (6)°0.35 × 0.19 × 0.10 mm
V = 1014.54 (18) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
4580 independent reflections
Radiation source: fine-focus sealed tube4038 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 27.7°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.75, Tmax = 0.88k = 1111
17599 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0351P)2 + 0.239P]
where P = (Fo2 + 2Fc2)/3
4580 reflections(Δ/σ)max = 0.001
295 parametersΔρmax = 0.37 e Å3
5 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Zn2(C12H9O3)4(H2O)2]γ = 89.277 (6)°
Mr = 971.54V = 1014.54 (18) Å3
Triclinic, P1Z = 1
a = 5.3241 (5) ÅMo Kα radiation
b = 9.2189 (10) ŵ = 1.26 mm1
c = 20.722 (2) ÅT = 296 K
α = 86.055 (6)°0.35 × 0.19 × 0.10 mm
β = 89.351 (6)°
Data collection top
Bruker APEXII area-detector
diffractometer
4580 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4038 reflections with I > 2σ(I)
Tmin = 0.75, Tmax = 0.88Rint = 0.024
17599 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0265 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.37 e Å3
4580 reflectionsΔρmin = 0.24 e Å3
295 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.92519 (3)0.305896 (19)0.534483 (9)0.03119 (7)
C10.1095 (3)0.23704 (19)0.30443 (9)0.0404 (4)
H1A0.06920.19100.34450.048*
C20.0242 (3)0.2083 (2)0.25138 (10)0.0450 (4)
H2A0.15670.14350.25580.054*
C30.0341 (3)0.27465 (19)0.18985 (9)0.0402 (4)
C40.0984 (4)0.2444 (2)0.13329 (11)0.0553 (5)
H4A0.23250.18060.13640.066*
C50.0309 (4)0.3078 (3)0.07485 (11)0.0633 (6)
H5A0.11870.28700.03810.076*
C60.1696 (4)0.4039 (3)0.06943 (10)0.0588 (6)
H6A0.21540.44610.02900.071*
C70.2989 (4)0.4367 (2)0.12279 (10)0.0498 (5)
H7A0.43030.50230.11850.060*
C80.2361 (3)0.37261 (19)0.18439 (9)0.0370 (4)
C90.3695 (3)0.40425 (19)0.24049 (9)0.0379 (4)
H9A0.49850.47150.23730.045*
C100.3091 (3)0.33636 (17)0.29899 (8)0.0333 (3)
C110.6150 (3)0.46390 (17)0.35489 (8)0.0326 (3)
H11A0.53440.55860.34820.039*
H11B0.73220.45210.31940.039*
C120.7539 (3)0.45536 (16)0.41740 (8)0.0305 (3)
C130.4572 (3)0.09687 (19)0.74494 (9)0.0382 (4)
H13A0.58450.04000.72820.046*
C140.4585 (3)0.12649 (19)0.81109 (9)0.0389 (4)
C150.6409 (4)0.0649 (2)0.85421 (10)0.0523 (5)
H15A0.76790.00610.83870.063*
C160.6335 (4)0.0904 (3)0.91819 (11)0.0605 (6)
H16A0.75370.04800.94590.073*
C170.4455 (5)0.1803 (3)0.94243 (11)0.0612 (6)
H17A0.44200.19730.98620.073*
C180.2679 (4)0.2428 (2)0.90229 (10)0.0547 (5)
H18A0.14430.30240.91890.066*
C190.2695 (3)0.2181 (2)0.83567 (9)0.0416 (4)
C200.0853 (4)0.2775 (2)0.79250 (9)0.0457 (4)
H20A0.03650.34040.80760.055*
C210.0821 (3)0.24504 (19)0.72961 (9)0.0402 (4)
H21A0.04260.28400.70230.048*
C220.2692 (3)0.15170 (18)0.70574 (8)0.0333 (3)
C230.4052 (3)0.02700 (17)0.61316 (8)0.0339 (3)
H23A0.31990.02110.57960.041*
H23B0.46170.04730.64530.041*
C240.6312 (3)0.10515 (17)0.58379 (7)0.0292 (3)
O1W1.2112 (2)0.22907 (14)0.48755 (6)0.0406 (3)
H1WA1.219 (4)0.1475 (17)0.4739 (11)0.061*
H1WB1.322 (4)0.277 (2)0.4726 (11)0.061*
O10.4310 (2)0.35356 (13)0.35586 (6)0.0390 (3)
O20.9399 (2)0.53680 (13)0.41861 (6)0.0413 (3)
O30.6857 (2)0.36827 (14)0.46300 (6)0.0410 (3)
O40.2323 (2)0.12098 (13)0.64264 (6)0.0377 (3)
O50.7730 (2)0.03976 (14)0.54726 (6)0.0434 (3)
O60.6637 (2)0.23592 (12)0.59560 (5)0.0341 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03023 (10)0.03378 (11)0.03012 (12)0.00814 (7)0.00225 (7)0.00527 (7)
C10.0373 (9)0.0404 (9)0.0432 (11)0.0064 (7)0.0025 (7)0.0008 (7)
C20.0376 (9)0.0432 (10)0.0552 (12)0.0100 (7)0.0072 (8)0.0061 (8)
C30.0369 (9)0.0397 (9)0.0450 (11)0.0040 (7)0.0095 (8)0.0097 (7)
C40.0491 (11)0.0586 (13)0.0602 (14)0.0003 (9)0.0201 (10)0.0150 (10)
C50.0667 (14)0.0770 (16)0.0483 (14)0.0087 (12)0.0250 (11)0.0167 (11)
C60.0645 (13)0.0748 (15)0.0369 (11)0.0114 (11)0.0087 (10)0.0039 (10)
C70.0519 (11)0.0571 (12)0.0402 (11)0.0015 (9)0.0059 (9)0.0018 (9)
C80.0367 (8)0.0381 (9)0.0366 (10)0.0059 (7)0.0056 (7)0.0055 (7)
C90.0356 (8)0.0381 (9)0.0398 (10)0.0048 (7)0.0052 (7)0.0010 (7)
C100.0306 (8)0.0329 (8)0.0367 (9)0.0002 (6)0.0067 (7)0.0043 (6)
C110.0346 (8)0.0290 (8)0.0343 (9)0.0056 (6)0.0021 (7)0.0021 (6)
C120.0308 (7)0.0290 (8)0.0326 (9)0.0006 (6)0.0015 (6)0.0076 (6)
C130.0328 (8)0.0417 (9)0.0407 (10)0.0001 (7)0.0045 (7)0.0074 (7)
C140.0378 (9)0.0382 (9)0.0407 (10)0.0063 (7)0.0025 (7)0.0019 (7)
C150.0498 (11)0.0569 (12)0.0500 (13)0.0033 (9)0.0046 (9)0.0030 (9)
C160.0630 (13)0.0693 (15)0.0483 (13)0.0044 (11)0.0131 (10)0.0052 (10)
C170.0758 (15)0.0727 (15)0.0358 (11)0.0136 (12)0.0002 (10)0.0069 (10)
C180.0623 (13)0.0606 (13)0.0422 (12)0.0017 (10)0.0060 (10)0.0106 (9)
C190.0460 (10)0.0408 (10)0.0382 (10)0.0057 (7)0.0059 (8)0.0041 (7)
C200.0475 (10)0.0447 (10)0.0450 (11)0.0079 (8)0.0085 (8)0.0076 (8)
C210.0381 (9)0.0416 (10)0.0404 (10)0.0032 (7)0.0047 (7)0.0000 (7)
C220.0314 (8)0.0342 (8)0.0342 (9)0.0075 (6)0.0073 (7)0.0025 (6)
C230.0368 (8)0.0325 (8)0.0328 (9)0.0068 (6)0.0054 (7)0.0046 (6)
C240.0303 (7)0.0320 (8)0.0255 (8)0.0037 (6)0.0005 (6)0.0016 (6)
O1W0.0385 (6)0.0351 (6)0.0486 (8)0.0080 (5)0.0147 (5)0.0075 (5)
O10.0411 (6)0.0423 (7)0.0334 (7)0.0143 (5)0.0084 (5)0.0028 (5)
O20.0434 (7)0.0410 (7)0.0410 (7)0.0147 (5)0.0017 (5)0.0112 (5)
O30.0349 (6)0.0536 (7)0.0338 (7)0.0106 (5)0.0038 (5)0.0046 (5)
O40.0314 (6)0.0479 (7)0.0342 (7)0.0015 (5)0.0050 (5)0.0069 (5)
O50.0391 (6)0.0463 (7)0.0464 (8)0.0059 (5)0.0126 (5)0.0160 (5)
O60.0368 (6)0.0306 (6)0.0350 (6)0.0078 (4)0.0043 (5)0.0035 (5)
Geometric parameters (Å, º) top
Zn1—O2i1.9492 (12)C12—O21.2518 (19)
Zn1—O32.0143 (12)C13—C221.366 (2)
Zn1—O61.9567 (11)C13—C141.416 (3)
Zn1—O1W1.9496 (12)C13—H13A0.9300
Zn1—C242.5875 (15)C14—C151.414 (3)
C1—C21.359 (3)C14—C191.418 (3)
C1—C101.410 (2)C15—C161.362 (3)
C1—H1A0.9300C15—H15A0.9300
C2—C31.409 (3)C16—C171.402 (3)
C2—H2A0.9300C16—H16A0.9300
C3—C81.412 (3)C17—C181.362 (3)
C3—C41.420 (3)C17—H17A0.9300
C4—C51.354 (3)C18—C191.415 (3)
C4—H4A0.9300C18—H18A0.9300
C5—C61.395 (3)C19—C201.415 (3)
C5—H5A0.9300C20—C211.357 (3)
C6—C71.362 (3)C20—H20A0.9300
C6—H6A0.9300C21—C221.415 (2)
C7—C81.408 (3)C21—H21A0.9300
C7—H7A0.9300C22—O41.373 (2)
C8—C91.418 (2)C23—O41.4183 (19)
C9—C101.363 (2)C23—C241.511 (2)
C9—H9A0.9300C23—H23A0.9700
C10—O11.3712 (19)C23—H23B0.9700
C11—O11.4201 (18)C24—O51.2430 (19)
C11—C121.496 (2)C24—O61.2609 (19)
C11—H11A0.9700O1W—H1WA0.821 (15)
C11—H11B0.9700O1W—H1WB0.791 (15)
C12—O31.251 (2)O2—Zn1i1.9492 (11)
O2i—Zn1—O1W105.14 (5)C22—C13—H13A120.0
O2i—Zn1—O699.93 (5)C14—C13—H13A120.0
O1W—Zn1—O6138.94 (5)C15—C14—C13121.90 (17)
O2i—Zn1—O3115.25 (5)C15—C14—C19118.50 (18)
O1W—Zn1—O3102.70 (6)C13—C14—C19119.59 (16)
O6—Zn1—O395.10 (5)C16—C15—C14121.0 (2)
O2i—Zn1—C24124.97 (5)C16—C15—H15A119.5
O1W—Zn1—C24113.10 (5)C14—C15—H15A119.5
O6—Zn1—C2428.08 (5)C15—C16—C17120.4 (2)
O3—Zn1—C2493.56 (5)C15—C16—H16A119.8
C2—C1—C10120.29 (17)C17—C16—H16A119.8
C2—C1—H1A119.9C18—C17—C16120.4 (2)
C10—C1—H1A119.9C18—C17—H17A119.8
C1—C2—C3121.32 (17)C16—C17—H17A119.8
C1—C2—H2A119.3C17—C18—C19120.7 (2)
C3—C2—H2A119.3C17—C18—H18A119.6
C2—C3—C8118.28 (16)C19—C18—H18A119.6
C2—C3—C4122.66 (18)C18—C19—C20122.73 (18)
C8—C3—C4119.04 (19)C18—C19—C14119.02 (18)
C5—C4—C3120.6 (2)C20—C19—C14118.22 (17)
C5—C4—H4A119.7C21—C20—C19121.59 (17)
C3—C4—H4A119.7C21—C20—H20A119.2
C4—C5—C6120.4 (2)C19—C20—H20A119.2
C4—C5—H5A119.8C20—C21—C22119.80 (17)
C6—C5—H5A119.8C20—C21—H21A120.1
C7—C6—C5120.6 (2)C22—C21—H21A120.1
C7—C6—H6A119.7C13—C22—O4126.08 (15)
C5—C6—H6A119.7C13—C22—C21120.64 (16)
C6—C7—C8120.9 (2)O4—C22—C21113.23 (15)
C6—C7—H7A119.6O4—C23—C24113.14 (13)
C8—C7—H7A119.6O4—C23—H23A109.0
C7—C8—C3118.54 (17)C24—C23—H23A109.0
C7—C8—C9121.79 (17)O4—C23—H23B109.0
C3—C8—C9119.67 (17)C24—C23—H23B109.0
C10—C9—C8120.19 (16)H23A—C23—H23B107.8
C10—C9—H9A119.9O5—C24—O6122.57 (14)
C8—C9—H9A119.9O5—C24—C23118.81 (14)
C9—C10—O1125.40 (15)O6—C24—C23118.57 (14)
C9—C10—C1120.21 (16)O5—C24—Zn176.17 (9)
O1—C10—C1114.38 (15)O6—C24—Zn146.93 (7)
O1—C11—C12110.15 (13)C23—C24—Zn1162.49 (11)
O1—C11—H11A109.6Zn1—O1W—H1WA124.7 (15)
C12—C11—H11A109.6Zn1—O1W—H1WB123.9 (16)
O1—C11—H11B109.6H1WA—O1W—H1WB110.2 (19)
C12—C11—H11B109.6C10—O1—C11116.83 (13)
H11A—C11—H11B108.1C12—O2—Zn1i141.63 (11)
O3—C12—O2124.83 (15)C12—O3—Zn1120.45 (10)
O3—C12—C11120.08 (14)C22—O4—C23118.83 (13)
O2—C12—C11115.07 (14)C24—O6—Zn1104.99 (10)
C22—C13—C14120.06 (16)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O5ii0.82 (2)1.81 (2)2.6284 (18)174 (2)
O1W—H1WB···O1iii0.79 (2)2.53 (2)3.1087 (17)131 (2)
O1W—H1WB···O3iii0.79 (2)2.12 (2)2.8724 (16)158 (2)
Symmetry codes: (ii) x+2, y, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn2(C12H9O3)4(H2O)2]
Mr971.54
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.3241 (5), 9.2189 (10), 20.722 (2)
α, β, γ (°)86.055 (6), 89.351 (6), 89.277 (6)
V3)1014.54 (18)
Z1
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.35 × 0.19 × 0.10
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.75, 0.88
No. of measured, independent and
observed [I > 2σ(I)] reflections
17599, 4580, 4038
Rint0.024
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.068, 1.04
No. of reflections4580
No. of parameters295
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.24

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O2i1.9492 (12)Zn1—O61.9567 (11)
Zn1—O32.0143 (12)Zn1—O1W1.9496 (12)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O5ii0.821 (15)1.810 (15)2.6284 (18)174 (2)
O1W—H1WB···O1iii0.791 (15)2.53 (2)3.1087 (17)131 (2)
O1W—H1WB···O3iii0.791 (15)2.122 (17)2.8724 (16)158 (2)
Symmetry codes: (ii) x+2, y, z+1; (iii) x+1, y, z.
 

Acknowledgements

This project was supported by the Science Development Foundation of Central South University, People's Republic of China (grant No. 07SDF01).

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHarrison, R. G., Fox, O. D. & Meng, M. O. (2002). Inorg. Chem. 41, 838–843.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, W. Q., Feng, X., Feng, Y. L. & Weng, Y. H. (2008). Chin. J. Inorg. Chem. 24, 873–879.  CAS Google Scholar
First citationMa, C. L., Han, Y. F. & Zhang, R. F. (2004). J. Organomet. Chem. 689, 1675–1683.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Goëttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds