organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1135

(E)-2-{3-[4-(Di­phenyl­amino)styr­yl]-5,5-di­methyl­cyclo­hex-2-enyl­­idene}­malono­nitrile

aCollege of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China, and bState Key Laboratory of Crystalline Materials, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: hdju1977@hotmail.com

(Received 31 March 2009; accepted 17 April 2009; online 25 April 2009)

In the title compound, C31H27N3, the cyclo­hexene ring has an envelope configuration. In the crystal structure, there is an 34 Å3 void around the inversion center, but the low electron density (0.13 e Å−3) in the difference Fourier map suggests no solvent mol­ecule occupying this void. No hydrogen bonding is found in the crystal structure.

Related literature

For background to organic compounds with light emitting properties, see: Tang et al. (1998[Tang, C. W., Vanslyke, S. A. & Chen, C. H. (1998). J. Appl. Phys. 65, 3610-3616.]); Li et al. (2003[Li, J. Y., Liu, D., Hong, Z. R. & Tong, S. W. (2003). Chem. Mater. 15, 1486-1490.]); Hye et al. (2004[Hye, J. L., Jiwon, S., Jaehoon, H. & Soo, Y. P. (2004). Chem. Mater. 16, 456-465.]). For the synthesis, see: Lemke (1974[Lemke, R. (1974). Synthesis, pp. 359-361.]); Tao & Miyata (2001[Tao, X. T. & Miyata, S. (2001). Appl. Phys. Lett. 78, 279-281.]). For related crystal structures, see: Kia et al. (2009[Kia, R., Fun, H.-K. & Kargar, H. (2009). Acta Cryst. E65, o682-o683.]); Ju et al. (2006[Ju, H. D., Wan, Y., Yu, W. T. & Tao, X. T. (2006). Thin Solid Films, 515, 2403-2409.]).

[Scheme 1]

Experimental

Crystal data
  • C31H27N3

  • Mr = 441.56

  • Monoclinic, P 21 /c

  • a = 13.239 (5) Å

  • b = 16.757 (8) Å

  • c = 11.886 (3) Å

  • β = 104.073 (5)°

  • V = 2557.7 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.48 × 0.19 × 0.16 mm

Data collection
  • Bruker SMART area-detector diffractometer

  • Absorption correction: none

  • 20681 measured reflections

  • 5879 independent reflections

  • 3554 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.167

  • S = 0.92

  • 5879 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The organic compounds with donor-π-acceptor (D-π-A) structure have special light-emitting properties, and show potential application in organic light-emitting diodes (Tang et al., 1998; Hye et al., 2004). However, these molecules easily aggregate, which usually reduces their fluorescence intensity (Li et al., 2003). Therefore, it is important to study their intermolecular interaction in the solid state. Recently we synthesized the title compound and studied its crystal structure.

The molecular structure is shown in Fig. 1. Three benzenes of triphenyl amine group show a three-bladed propeller configuration due to repulsion force. The bond lengths of C13—N1 are shorter than the single C—N distance (1.47–1.50 Å) and longer than double C=N bond distance (1.34–1.38 Å), which is due to the conjugation of p-π in triphenyl amine group. Because of long conjugation length, all atoms are roughly coplanar (Kia et al., 2009). However, the cyclohexene group shows an envelope configuration due to its ring tension, which atoms are partly out of the plane (Ju et al., 2006). The triphenyl amine and cyclohexene groups could hold back farther gather of these molecules in the solid state, which is due to their non-coplanar conjugation. No hydrogen bonding is found in the crystal structure (Fig. 2).

Related literature top

For general background, see: Tang et al. (1998); Li et al. (2003); Hye et al. (2004). For the synthesis, see: Lemke (1974); Tao & Miyata (2001). For related crystal structures, see: Kia et al. (2009); Ju et al. (2006).

Experimental top

Hexahydropyridine (1 ml) and acetic acid (2 ml) were respectively added dropwise to a stirred benzene (100 ml) solution with 4-diphenylamino-benzaldehyde (1.1 g, 4 mmol) and 2-(3,5,5-Trimethylcyclohex-2-enylidene)-malononitrile (0.92 g, 5 mmol). The mixture was stirred at room temperature for 1 h, then separated water at refluxing temperature for another 5 h. Cooled to room temperature, the title compound was gotten (Lemke, 1974; Tao & Miyata, 2001). Single crystal suitable for X-ray diffraction analysis were obtained by slow evaporation of its ethanol saturated solution at room temperature.

Refinement top

All H atoms were positioned geometrically, and allowed to ride on their parent atom with C—H = 0.93 (aromatic), 0.96 (methyl) and 0.97 Å (methylene). Uiso(H) = 1.5Ueq(C) for methyl group and 1.2Ueq(C) for others.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the molecular structure of (I) showing the atom labels. Displacement ellipsoids are shown at the 50%.
[Figure 2] Fig. 2. The packing of (I), viewed down the b axis. H atoms not involved in hydrogen bonding have been omitted.
(E)-2-{3-[4-(Diphenylamino)styryl]-5,5-dimethylcyclohex-2- enylidene}malononitrile top
Crystal data top
C31H27N3F(000) = 936
Mr = 441.56Dx = 1.147 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 962 reflections
a = 13.239 (5) Åθ = 2.4–20.0°
b = 16.757 (8) ŵ = 0.07 mm1
c = 11.886 (3) ÅT = 293 K
β = 104.073 (5)°Block, red
V = 2557.7 (17) Å30.48 × 0.19 × 0.16 mm
Z = 4
Data collection top
Bruker SMART area-detector
diffractometer
3554 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 27.5°, θmin = 1.6°
ϕ and ω scansh = 1717
20681 measured reflectionsk = 2120
5879 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.1P)2 + 0.187P]
where P = (Fo2 + 2Fc2)/3
5879 reflections(Δ/σ)max < 0.001
309 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C31H27N3V = 2557.7 (17) Å3
Mr = 441.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.239 (5) ŵ = 0.07 mm1
b = 16.757 (8) ÅT = 293 K
c = 11.886 (3) Å0.48 × 0.19 × 0.16 mm
β = 104.073 (5)°
Data collection top
Bruker SMART area-detector
diffractometer
3554 reflections with I > 2σ(I)
20681 measured reflectionsRint = 0.027
5879 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 0.92Δρmax = 0.13 e Å3
5879 reflectionsΔρmin = 0.18 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma (F2) is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.81570 (11)0.18274 (8)0.93407 (11)0.0627 (4)
N20.43530 (17)0.55197 (11)0.20566 (18)0.1061 (6)
N30.21605 (14)0.45416 (10)0.09927 (15)0.0845 (5)
C10.7581 (2)0.01018 (13)1.1028 (2)0.0974 (7)
H10.70090.01861.11310.117*
C20.8549 (3)0.01085 (14)1.1632 (2)0.1187 (10)
H20.86410.05341.21480.142*
C30.9377 (2)0.03051 (15)1.1477 (2)0.1226 (10)
H31.00430.01631.18910.147*
C40.92488 (17)0.09351 (13)1.07133 (19)0.0943 (7)
H40.98300.12131.06150.113*
C50.82738 (14)0.11594 (10)1.00942 (13)0.0585 (4)
C60.74278 (16)0.07411 (11)1.02576 (16)0.0741 (5)
H60.67580.08840.98560.089*
C70.86935 (13)0.28927 (10)1.07559 (14)0.0600 (4)
H70.82850.26691.12090.072*
C80.92347 (14)0.35847 (11)1.11063 (15)0.0692 (5)
H80.91910.38281.17960.083*
C90.98393 (15)0.39192 (11)1.04424 (17)0.0719 (5)
H91.02050.43881.06820.086*
C100.99010 (14)0.35617 (12)0.94293 (16)0.0742 (5)
H101.03040.37910.89750.089*
C110.93693 (14)0.28622 (11)0.90749 (15)0.0670 (5)
H110.94250.26160.83920.080*
C120.87536 (12)0.25291 (9)0.97371 (13)0.0531 (4)
C130.73979 (12)0.18623 (9)0.82857 (12)0.0521 (4)
C140.69523 (13)0.25939 (9)0.78731 (13)0.0543 (4)
H140.71340.30510.83210.065*
C150.62532 (12)0.26470 (9)0.68204 (14)0.0532 (4)
H150.59750.31430.65630.064*
C160.59430 (11)0.19754 (9)0.61181 (13)0.0504 (4)
C170.63661 (12)0.12448 (10)0.65608 (13)0.0571 (4)
H170.61580.07840.61310.069*
C180.70818 (13)0.11848 (10)0.76140 (14)0.0578 (4)
H180.73550.06890.78780.069*
C190.52268 (12)0.20214 (10)0.49796 (13)0.0533 (4)
H190.49780.15410.46260.064*
C200.48912 (12)0.26930 (10)0.43923 (14)0.0552 (4)
H200.51410.31710.47530.066*
C210.41880 (11)0.27527 (9)0.32670 (13)0.0501 (4)
C220.40255 (12)0.34749 (9)0.27357 (13)0.0549 (4)
H220.43570.39180.31310.066*
C230.33747 (12)0.35870 (9)0.16069 (13)0.0512 (4)
C240.28127 (13)0.28808 (9)0.09855 (13)0.0561 (4)
H24A0.32100.26710.04650.067*
H24B0.21440.30560.05150.067*
C250.26297 (12)0.22075 (9)0.17857 (13)0.0520 (4)
C260.36565 (12)0.20259 (9)0.26656 (14)0.0545 (4)
H26A0.35210.16600.32430.065*
H26B0.41230.17610.22690.065*
C270.17984 (13)0.24505 (11)0.24035 (16)0.0686 (5)
H27A0.11630.25690.18400.103*
H27B0.20260.29150.28690.103*
H27C0.16810.20210.28910.103*
C280.22779 (15)0.14665 (11)0.10523 (16)0.0787 (6)
H28A0.28130.13070.06790.118*
H28B0.16510.15840.04750.118*
H28C0.21480.10420.15410.118*
C290.32897 (13)0.43195 (9)0.10715 (14)0.0590 (4)
C300.38730 (16)0.49914 (11)0.16151 (17)0.0730 (5)
C310.26565 (15)0.44413 (10)0.00723 (17)0.0649 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0691 (9)0.0547 (8)0.0565 (8)0.0110 (7)0.0001 (7)0.0077 (6)
N20.1275 (16)0.0607 (11)0.1231 (15)0.0240 (11)0.0169 (12)0.0041 (10)
N30.1009 (13)0.0683 (11)0.0790 (11)0.0048 (9)0.0118 (9)0.0167 (8)
C10.141 (2)0.0771 (15)0.0818 (15)0.0301 (15)0.0420 (15)0.0037 (11)
C20.190 (3)0.0671 (15)0.0774 (15)0.0170 (18)0.0100 (18)0.0142 (11)
C30.133 (2)0.0778 (16)0.122 (2)0.0014 (16)0.0367 (17)0.0290 (15)
C40.0822 (14)0.0771 (14)0.1062 (16)0.0069 (11)0.0110 (12)0.0232 (12)
C50.0716 (11)0.0487 (9)0.0526 (9)0.0029 (8)0.0101 (8)0.0012 (7)
C60.0856 (13)0.0656 (12)0.0772 (12)0.0033 (10)0.0315 (10)0.0035 (9)
C70.0588 (10)0.0628 (11)0.0595 (9)0.0036 (8)0.0162 (8)0.0009 (8)
C80.0745 (12)0.0604 (11)0.0696 (11)0.0016 (9)0.0112 (9)0.0073 (8)
C90.0724 (12)0.0521 (10)0.0809 (12)0.0102 (9)0.0011 (9)0.0066 (9)
C100.0684 (12)0.0802 (13)0.0709 (12)0.0198 (10)0.0111 (9)0.0164 (10)
C110.0672 (11)0.0787 (12)0.0552 (9)0.0115 (9)0.0149 (8)0.0008 (8)
C120.0512 (9)0.0529 (9)0.0517 (8)0.0048 (7)0.0059 (7)0.0057 (7)
C130.0522 (9)0.0521 (9)0.0507 (8)0.0033 (7)0.0099 (7)0.0008 (7)
C140.0576 (9)0.0484 (9)0.0559 (9)0.0010 (7)0.0117 (7)0.0049 (7)
C150.0517 (9)0.0481 (9)0.0597 (9)0.0047 (7)0.0132 (7)0.0000 (7)
C160.0429 (8)0.0542 (9)0.0544 (9)0.0022 (7)0.0126 (6)0.0010 (7)
C170.0558 (9)0.0525 (10)0.0606 (9)0.0009 (8)0.0092 (7)0.0085 (7)
C180.0595 (10)0.0469 (9)0.0635 (10)0.0054 (7)0.0080 (8)0.0017 (7)
C190.0437 (8)0.0570 (10)0.0589 (9)0.0002 (7)0.0118 (7)0.0057 (7)
C200.0462 (9)0.0565 (10)0.0612 (9)0.0058 (7)0.0098 (7)0.0016 (7)
C210.0413 (8)0.0512 (9)0.0588 (9)0.0006 (7)0.0141 (7)0.0009 (7)
C220.0528 (9)0.0501 (9)0.0619 (9)0.0073 (7)0.0139 (7)0.0040 (7)
C230.0491 (8)0.0484 (9)0.0592 (9)0.0017 (7)0.0193 (7)0.0003 (7)
C240.0558 (9)0.0552 (10)0.0573 (9)0.0034 (7)0.0135 (7)0.0001 (7)
C250.0471 (8)0.0459 (8)0.0597 (9)0.0019 (7)0.0068 (7)0.0021 (7)
C260.0476 (8)0.0490 (9)0.0646 (9)0.0025 (7)0.0089 (7)0.0003 (7)
C270.0488 (9)0.0758 (12)0.0828 (12)0.0002 (8)0.0192 (8)0.0162 (9)
C280.0809 (13)0.0588 (11)0.0841 (13)0.0143 (9)0.0039 (10)0.0047 (9)
C290.0636 (10)0.0501 (9)0.0652 (10)0.0030 (8)0.0189 (8)0.0023 (7)
C300.0869 (14)0.0490 (10)0.0813 (12)0.0072 (10)0.0173 (10)0.0056 (9)
C310.0738 (12)0.0497 (10)0.0730 (12)0.0035 (9)0.0215 (9)0.0079 (8)
Geometric parameters (Å, º) top
N1—C131.405 (2)C15—H150.9300
N1—C51.418 (2)C16—C171.395 (2)
N1—C121.431 (2)C16—C191.453 (2)
N2—C301.141 (2)C17—C181.378 (2)
N3—C311.143 (2)C17—H170.9300
C1—C21.354 (4)C18—H180.9300
C1—C61.392 (3)C19—C201.342 (2)
C1—H10.9300C19—H190.9300
C2—C31.347 (4)C20—C211.435 (2)
C2—H20.9300C20—H200.9300
C3—C41.375 (3)C21—C221.358 (2)
C3—H30.9300C21—C261.498 (2)
C4—C51.374 (3)C22—C231.420 (2)
C4—H40.9300C22—H220.9300
C5—C61.374 (2)C23—C291.375 (2)
C6—H60.9300C23—C241.494 (2)
C7—C81.373 (2)C24—C251.533 (2)
C7—C121.375 (2)C24—H24A0.9700
C7—H70.9300C24—H24B0.9700
C8—C91.373 (3)C25—C271.520 (2)
C8—H80.9300C25—C281.524 (2)
C9—C101.365 (3)C25—C261.531 (2)
C9—H90.9300C26—H26A0.9700
C10—C111.379 (2)C26—H26B0.9700
C10—H100.9300C27—H27A0.9600
C11—C121.381 (2)C27—H27B0.9600
C11—H110.9300C27—H27C0.9600
C13—C181.392 (2)C28—H28A0.9600
C13—C141.397 (2)C28—H28B0.9600
C14—C151.366 (2)C28—H28C0.9600
C14—H140.9300C29—C311.428 (3)
C15—C161.402 (2)C29—C301.428 (3)
C13—N1—C5122.75 (13)C17—C18—C13120.40 (15)
C13—N1—C12118.53 (12)C17—C18—H18119.8
C5—N1—C12118.29 (13)C13—C18—H18119.8
C2—C1—C6121.1 (2)C20—C19—C16125.98 (15)
C2—C1—H1119.4C20—C19—H19117.0
C6—C1—H1119.4C16—C19—H19117.0
C3—C2—C1119.4 (2)C19—C20—C21126.94 (15)
C3—C2—H2120.3C19—C20—H20116.5
C1—C2—H2120.3C21—C20—H20116.5
C2—C3—C4120.8 (2)C22—C21—C20119.28 (14)
C2—C3—H3119.6C22—C21—C26119.98 (14)
C4—C3—H3119.6C20—C21—C26120.72 (14)
C5—C4—C3120.8 (2)C21—C22—C23123.27 (14)
C5—C4—H4119.6C21—C22—H22118.4
C3—C4—H4119.6C23—C22—H22118.4
C4—C5—C6118.46 (17)C29—C23—C22121.22 (14)
C4—C5—N1119.87 (17)C29—C23—C24120.23 (14)
C6—C5—N1121.62 (16)C22—C23—C24118.50 (13)
C5—C6—C1119.5 (2)C23—C24—C25114.28 (13)
C5—C6—H6120.3C23—C24—H24A108.7
C1—C6—H6120.3C25—C24—H24A108.7
C8—C7—C12120.24 (16)C23—C24—H24B108.7
C8—C7—H7119.9C25—C24—H24B108.7
C12—C7—H7119.9H24A—C24—H24B107.6
C9—C8—C7120.29 (17)C27—C25—C28109.77 (14)
C9—C8—H8119.9C27—C25—C26110.51 (14)
C7—C8—H8119.9C28—C25—C26109.03 (13)
C10—C9—C8119.75 (17)C27—C25—C24110.18 (13)
C10—C9—H9120.1C28—C25—C24108.51 (13)
C8—C9—H9120.1C26—C25—C24108.80 (13)
C9—C10—C11120.45 (17)C21—C26—C25113.60 (12)
C9—C10—H10119.8C21—C26—H26A108.8
C11—C10—H10119.8C25—C26—H26A108.8
C10—C11—C12119.83 (17)C21—C26—H26B108.8
C10—C11—H11120.1C25—C26—H26B108.8
C12—C11—H11120.1H26A—C26—H26B107.7
C7—C12—C11119.43 (15)C25—C27—H27A109.5
C7—C12—N1120.57 (14)C25—C27—H27B109.5
C11—C12—N1119.96 (14)H27A—C27—H27B109.5
C18—C13—C14118.16 (14)C25—C27—H27C109.5
C18—C13—N1121.87 (14)H27A—C27—H27C109.5
C14—C13—N1119.96 (14)H27B—C27—H27C109.5
C15—C14—C13120.86 (14)C25—C28—H28A109.5
C15—C14—H14119.6C25—C28—H28B109.5
C13—C14—H14119.6H28A—C28—H28B109.5
C14—C15—C16121.88 (14)C25—C28—H28C109.5
C14—C15—H15119.1H28A—C28—H28C109.5
C16—C15—H15119.1H28B—C28—H28C109.5
C17—C16—C15116.57 (14)C23—C29—C31122.11 (15)
C17—C16—C19120.59 (14)C23—C29—C30121.35 (15)
C15—C16—C19122.84 (14)C31—C29—C30116.48 (15)
C18—C17—C16122.08 (15)N2—C30—C29178.8 (2)
C18—C17—H17119.0N3—C31—C29179.1 (2)
C16—C17—H17119.0
C6—C1—C2—C30.5 (4)C14—C15—C16—C171.5 (2)
C1—C2—C3—C40.1 (4)C14—C15—C16—C19177.95 (14)
C2—C3—C4—C50.2 (4)C15—C16—C17—C182.3 (2)
C3—C4—C5—C60.2 (3)C19—C16—C17—C18177.10 (14)
C3—C4—C5—N1177.9 (2)C16—C17—C18—C130.9 (2)
C13—N1—C5—C4144.71 (18)C14—C13—C18—C171.4 (2)
C12—N1—C5—C442.9 (2)N1—C13—C18—C17177.36 (14)
C13—N1—C5—C637.7 (2)C17—C16—C19—C20169.57 (15)
C12—N1—C5—C6134.71 (17)C15—C16—C19—C209.8 (2)
C4—C5—C6—C10.7 (3)C16—C19—C20—C21179.76 (14)
N1—C5—C6—C1178.40 (17)C19—C20—C21—C22172.13 (15)
C2—C1—C6—C50.9 (3)C19—C20—C21—C266.3 (2)
C12—C7—C8—C90.0 (3)C20—C21—C22—C23177.62 (13)
C7—C8—C9—C100.1 (3)C26—C21—C22—C230.8 (2)
C8—C9—C10—C110.7 (3)C21—C22—C23—C29175.45 (14)
C9—C10—C11—C121.3 (3)C21—C22—C23—C242.0 (2)
C8—C7—C12—C110.5 (3)C29—C23—C24—C25158.00 (14)
C8—C7—C12—N1177.28 (15)C22—C23—C24—C2524.5 (2)
C10—C11—C12—C71.2 (3)C23—C24—C25—C2772.25 (18)
C10—C11—C12—N1176.63 (15)C23—C24—C25—C28167.55 (13)
C13—N1—C12—C7116.95 (17)C23—C24—C25—C2649.05 (18)
C5—N1—C12—C755.8 (2)C22—C21—C26—C2526.7 (2)
C13—N1—C12—C1160.8 (2)C20—C21—C26—C25154.85 (14)
C5—N1—C12—C11126.46 (17)C27—C25—C26—C2171.15 (17)
C5—N1—C13—C1833.5 (2)C28—C25—C26—C21168.12 (13)
C12—N1—C13—C18154.15 (15)C24—C25—C26—C2149.95 (18)
C5—N1—C13—C14147.73 (15)C22—C23—C29—C31178.69 (14)
C12—N1—C13—C1424.6 (2)C24—C23—C29—C311.2 (2)
C18—C13—C14—C152.3 (2)C22—C23—C29—C301.7 (2)
N1—C13—C14—C15176.54 (14)C24—C23—C29—C30175.73 (15)
C13—C14—C15—C160.8 (2)

Experimental details

Crystal data
Chemical formulaC31H27N3
Mr441.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.239 (5), 16.757 (8), 11.886 (3)
β (°) 104.073 (5)
V3)2557.7 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.48 × 0.19 × 0.16
Data collection
DiffractometerBruker SMART area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20681, 5879, 3554
Rint0.027
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.167, 0.92
No. of reflections5879
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.18

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant Nos. 50590403, 50402018 and 50603011).

References

First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHye, J. L., Jiwon, S., Jaehoon, H. & Soo, Y. P. (2004). Chem. Mater. 16, 456–465.  Google Scholar
First citationJu, H. D., Wan, Y., Yu, W. T. & Tao, X. T. (2006). Thin Solid Films, 515, 2403–2409.  Web of Science CSD CrossRef CAS Google Scholar
First citationKia, R., Fun, H.-K. & Kargar, H. (2009). Acta Cryst. E65, o682–o683.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLemke, R. (1974). Synthesis, pp. 359–361.  CrossRef Google Scholar
First citationLi, J. Y., Liu, D., Hong, Z. R. & Tong, S. W. (2003). Chem. Mater. 15, 1486–1490.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, C. W., Vanslyke, S. A. & Chen, C. H. (1998). J. Appl. Phys. 65, 3610–3616.  CrossRef Web of Science Google Scholar
First citationTao, X. T. & Miyata, S. (2001). Appl. Phys. Lett. 78, 279–281.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1135
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds