metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­aqua­(μ3-pyridine-3,5-di­carboxyl­ato-κ3N:O3:O5)copper(II)]

aSchool of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China
*Correspondence e-mail: qhzhao@ynu.edu.cn

(Received 25 March 2009; accepted 14 April 2009; online 22 April 2009)

The title complex, [Cu(C7H3NO4)(H2O)2]n, was prepared under hydro­thermal reaction conditions. In the crystal structure, the CuII cation is located on a twofold rotation axis and is coordinated by two carboxyl­ate O atoms and one N atom from three pyridine-3,5-dicarboxyl­ate (PDA) anions and two water mol­ecules with a distorted trigonal–bipyramidal geometry. The tridentate PDA anion is also located on the twofold rotation axis and bridges the CuII cations to form a two-dimensional polymeric layer. O—H⋯O hydrogen bonding between layers links the two-dimensional layers into a three-dimensional supra­molecular framework.

Related literature

For background, see: Chang et al. (2005[Chang, F., Wang, Z.-M., Sun, H.-L., Gao, S., Wen, G.-H. & Zhang, X.-X. (2005). Dalton Trans. pp. 2976-2978.]); Hou et al. (2004[Hou, H.-W., Xie, L.-X., Li, G., Ge, T.-Z., Fan, Y.-T. & Zhu, Y. (2004). New J. Chem. 28, 191-199.]). For related structures, see: Plater et al. (1998[Plater, M. J., Roberts, J. A. & Howie, R. A. (1998). J. Chem. Res. pp. 240-241.]); Whitfield et al. (2001[Whitfield, T., Zheng, L.-M., Wang, X.-Q. & Jacobson, A. J. (2001). Solid State Sci. 3, 829-835.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H3NO4)(H2O)2]

  • Mr = 264.68

  • Monoclinic, C 2/c

  • a = 10.1285 (16) Å

  • b = 12.0669 (19) Å

  • c = 7.2770 (11) Å

  • β = 101.584 (2)°

  • V = 871.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.52 mm−1

  • T = 298 K

  • 0.23 × 0.18 × 0.07 mm

Data collection
  • Bruker APEXII 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.588, Tmax = 0.840

  • 2751 measured reflections

  • 1003 independent reflections

  • 892 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.148

  • S = 1.00

  • 1003 reflections

  • 70 parameters

  • H-atom parameters constrained

  • Δρmax = 1.31 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1W 1.964 (4)
Cu1—N1i 2.149 (4)
Cu1—O1 2.236 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+1, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O1iii 0.85 2.53 3.377 (5) 178
O1W—H1WB⋯O2iv 0.85 2.21 3.052 (5) 171
Symmetry codes: (iii) [x, -y, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Over the past few years, much progress has been made toward the building of supramolecular structures with metal–organic compounds (Hou et al., 2004). To get designed their intriguing frameworks and properties, an enormous amount of research is being focused in using versatile organic ligands and functional metal ions to construct the novel polymers (Chang et al., 2005). The role of organic carboxylic acid ligand in synthesis such materials are of great interest. Here we report the hydrothermal synthesis and structure characterization of the title compound which is the isomorphism with CoII complex reported in the previous literature (Whitfield et al., 2001; Plater et al., 1998).

The title compound crystallizes in space group C2/c. As illustrated in Fig. 1, in the asymmetric unit of it there is only one crystalographically distinct CuII ions which is coordinated by four O atoms and one N atom with the bond distance Cu—O 2.236 (3) and 2.236 (3) Å and Cu—N 2.149 (4) Å. The 3,5-PDA ligand acts as a tridentate ligand and bridges three equivalent Cu atoms with the Cu···Cu 7.877 Å. The O2 atom of each carboxylate group is terminal and oriented to the Cu1 atom with the Cu1···O2 distance 2.655 Å which are slightly larger than the CoII isomorphism (Co···OT 2.433 Å). A two-dimensional layer structure is thus constructed in the ab plane with openings along the c direction (Fig. 2). Hydrogen bonds are formed between coordinated water molecules and the carboxylate O atoms of adjacent layers (O1W···O1 3.377 (5) Å, O1W···O2 3.052 (5) Å) which furtherly connect the two-dimensional layers to a three-dimensional architecture. The shortes distance between Cu ions in the layers is 5.314 (2) Å.

Related literature top

For background, see: Chang et al. (2005); Hou et al. (2004). For related structures, see: Plater et al. (1998); Whitfield et al. (2001).

Experimental top

The compound was synthesized by heating a mixture of Cu(CH3COO)2 (0.25 mmol, 0.05 g), 3,5-pyridinedicarboxylic acid (0.25 mmol, 0.0418 g), CH3OH (5 ml) and H2O (5 ml) in a Teflon-lined autoclave (25 ml) at 150 °C for 3 d. Green crystals of the title compound appeared after cooling to room temperature.

Refinement top

The water H atoms were placed in chemically sensible positions on the basis of hydrogen bonding, and were refined with distance restraint O—H = 0.85 Å. Other H atoms were placed in calculated positions and were refined in riding mode with C—H = 0.93 Å. Uiso(H) = 1.2Ueq(C,O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with displacement ellipsoids drawn at the 30% probability level [symmetry code: (A) -x + 2, y, 1/2 - z].
[Figure 2] Fig. 2. The crystal packing diagram of the title compound, viewed along the c axis.
Poly[diaqua(µ3-pyridine-3,5-dicarboxylato- κ3N:O3:O5)copper(II)] top
Crystal data top
[Cu(C7H3NO4)(H2O)2]F(000) = 532
Mr = 264.68Dx = 2.018 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2266 reflections
a = 10.1285 (16) Åθ = 2.7–28.3°
b = 12.0669 (19) ŵ = 2.52 mm1
c = 7.2770 (11) ÅT = 298 K
β = 101.584 (2)°Block, green
V = 871.3 (2) Å30.23 × 0.18 × 0.07 mm
Z = 4
Data collection top
Bruker APEXII 1000 CCD area-detector
diffractometer
1003 independent reflections
Radiation source: fine-focus sealed tube892 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 28.3°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1312
Tmin = 0.588, Tmax = 0.840k = 1512
2751 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.108P)2 + 2.2514P]
where P = (Fo2 + 2Fc2)/3
1003 reflections(Δ/σ)max < 0.001
70 parametersΔρmax = 1.31 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Cu(C7H3NO4)(H2O)2]V = 871.3 (2) Å3
Mr = 264.68Z = 4
Monoclinic, C2/cMo Kα radiation
a = 10.1285 (16) ŵ = 2.52 mm1
b = 12.0669 (19) ÅT = 298 K
c = 7.2770 (11) Å0.23 × 0.18 × 0.07 mm
β = 101.584 (2)°
Data collection top
Bruker APEXII 1000 CCD area-detector
diffractometer
1003 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
892 reflections with I > 2σ(I)
Tmin = 0.588, Tmax = 0.840Rint = 0.024
2751 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.00Δρmax = 1.31 e Å3
1003 reflectionsΔρmin = 0.48 e Å3
70 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.16047 (5)0.25000.0252 (3)
O1W0.4771 (4)0.1611 (2)0.0245 (5)0.0387 (8)
H1WA0.52160.11610.07820.046*
H1WB0.42260.20650.08960.046*
O10.6503 (3)0.0232 (3)0.2667 (5)0.0387 (8)
O20.7647 (4)0.1761 (3)0.2777 (7)0.0573 (12)
C10.7562 (4)0.0748 (4)0.2691 (6)0.0289 (9)
C20.8837 (3)0.0104 (3)0.2610 (5)0.0214 (7)
C31.00000.0672 (4)0.25000.0227 (10)
H3A1.00000.14430.25000.027*
C40.8885 (3)0.1037 (3)0.2620 (5)0.0227 (8)
H4A0.81090.14260.27130.027*
N11.00000.1614 (3)0.25000.0215 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0257 (4)0.0176 (4)0.0328 (4)0.0000.0073 (3)0.000
O1W0.049 (2)0.0299 (18)0.0370 (17)0.0036 (12)0.0074 (15)0.0021 (12)
O10.0211 (15)0.0452 (19)0.0507 (19)0.0075 (12)0.0097 (13)0.0097 (15)
O20.040 (2)0.0264 (19)0.101 (4)0.0149 (14)0.005 (2)0.0080 (18)
C10.0189 (19)0.029 (2)0.036 (2)0.0121 (15)0.0006 (15)0.0074 (16)
C20.0162 (16)0.0185 (17)0.0293 (17)0.0049 (12)0.0043 (14)0.0009 (14)
C30.022 (3)0.013 (2)0.032 (3)0.0000.001 (2)0.000
C40.0135 (16)0.0187 (18)0.0352 (19)0.0015 (12)0.0033 (14)0.0009 (14)
N10.017 (2)0.013 (2)0.035 (2)0.0000.0062 (18)0.000
Geometric parameters (Å, º) top
Cu1—O1Wi1.964 (4)C1—C21.518 (5)
Cu1—O1W1.964 (4)C2—C41.378 (5)
Cu1—N1ii2.149 (4)C2—C31.379 (4)
Cu1—O1i2.236 (3)C3—C2iii1.379 (4)
Cu1—O12.236 (3)C3—H3A0.9300
O1W—H1WA0.8500C4—N11.344 (4)
O1W—H1WB0.8500C4—H4A0.9300
O1—C11.238 (5)N1—C4iii1.344 (4)
O2—C11.226 (5)N1—Cu1iv2.149 (4)
O1Wi—Cu1—O1W179.54 (17)O2—C1—C2117.5 (4)
O1Wi—Cu1—N1ii89.77 (8)O1—C1—C2118.9 (4)
O1W—Cu1—N1ii89.77 (8)C4—C2—C3117.8 (3)
O1Wi—Cu1—O1i89.90 (13)C4—C2—C1122.8 (3)
O1W—Cu1—O1i90.44 (13)C3—C2—C1119.4 (4)
N1ii—Cu1—O1i137.80 (9)C2—C3—C2iii120.4 (5)
O1Wi—Cu1—O190.44 (13)C2—C3—H3A119.8
O1W—Cu1—O189.90 (13)C2iii—C3—H3A119.8
N1ii—Cu1—O1137.80 (9)N1—C4—C2123.2 (3)
O1i—Cu1—O184.40 (18)N1—C4—H4A118.4
Cu1—O1W—H1WA120.0C2—C4—H4A118.4
Cu1—O1W—H1WB120.0C4iii—N1—C4117.6 (4)
H1WA—O1W—H1WB120.0C4iii—N1—Cu1iv121.2 (2)
C1—O1—Cu1101.9 (3)C4—N1—Cu1iv121.2 (2)
O2—C1—O1123.7 (4)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x1/2, y+1/2, z; (iii) x+2, y, z+1/2; (iv) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1v0.852.533.377 (5)178
O1W—H1WB···O2vi0.852.213.052 (5)171
Symmetry codes: (v) x, y, z1/2; (vi) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C7H3NO4)(H2O)2]
Mr264.68
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)10.1285 (16), 12.0669 (19), 7.2770 (11)
β (°) 101.584 (2)
V3)871.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.52
Crystal size (mm)0.23 × 0.18 × 0.07
Data collection
DiffractometerBruker APEXII 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.588, 0.840
No. of measured, independent and
observed [I > 2σ(I)] reflections
2751, 1003, 892
Rint0.024
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.148, 1.00
No. of reflections1003
No. of parameters70
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.31, 0.48

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O1W1.964 (4)Cu1—O12.236 (3)
Cu1—N1i2.149 (4)
O1Wii—Cu1—O1W179.54 (17)O1Wii—Cu1—O190.44 (13)
O1W—Cu1—N1i89.77 (8)O1W—Cu1—O189.90 (13)
O1W—Cu1—O1ii90.44 (13)O1ii—Cu1—O184.40 (18)
N1i—Cu1—O1ii137.80 (9)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1iii0.852.533.377 (5)178.1
O1W—H1WB···O2iv0.852.213.052 (5)171.2
Symmetry codes: (iii) x, y, z1/2; (iv) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China for financial support.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, F., Wang, Z.-M., Sun, H.-L., Gao, S., Wen, G.-H. & Zhang, X.-X. (2005). Dalton Trans. pp. 2976–2978.  Web of Science CSD CrossRef Google Scholar
First citationHou, H.-W., Xie, L.-X., Li, G., Ge, T.-Z., Fan, Y.-T. & Zhu, Y. (2004). New J. Chem. 28, 191–199.  Web of Science CSD CrossRef CAS Google Scholar
First citationPlater, M. J., Roberts, J. A. & Howie, R. A. (1998). J. Chem. Res. pp. 240–241.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhitfield, T., Zheng, L.-M., Wang, X.-Q. & Jacobson, A. J. (2001). Solid State Sci. 3, 829–835.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds