organic compounds
4,4,5,5-Tetramethyl-2-(4-pyridinio)-2-imidazoline-1-oxyl-3-oxide perchlorate
aCollege of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453002, People's Republic of China
*Correspondence e-mail: gaozhy201@sohu.com
The 12H17N3O2+·ClO4−, consists of 4,4,5,5-tetramethyl-2-(4-pyridinio)imidazoline-1-oxyl-3-oxide radical cations and perchlorate anions. Both the cation and the Cl atom of the anion are located on the same twofold rotation axis, and the shows the average structure for the The five-membered ring assumes a half-chair conformation. The cation links with the anion via N—H⋯O hydrogen bonding.
of the title compound, CRelated literature
For general background, see: Wang et al. (2004); Li et al. (2003); Kahn et al. (2000); Tsukahara et al. (2003); Fettouhi et al. (2003); Zhang et al. (2004); Fokin et al. (2004); Chang et al. (2009). For the synthesis, see: Ullman et al. (1970, 1972).
Experimental
Crystal data
|
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809013531/xu2504sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809013531/xu2504Isup2.hkl
NITpPy was synthesized according to a literature procedure (Ullman et al., 1970; Ullman et al., 1972). The title compound was obtained serendipitously from the reaction of copper perchlorate hydrate (1 mmol) and NITpPy (2 mmol) in methanol (10 ml). The mixture was stirred for 4 h at room temperature and then filtered. Subsequently, the filtrate was diffused with diethyl ether vapor and dark-purple block crystals were obtained one week later.
The H atoms were positioned geometrically and refined using the riding-model approximation, with C—H = 0.93 (aromatic), 0.96 Å (methyl) and N—H = 0.86 Å, and Uiso(H) = 1.5Ueq(C) for methyl groups and 1.2Ueq(C,N) for others.
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C12H17N3O2+·ClO4− | F(000) = 1400 |
Mr = 334.74 | Dx = 1.438 Mg m−3 |
Orthorhombic, Fdd2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: F 2 -2d | Cell parameters from 2949 reflections |
a = 17.485 (4) Å | θ = 2.3–29.0° |
b = 11.854 (2) Å | µ = 0.28 mm−1 |
c = 14.921 (2) Å | T = 273 K |
V = 3092.6 (10) Å3 | Block, dark-purple |
Z = 8 | 0.33 × 0.26 × 0.23 mm |
Bruker SMART CCD area-detector diffractometer | 1204 independent reflections |
Radiation source: fine-focus sealed tube | 1169 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
ϕ and ω scans | θmax = 25.5°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −21→20 |
Tmin = 0.915, Tmax = 0.930 | k = −11→14 |
3994 measured reflections | l = −15→18 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + (0.0762P)2 + 1.0334P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.102 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.27 e Å−3 |
1204 reflections | Δρmin = −0.15 e Å−3 |
103 parameters | Extinction correction: SHELXTL (Bruker, 2000), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.0026 (5) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 457 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.12 (10) |
C12H17N3O2+·ClO4− | V = 3092.6 (10) Å3 |
Mr = 334.74 | Z = 8 |
Orthorhombic, Fdd2 | Mo Kα radiation |
a = 17.485 (4) Å | µ = 0.28 mm−1 |
b = 11.854 (2) Å | T = 273 K |
c = 14.921 (2) Å | 0.33 × 0.26 × 0.23 mm |
Bruker SMART CCD area-detector diffractometer | 1204 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1169 reflections with I > 2σ(I) |
Tmin = 0.915, Tmax = 0.930 | Rint = 0.016 |
3994 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.102 | Δρmax = 0.27 e Å−3 |
S = 1.06 | Δρmin = −0.15 e Å−3 |
1204 reflections | Absolute structure: Flack (1983), 457 Friedel pairs |
103 parameters | Absolute structure parameter: 0.12 (10) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.0000 | 0.5000 | 0.05797 (7) | 0.0787 (4) | |
O2 | 0.0203 (2) | 0.4065 (5) | 0.0039 (3) | 0.1497 (15) | |
O3 | 0.06280 (15) | 0.5281 (3) | 0.1140 (2) | 0.1055 (9) | |
N1 | 0.0000 | 0.5000 | 0.2971 (2) | 0.0684 (10) | |
H1B | 0.0000 | 0.5000 | 0.2395 | 0.082* | |
N2 | 0.05399 (9) | 0.54721 (12) | 0.62987 (12) | 0.0399 (4) | |
C1 | 0.04640 (17) | 0.5698 (2) | 0.33929 (18) | 0.0626 (6) | |
H1A | 0.0785 | 0.6169 | 0.3067 | 0.075* | |
C2 | 0.04743 (13) | 0.57302 (19) | 0.43134 (16) | 0.0520 (5) | |
H2A | 0.0793 | 0.6232 | 0.4614 | 0.062* | |
C3 | 0.0000 | 0.5000 | 0.4789 (2) | 0.0417 (6) | |
C4 | 0.0000 | 0.5000 | 0.5764 (2) | 0.0379 (6) | |
C5 | 0.02991 (11) | 0.54883 (16) | 0.72622 (14) | 0.0425 (5) | |
C6 | 0.09853 (14) | 0.5301 (2) | 0.78664 (19) | 0.0630 (6) | |
H6A | 0.1322 | 0.5939 | 0.7827 | 0.095* | |
H6B | 0.1253 | 0.4634 | 0.7680 | 0.095* | |
H6C | 0.0816 | 0.5213 | 0.8474 | 0.095* | |
C7 | −0.00457 (14) | 0.66478 (19) | 0.74312 (19) | 0.0616 (7) | |
H7A | 0.0352 | 0.7206 | 0.7422 | 0.092* | |
H7B | −0.0293 | 0.6654 | 0.8006 | 0.092* | |
H7C | −0.0414 | 0.6815 | 0.6972 | 0.092* | |
O1 | 0.11652 (8) | 0.59302 (15) | 0.60418 (12) | 0.0599 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0631 (5) | 0.1338 (9) | 0.0392 (5) | −0.0116 (5) | 0.000 | 0.000 |
O2 | 0.154 (3) | 0.199 (4) | 0.096 (3) | 0.023 (3) | 0.013 (2) | −0.053 (3) |
O3 | 0.0789 (14) | 0.167 (2) | 0.0707 (17) | −0.0372 (15) | −0.0088 (13) | 0.0105 (16) |
N1 | 0.092 (2) | 0.0776 (18) | 0.0360 (17) | 0.0404 (17) | 0.000 | 0.000 |
N2 | 0.0356 (7) | 0.0440 (7) | 0.0400 (10) | −0.0075 (6) | −0.0005 (7) | −0.0002 (6) |
C1 | 0.0729 (15) | 0.0692 (14) | 0.0457 (14) | 0.0203 (11) | 0.0104 (11) | 0.0154 (11) |
C2 | 0.0547 (12) | 0.0570 (10) | 0.0443 (13) | 0.0068 (9) | 0.0035 (9) | 0.0088 (9) |
C3 | 0.0394 (13) | 0.0430 (12) | 0.0425 (18) | 0.0116 (10) | 0.000 | 0.000 |
C4 | 0.0367 (12) | 0.0376 (12) | 0.0394 (18) | −0.0002 (9) | 0.000 | 0.000 |
C5 | 0.0409 (10) | 0.0499 (10) | 0.0368 (11) | −0.0056 (9) | −0.0015 (9) | −0.0025 (8) |
C6 | 0.0548 (12) | 0.0865 (15) | 0.0478 (15) | −0.0160 (12) | −0.0141 (11) | 0.0046 (11) |
C7 | 0.0683 (14) | 0.0550 (11) | 0.0614 (17) | −0.0014 (10) | 0.0048 (12) | −0.0153 (10) |
O1 | 0.0461 (7) | 0.0784 (10) | 0.0553 (11) | −0.0250 (7) | 0.0047 (7) | 0.0008 (8) |
Cl1—O2i | 1.416 (4) | C2—H2A | 0.9300 |
Cl1—O2 | 1.416 (4) | C3—C2i | 1.393 (3) |
Cl1—O3 | 1.420 (3) | C3—C4 | 1.455 (4) |
Cl1—O3i | 1.420 (3) | C4—N2i | 1.357 (2) |
N1—C1 | 1.318 (4) | C5—C6 | 1.517 (3) |
N1—C1i | 1.318 (4) | C5—C7 | 1.522 (3) |
N1—H1B | 0.8600 | C5—C5i | 1.560 (4) |
N2—O1 | 1.280 (2) | C6—H6A | 0.9600 |
N2—C4 | 1.357 (2) | C6—H6B | 0.9600 |
N2—C5 | 1.498 (3) | C6—H6C | 0.9600 |
C1—C2 | 1.374 (4) | C7—H7A | 0.9600 |
C1—H1A | 0.9300 | C7—H7B | 0.9600 |
C2—C3 | 1.393 (3) | C7—H7C | 0.9600 |
O2i—Cl1—O2 | 110.5 (5) | N2—C4—N2i | 108.0 (3) |
O2i—Cl1—O3 | 110.2 (3) | N2—C4—C3 | 126.01 (13) |
O2—Cl1—O3 | 109.0 (2) | N2i—C4—C3 | 126.01 (13) |
O2i—Cl1—O3i | 109.0 (2) | N2—C5—C6 | 110.26 (18) |
O2—Cl1—O3i | 110.2 (3) | N2—C5—C7 | 106.37 (18) |
O3—Cl1—O3i | 107.9 (2) | C6—C5—C7 | 110.28 (19) |
C1—N1—C1i | 123.0 (3) | N2—C5—C5i | 100.31 (10) |
C1—N1—H1B | 118.5 | C6—C5—C5i | 114.96 (17) |
C1i—N1—H1B | 118.5 | C7—C5—C5i | 113.9 (2) |
O1—N2—C4 | 126.40 (18) | C5—C6—H6A | 109.5 |
O1—N2—C5 | 121.47 (16) | C5—C6—H6B | 109.5 |
C4—N2—C5 | 111.96 (16) | H6A—C6—H6B | 109.5 |
N1—C1—C2 | 120.2 (3) | C5—C6—H6C | 109.5 |
N1—C1—H1A | 119.9 | H6A—C6—H6C | 109.5 |
C2—C1—H1A | 119.9 | H6B—C6—H6C | 109.5 |
C1—C2—C3 | 118.9 (2) | C5—C7—H7A | 109.5 |
C1—C2—H2A | 120.5 | C5—C7—H7B | 109.5 |
C3—C2—H2A | 120.5 | H7A—C7—H7B | 109.5 |
C2i—C3—C2 | 118.8 (3) | C5—C7—H7C | 109.5 |
C2i—C3—C4 | 120.61 (16) | H7A—C7—H7C | 109.5 |
C2—C3—C4 | 120.61 (16) | H7B—C7—H7C | 109.5 |
C1i—N1—C1—C2 | −0.68 (16) | C2—C3—C4—N2 | −15.56 (13) |
N1—C1—C2—C3 | 1.3 (3) | C2i—C3—C4—N2i | −15.56 (13) |
C1—C2—C3—C2i | −0.65 (15) | C2—C3—C4—N2i | 164.44 (13) |
C1—C2—C3—C4 | 179.35 (15) | O1—N2—C5—C6 | −39.6 (2) |
O1—N2—C4—N2i | 175.0 (2) | C4—N2—C5—C6 | 144.69 (16) |
C5—N2—C4—N2i | −9.58 (9) | O1—N2—C5—C7 | 80.0 (2) |
O1—N2—C4—C3 | −5.0 (2) | C4—N2—C5—C7 | −95.74 (16) |
C5—N2—C4—C3 | 170.42 (9) | O1—N2—C5—C5i | −161.21 (18) |
C2i—C3—C4—N2 | 164.44 (13) | C4—N2—C5—C5i | 23.1 (2) |
Symmetry code: (i) −x, −y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C12H17N3O2+·ClO4− |
Mr | 334.74 |
Crystal system, space group | Orthorhombic, Fdd2 |
Temperature (K) | 273 |
a, b, c (Å) | 17.485 (4), 11.854 (2), 14.921 (2) |
V (Å3) | 3092.6 (10) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.28 |
Crystal size (mm) | 0.33 × 0.26 × 0.23 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.915, 0.930 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3994, 1204, 1169 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.605 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.102, 1.06 |
No. of reflections | 1204 |
No. of parameters | 103 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.27, −0.15 |
Absolute structure | Flack (1983), 457 Friedel pairs |
Absolute structure parameter | 0.12 (10) |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008).
Acknowledgements
This work was supported by the National Natural Science Foundation of China (grant Nos. 20471026 and 20771054)) and the Education Committee of Henan Province, China (grant No. 2007150027).
References
Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chang, J. L., Gao, Z. Y. & Jiang, K. (2009). Acta Cryst. E65, o200. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fettouhi, M., El Ali, B., Morsy, M., Golhen, S., Ouahab, L., Le Guennic, B., Saillard, J.-Y., Daro, N., Sutter, J.-P. & Amouyal, E. (2003). Inorg. Chem. 42, 1316–1321. Web of Science CSD CrossRef PubMed CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fokin, S. V., Ovcharenko, V. I., Romanenko, G. V. & Ikorskii, V. N. (2004). Inorg. Chem. 43, 969–977. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kahn, M. L., Sutter, S., Guionneau, P., Ouahab, L., Kahn, O. & Chasseau, D. (2000). J. Am. Chem. Soc. 122, 3413–3421. Web of Science CSD CrossRef CAS Google Scholar
Li, L.-C., Liu, Z.-L., Turner, S. S., Liao, D.-Z., Jiang, Z.-H. & Yan, S.-P. (2003). New J. Chem. 27, 752–754. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tsukahara, Y., Kamatani, T., Suzuki, T. & Kaizaki, S. J. (2003). J. Chem. Soc. Dalton Trans. pp. 1276–1279. CrossRef Google Scholar
Ullman, E. F., Call, L. & Osieckei, J. H. J. (1970). J. Org. Chem. 35, 3623–3628. CrossRef CAS Web of Science Google Scholar
Ullman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1972). J. Am. Chem. Soc. 94, 7049–7059. CrossRef CAS Web of Science Google Scholar
Wang, H.-M., Liu, Z.-L., Zhang, D.-Q., Geng, H., Shuai, Z.-G. & Zhu, D.-B. (2004). Inorg. Chem. 43, 4091–4098. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, C.-X., Liu, Z.-Q., Liao, D.-Z., Jiang, Z.-H. & Yan, S.-P. (2004). Inorg. Chim. Acta, 357, 376–379. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The major research aims in the field of molecular magnetism are on one hand the chemical design of molecular assemblies that exhibit a spontaneous magnetization and on the other hand the rationalization of magneto-structural correlation (Wang et al., 2004; Li et al., 2003; Kahn et al., 2000; Tsukahara et al., 2003). Nitronyl nitroxide radicals (NITR), stable organic radicals, have played an important role in the design and synthesis of molecular magnetic materials (Fettouhi et al., 2003; Zhang et al., 2004; Fokin et al., 2004). Many structures have been investigated on the coordination of nitronyl nitroxide radicals to metals, but less on the non-covalent weak interactions of nitronyl nitroxide radicals with other molecules (Chang et al., 2009). Taking account of these, we report on the molecular assemblies of NITpPy and perchlorate anion in order to further understand the coordination chemistry of nitronyl nitroxide radicals.
The structure of the title compound is shown in Fig. 1. The compound consists of a discrete [NITpPyH] cation and a perchlorate anion. NITpPy acts as a proton sponge by accepting a proton. The transfer of protons results in symmetric intermolecular hydrogen bonds: the double hydrogen bonds occur between two oxygen atoms from perchlorate anion and one nitrogen atom from the pyridyl ring (Table 1). The nitronyl nitroxide fragment O—N—C—N—O is almost coplanar, but make a dihedral angle of 17.0° with the pyridyl ring. In the unit cell cations and anions are alternatively arranged.