metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,6-Di­fluoro­benzo­phenone)tris­­(tri­methyl­phosphine)cobalt(0)

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: xli63@sdu.edu.cn

(Received 20 March 2009; accepted 2 April 2009; online 8 April 2009)

In the title compound, [Co(C13H8F2O)(C3H9P)3], the cobalt(0) atom is coordinated by three trimethyl­phosphine ligands and a π-coordinated carbonyl group of the 2,6-difluoro­benzo­phenone ligand in a distorted tetra­hedral geometry. The Co—O and Co—C distances are 1.896 (2) and 2.049 (4) Å, respectively.

Related literature

For general background to the activation of C—F bonds in organometallic chemistry and catalyst development, see: Kiplinger et al. (1994[Kiplinger, J. L., Richmond, T. G. & Osterberg, C. E. (1994). Chem. Rev. 94, 373-431.]); Saunders (1996[Saunders, G. C. (1996). Angew. Chem. Int. Ed. 35, 2615-2617.]); Li et al. (2006[Li, X., Sun, H., Yu, F., Flörke, U. & Klein, H. F. (2006). Organometallics, 25, 4695-4697.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C13H8F2O)(C3H9P)3]

  • Mr = 505.34

  • Monoclinic, P 21 /c

  • a = 14.214 (5) Å

  • b = 9.820 (4) Å

  • c = 19.241 (7) Å

  • β = 101.773 (6)°

  • V = 2629.3 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 273 K

  • 0.32 × 0.27 × 0.26 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.759, Tmax = 0.800

  • 13574 measured reflections

  • 5065 independent reflections

  • 3278 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.128

  • S = 0.99

  • 5065 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected bond lengths (Å)

Co1—P2 2.2304 (11)
Co1—P3 2.2081 (12)
Co1—P4 2.2632 (13)

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The activation of carbon-fluorine bonds is of great importance in organometallic chemistry and catalyst development because this type of reaction contributes tothe fundamental understanding of reactivity of stable bonds and selective replacement of F atoms (Kiplinger et al., 1994; Saunders, 1996). Recently we have reported cyclometalation reactions involving C—F bond activation at a cobalt(I) center with azine as an anchoring group, which afforded the first complex containing a C—Co—F fragment (Li et al., 2006).

We tried to synthesis compound I (Scheme 2) according to the route a in Fig. 2 throught the reaction of 2,6-difluorobenzophenone with tetra(trimethylphosphine)cobalt(0), but the reaction was actually occurred by route b (Scheme 2). Compound II was isolated as red crystals and its molecular structure is shown in Fig. 1. The cobalt atom is π-coordinated with carbonyl group. The Co—O and Co—C bond lengths are 1.896 (2) Å and 2.049 (4) Å (Table 1).

Related literature top

For general background to the activation of C—F bonds in organometallic chemistry and catalyst development, see: Kiplinger et al. (1994); Saunders (1996); Li et al. (2006).

Experimental top

The title compound was synthesized from the reaction of tetra(trimethyl phosphine)cobalt (1.2 g, 3.3 mmol) and 2,6-difluorobenzophenone (0.72 g, 3.3 mmol) in pentane (40 ml) for 24 h at 298 K. After filtration, the title complex was obtained from filtrate as red crystals at 246 K.

Refinement top

The H atoms were geometrically placed and treated as riding atoms with C—H = 0.96 Å and Uiso(H)=1.5Ueq(C) for methyl H atoms, C—H = 0.93 Å and Uiso(H)=1.2Ueq(C) for arometic H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, displacement ellipsoids are drawn at the 25% probability level.
[Figure 2] Fig. 2. The formation of the title compound.
(2,6-Difluorobenzophenone)tris(trimethylphosphine)cobalt(0) top
Crystal data top
[Co(C13H8F2O)(C3H9P)3]F(000) = 1060
Mr = 505.34Dx = 1.277 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2218 reflections
a = 14.214 (5) Åθ = 2.3–22.0°
b = 9.820 (4) ŵ = 0.86 mm1
c = 19.241 (7) ÅT = 273 K
β = 101.773 (6)°Prism, red
V = 2629.3 (16) Å30.32 × 0.27 × 0.26 mm
Z = 4
Data collection top
Bruker APEX2 CCD
diffractometer
5065 independent reflections
Radiation source: fine-focus sealed tube3278 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 25.9°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1713
Tmin = 0.759, Tmax = 0.800k = 1210
13574 measured reflectionsl = 2123
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0646P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
5065 reflectionsΔρmax = 0.38 e Å3
262 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0037 (5)
Crystal data top
[Co(C13H8F2O)(C3H9P)3]V = 2629.3 (16) Å3
Mr = 505.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.214 (5) ŵ = 0.86 mm1
b = 9.820 (4) ÅT = 273 K
c = 19.241 (7) Å0.32 × 0.27 × 0.26 mm
β = 101.773 (6)°
Data collection top
Bruker APEX2 CCD
diffractometer
5065 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3278 reflections with I > 2σ(I)
Tmin = 0.759, Tmax = 0.800Rint = 0.047
13574 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 0.99Δρmax = 0.38 e Å3
5065 reflectionsΔρmin = 0.31 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C220.0242 (3)0.2517 (5)0.0761 (3)0.0976 (17)
H22A0.03100.34850.07230.146*
H22B0.02800.23210.09930.146*
H22C0.01120.21200.02950.146*
C210.1219 (4)0.2248 (7)0.2183 (3)0.146 (3)
H21A0.13840.31880.22750.219*
H21B0.16360.16860.25210.219*
H21C0.05650.21020.22250.219*
C200.1004 (3)0.0027 (5)0.1249 (4)0.156 (3)
H20A0.15270.05100.15030.234*
H20B0.08430.02700.07640.234*
H20C0.04560.00790.14640.234*
Co10.27686 (3)0.23243 (4)0.10451 (2)0.04168 (16)
P20.37675 (7)0.09320 (11)0.17586 (5)0.0577 (3)
P30.13547 (7)0.18019 (11)0.12795 (6)0.0611 (3)
P40.27110 (8)0.12824 (11)0.00119 (5)0.0638 (3)
C20.2322 (2)0.5172 (3)0.14070 (17)0.0433 (8)
C10.2824 (2)0.4393 (3)0.09203 (17)0.0451 (8)
C80.2790 (3)0.4990 (4)0.01902 (19)0.0540 (9)
C30.1474 (3)0.5910 (4)0.1188 (2)0.0617 (10)
H30.11960.59680.07080.074*
C70.2722 (3)0.5159 (4)0.21376 (19)0.0603 (10)
H70.32860.46760.23020.072*
C170.4027 (3)0.1515 (5)0.2682 (2)0.0974 (16)
H17A0.34430.15290.28600.146*
H17B0.42950.24150.27050.146*
H17C0.44780.09060.29640.146*
C60.2294 (3)0.5848 (5)0.2616 (2)0.0764 (12)
H60.25880.58490.30940.092*
C130.1996 (4)0.4964 (4)0.0364 (2)0.0715 (12)
C40.1040 (3)0.6561 (4)0.1688 (2)0.0706 (12)
H40.04650.70260.15340.085*
C120.2003 (5)0.5465 (5)0.1037 (2)0.0985 (18)
H120.14520.54320.13930.118*
C50.1444 (3)0.6530 (5)0.2400 (2)0.0744 (12)
H50.11470.69620.27280.089*
C140.1648 (4)0.1393 (6)0.0739 (2)0.1102 (19)
H14A0.14360.23220.07980.165*
H14B0.11410.08400.06280.165*
H14C0.18110.10750.11720.165*
C190.4970 (3)0.1005 (6)0.1562 (3)0.115 (2)
H19A0.49430.07200.10810.172*
H19B0.53920.04120.18790.172*
H19C0.52080.19220.16220.172*
C90.3600 (4)0.5615 (4)0.0023 (2)0.0722 (12)
C150.3646 (4)0.1877 (6)0.0472 (3)0.1090 (18)
H15A0.36190.28520.05110.163*
H15B0.35420.14830.09380.163*
H15C0.42650.16080.02080.163*
C180.3626 (4)0.0900 (5)0.1899 (3)0.0966 (16)
H18A0.34880.13560.14480.145*
H18B0.31060.10440.21400.145*
H18C0.42090.12570.21810.145*
C160.2929 (5)0.0555 (5)0.0030 (3)0.122 (2)
H16A0.34850.07830.03260.184*
H16B0.30370.08100.04890.184*
H16C0.23800.10360.00630.184*
C100.3645 (5)0.6093 (5)0.0633 (3)0.1023 (19)
H100.42120.64690.07180.123*
C110.2840 (6)0.6012 (6)0.1169 (3)0.115 (3)
H110.28620.63290.16210.139*
F20.11615 (18)0.4390 (3)0.02486 (12)0.0844 (7)
F10.4389 (2)0.5788 (3)0.05420 (16)0.0992 (9)
O0.36561 (15)0.3788 (2)0.12166 (12)0.0507 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C220.049 (3)0.106 (4)0.136 (4)0.015 (2)0.015 (3)0.016 (3)
C210.092 (4)0.265 (9)0.095 (4)0.069 (5)0.055 (3)0.020 (4)
C200.066 (3)0.063 (4)0.336 (9)0.020 (3)0.033 (4)0.019 (5)
Co10.0387 (3)0.0395 (3)0.0451 (3)0.00219 (19)0.00419 (19)0.0017 (2)
P20.0495 (6)0.0589 (7)0.0628 (6)0.0071 (5)0.0071 (5)0.0193 (5)
P30.0434 (5)0.0559 (7)0.0824 (7)0.0070 (4)0.0089 (5)0.0030 (5)
P40.0753 (7)0.0568 (7)0.0559 (6)0.0111 (5)0.0058 (5)0.0120 (5)
C20.0445 (19)0.039 (2)0.0469 (19)0.0049 (15)0.0095 (16)0.0005 (15)
C10.0457 (19)0.043 (2)0.0458 (19)0.0017 (15)0.0072 (16)0.0023 (16)
C80.074 (3)0.041 (2)0.051 (2)0.0144 (18)0.024 (2)0.0037 (17)
C30.072 (3)0.054 (3)0.057 (2)0.010 (2)0.010 (2)0.0017 (19)
C70.060 (2)0.066 (3)0.051 (2)0.0006 (19)0.0030 (19)0.0088 (19)
C170.106 (4)0.106 (4)0.066 (3)0.004 (3)0.015 (3)0.022 (3)
C60.094 (3)0.082 (3)0.053 (2)0.008 (3)0.014 (2)0.017 (2)
C130.101 (3)0.064 (3)0.051 (3)0.037 (3)0.019 (3)0.009 (2)
C40.064 (3)0.058 (3)0.093 (3)0.009 (2)0.021 (2)0.010 (2)
C120.157 (5)0.085 (4)0.051 (3)0.058 (4)0.016 (3)0.014 (3)
C50.083 (3)0.077 (3)0.074 (3)0.008 (3)0.039 (3)0.022 (2)
C140.109 (4)0.129 (5)0.074 (3)0.024 (3)0.025 (3)0.042 (3)
C190.050 (3)0.169 (6)0.127 (4)0.028 (3)0.020 (3)0.073 (4)
C90.105 (4)0.051 (3)0.072 (3)0.006 (2)0.046 (3)0.007 (2)
C150.140 (5)0.108 (5)0.093 (4)0.018 (4)0.059 (4)0.012 (3)
C180.116 (4)0.065 (3)0.106 (4)0.022 (3)0.017 (3)0.032 (3)
C160.201 (6)0.060 (4)0.101 (4)0.021 (4)0.017 (4)0.020 (3)
C100.167 (6)0.066 (3)0.097 (4)0.006 (3)0.081 (4)0.012 (3)
C110.222 (8)0.072 (4)0.077 (4)0.053 (4)0.088 (5)0.025 (3)
F20.0767 (16)0.101 (2)0.0655 (15)0.0232 (15)0.0084 (13)0.0003 (13)
F10.099 (2)0.092 (2)0.116 (2)0.0297 (16)0.0463 (19)0.0059 (17)
O0.0400 (13)0.0444 (14)0.0660 (15)0.0008 (10)0.0070 (11)0.0052 (11)
Geometric parameters (Å, º) top
C22—P31.829 (4)C7—H70.9300
C22—H22A0.9600C17—H17A0.9600
C22—H22B0.9600C17—H17B0.9600
C22—H22C0.9600C17—H17C0.9600
C21—P31.841 (5)C6—C51.370 (6)
C21—H21A0.9600C6—H60.9300
C21—H21B0.9600C13—F21.372 (5)
C21—H21C0.9600C13—C121.386 (6)
C20—P31.810 (5)C4—C51.374 (6)
C20—H20A0.9600C4—H40.9300
C20—H20B0.9600C12—C111.376 (7)
C20—H20C0.9600C12—H120.9300
Co1—O1.896 (2)C5—H50.9300
Co1—C12.049 (4)C14—H14A0.9600
Co1—P22.2304 (11)C14—H14B0.9600
Co1—P32.2081 (12)C14—H14C0.9600
Co1—P42.2632 (13)C19—H19A0.9600
P2—C191.826 (4)C19—H19B0.9600
P2—C171.830 (4)C19—H19C0.9600
P2—C181.836 (5)C9—F11.351 (5)
P4—C161.833 (5)C9—C101.361 (6)
P4—C151.835 (5)C15—H15A0.9600
P4—C141.842 (4)C15—H15B0.9600
C2—C31.395 (5)C15—H15C0.9600
C2—C71.405 (5)C18—H18A0.9600
C2—C11.498 (4)C18—H18B0.9600
C1—O1.343 (4)C18—H18C0.9600
C1—C81.514 (5)C16—H16A0.9600
C8—C131.386 (5)C16—H16B0.9600
C8—C91.399 (6)C16—H16C0.9600
C3—C41.398 (5)C10—C111.378 (8)
C3—H30.9300C10—H100.9300
C7—C61.379 (5)C11—H110.9300
P3—C22—H22A109.5C2—C7—H7119.3
P3—C22—H22B109.5P2—C17—H17A109.5
H22A—C22—H22B109.5P2—C17—H17B109.5
P3—C22—H22C109.5H17A—C17—H17B109.5
H22A—C22—H22C109.5P2—C17—H17C109.5
H22B—C22—H22C109.5H17A—C17—H17C109.5
P3—C21—H21A109.5H17B—C17—H17C109.5
P3—C21—H21B109.5C5—C6—C7121.3 (4)
H21A—C21—H21B109.5C5—C6—H6119.4
P3—C21—H21C109.5C7—C6—H6119.4
H21A—C21—H21C109.5F2—C13—C12117.9 (5)
H21B—C21—H21C109.5F2—C13—C8118.5 (3)
P3—C20—H20A109.5C12—C13—C8123.5 (5)
P3—C20—H20B109.5C5—C4—C3121.5 (4)
H20A—C20—H20B109.5C5—C4—H4119.3
P3—C20—H20C109.5C3—C4—H4119.3
H20A—C20—H20C109.5C11—C12—C13118.8 (5)
H20B—C20—H20C109.5C11—C12—H12120.6
O—Co1—C139.56 (11)C13—C12—H12120.6
O—Co1—P3137.86 (8)C6—C5—C4118.5 (4)
C1—Co1—P3108.22 (10)C6—C5—H5120.8
O—Co1—P292.30 (8)C4—C5—H5120.8
C1—Co1—P2130.17 (9)P4—C14—H14A109.5
P3—Co1—P2102.91 (5)P4—C14—H14B109.5
O—Co1—P4113.57 (8)H14A—C14—H14B109.5
C1—Co1—P4109.76 (10)P4—C14—H14C109.5
P3—Co1—P4102.18 (5)H14A—C14—H14C109.5
P2—Co1—P4100.24 (5)H14B—C14—H14C109.5
C19—P2—C17100.2 (2)P2—C19—H19A109.5
C19—P2—C18101.8 (2)P2—C19—H19B109.5
C17—P2—C1899.8 (2)H19A—C19—H19B109.5
C19—P2—Co1110.71 (15)P2—C19—H19C109.5
C17—P2—Co1112.49 (17)H19A—C19—H19C109.5
C18—P2—Co1128.02 (16)H19B—C19—H19C109.5
C20—P3—C2298.6 (3)F1—C9—C10116.9 (5)
C20—P3—C21100.3 (3)F1—C9—C8118.9 (4)
C22—P3—C21100.3 (3)C10—C9—C8124.2 (5)
C20—P3—Co1118.24 (19)P4—C15—H15A109.5
C22—P3—Co1121.41 (17)P4—C15—H15B109.5
C21—P3—Co1114.39 (17)H15A—C15—H15B109.5
C16—P4—C1599.3 (3)P4—C15—H15C109.5
C16—P4—C1499.2 (3)H15A—C15—H15C109.5
C15—P4—C14100.2 (3)H15B—C15—H15C109.5
C16—P4—Co1119.15 (17)P2—C18—H18A109.5
C15—P4—Co1113.11 (18)P2—C18—H18B109.5
C14—P4—Co1122.00 (16)H18A—C18—H18B109.5
C3—C2—C7117.0 (3)P2—C18—H18C109.5
C3—C2—C1124.7 (3)H18A—C18—H18C109.5
C7—C2—C1118.3 (3)H18B—C18—H18C109.5
O—C1—C2116.8 (3)P4—C16—H16A109.5
O—C1—C8115.1 (3)P4—C16—H16B109.5
C2—C1—C8116.9 (3)H16A—C16—H16B109.5
O—C1—Co164.08 (17)P4—C16—H16C109.5
C2—C1—Co1113.5 (2)H16A—C16—H16C109.5
C8—C1—Co1119.9 (2)H16B—C16—H16C109.5
C13—C8—C9114.2 (4)C9—C10—C11119.0 (6)
C13—C8—C1125.0 (4)C9—C10—H10120.5
C9—C8—C1120.7 (4)C11—C10—H10120.5
C2—C3—C4120.3 (4)C12—C11—C10120.2 (5)
C2—C3—H3119.8C12—C11—H11119.9
C4—C3—H3119.8C10—C11—H11119.9
C6—C7—C2121.3 (4)C1—O—Co176.37 (18)
C6—C7—H7119.3

Experimental details

Crystal data
Chemical formula[Co(C13H8F2O)(C3H9P)3]
Mr505.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)14.214 (5), 9.820 (4), 19.241 (7)
β (°) 101.773 (6)
V3)2629.3 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.32 × 0.27 × 0.26
Data collection
DiffractometerBruker APEX2 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.759, 0.800
No. of measured, independent and
observed [I > 2σ(I)] reflections
13574, 5065, 3278
Rint0.047
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.128, 0.99
No. of reflections5065
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.31

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Co1—O1.896 (2)Co1—P32.2081 (12)
Co1—C12.049 (4)Co1—P42.2632 (13)
Co1—P22.2304 (11)
 

Acknowledgements

We gratefully acknowledge financial support by the NSF China (No. 20872080/20772072) and the Science Foundation of Shandong Province, China (No. Y2007B06/Y2006B18).

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKiplinger, J. L., Richmond, T. G. & Osterberg, C. E. (1994). Chem. Rev. 94, 373-431.  CrossRef CAS Web of Science Google Scholar
First citationLi, X., Sun, H., Yu, F., Flörke, U. & Klein, H. F. (2006). Organometallics, 25, 4695-4697.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaunders, G. C. (1996). Angew. Chem. Int. Ed. 35, 2615-2617.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds