metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-methyl-2-(4-methyl­phenyldiazen­yl)phenolato-κ2N,O]nickel(II)

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: hjsun@sdu.edu.cn

(Received 3 April 2009; accepted 14 April 2009; online 25 April 2009)

In the crystal structure of the title compound, [Ni(C14H13N2O)2], the NiII ion is located on an inversion center and is coordinated by two 4-methyl-2-(4-methyl­phenyl­diazen­yl)phenolate anions in a slightly distorted square-planar geometry. Within the anion, the two benzene rings are twisted from each other with a dihedral angle of 45.97 (12)°. No hydrogen bonding is found in the crystal structure.

Related literature

For general background, see: Frey (2005[Frey, M. (2005). PhD thesis, Darmstadt University of Technology, Germany.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C14H13N2O)2]

  • Mr = 509.24

  • Monoclinic, P 21 /c

  • a = 9.5211 (10) Å

  • b = 10.8162 (11) Å

  • c = 12.2647 (13) Å

  • β = 105.367 (2)°

  • V = 1217.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 293 K

  • 0.15 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.885, Tmax = 0.920

  • 7063 measured reflections

  • 2775 independent reflections

  • 1890 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.099

  • S = 1.02

  • 2775 reflections

  • 212 parameters

  • All H-atom parameters refined

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Selected bond lengths (Å)

Ni—O 1.8118 (16)
Ni—N1 1.8988 (18)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Nickel hydride complexes are one of the most valuable catalysts and intermediates. Frey (2005) has successfully synthesized a new type of nickel hydride Ni(H)(ortho-S—C6H4PPh2)(PMe3)2. In the previous work in our lab, we have reported similar reactions between nickel or cobalt hydrides and phenol derivates. So the reaction between Ni(H)(ortho-S—C6H4PPh2)(PMe3)2 and phenol derivates was carried out to explore the acidity of the hydrogen ligand. The title compound, as an unexpected compound, was synthesized.

The molecular structure is shown in Fig. 1. The NiII ion is located in an inversion center and coordinated by two 2-(4'-methylphenylazo)-4-methylphenol anions in a square-planar geometry (Table 1). No hydrogen bonding is found in the crystal structure.

Related literature top

For general background, see: Frey (2005).

Experimental top

Ni(H)(ortho-S-C6H4PPh2)(PMe3)2 (1.19 g, 2.35 mmol) and 2-(4'-methylphenylazo)-4-methylphenol (0.54 g, 2.38 mmol) was mixed in -80 °C. The mixture was stirred between -20 °C to 0 °C for 18 h and a red solution was formed. Green residue was filtered off, Then the solvent was removed in vacuum. The residue was extracted with pentane, and then diethyl ether. The extractions were kept in -20°C. The title compound was obtained from the pentane extractions as green crystals for X-ray diffraction.

Refinement top

The H atoms were geometrically placed and refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title compound, showing 25% displacement ellipsoids. H atoms were omitted. Symmetry code: (A) 2 - x, 2 - y, -z.
Bis[4-methyl-2-(4-methylphenyldiazenyl)phenolato- κ2N,O]nickel(II) top
Crystal data top
[Ni(C14H13N2O)2]F(000) = 532
Mr = 509.24Dx = 1.389 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1666 reflections
a = 9.5211 (10) Åθ = 2.6–23.4°
b = 10.8162 (11) ŵ = 0.83 mm1
c = 12.2647 (13) ÅT = 293 K
β = 105.367 (2)°Block, green
V = 1217.9 (2) Å30.15 × 0.15 × 0.10 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
2775 independent reflections
Radiation source: fine-focus sealed tube1890 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1211
Tmin = 0.885, Tmax = 0.920k = 1313
7063 measured reflectionsl = 915
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.1292P]
where P = (Fo2 + 2Fc2)/3
2775 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
[Ni(C14H13N2O)2]V = 1217.9 (2) Å3
Mr = 509.24Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.5211 (10) ŵ = 0.83 mm1
b = 10.8162 (11) ÅT = 293 K
c = 12.2647 (13) Å0.15 × 0.15 × 0.10 mm
β = 105.367 (2)°
Data collection top
Bruker SMART APEX
diffractometer
2775 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1890 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.920Rint = 0.032
7063 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.099All H-atom parameters refined
S = 1.02Δρmax = 0.24 e Å3
2775 reflectionsΔρmin = 0.19 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni1.00001.00000.00000.04172 (15)
N10.96662 (19)0.83618 (16)0.04286 (15)0.0412 (4)
N21.02859 (19)0.77982 (17)0.13462 (15)0.0448 (5)
O1.0688 (2)1.04670 (16)0.14634 (14)0.0552 (5)
C71.1204 (2)0.8429 (2)0.22272 (18)0.0428 (5)
C10.8685 (2)0.75494 (19)0.03615 (18)0.0402 (5)
C60.9169 (3)0.6442 (2)0.0673 (2)0.0440 (5)
C40.6804 (3)0.6040 (2)0.1919 (2)0.0474 (6)
C50.8231 (3)0.5700 (2)0.1455 (2)0.0480 (6)
C20.7255 (3)0.7908 (2)0.0813 (2)0.0527 (6)
C121.1914 (3)0.7700 (3)0.3162 (2)0.0524 (6)
C81.1345 (3)0.9729 (2)0.2279 (2)0.0462 (6)
C30.6333 (3)0.7146 (2)0.1575 (2)0.0559 (7)
C91.2225 (3)1.0238 (3)0.3292 (2)0.0571 (7)
C111.2798 (3)0.8206 (3)0.4119 (2)0.0560 (7)
C101.2937 (3)0.9492 (3)0.4156 (2)0.0595 (7)
C130.5765 (5)0.5215 (4)0.2756 (4)0.0741 (10)
C141.3546 (5)0.7421 (5)0.5127 (3)0.0827 (11)
H101.347 (3)0.987 (2)0.479 (2)0.050 (7)*
H50.862 (3)0.494 (2)0.165 (2)0.048 (7)*
H61.014 (2)0.624 (2)0.0350 (18)0.047 (6)*
H121.173 (3)0.686 (2)0.311 (2)0.061 (8)*
H30.541 (3)0.737 (2)0.185 (2)0.066 (8)*
H91.232 (3)1.111 (3)0.333 (2)0.066 (8)*
H13B0.594 (4)0.440 (4)0.253 (3)0.127 (16)*
H13A0.603 (5)0.522 (4)0.338 (4)0.127 (19)*
H20.689 (3)0.867 (3)0.057 (2)0.076 (8)*
H13C0.491 (5)0.541 (3)0.290 (3)0.106 (15)*
H14C1.454 (4)0.752 (4)0.527 (3)0.111 (13)*
H14A1.318 (4)0.761 (4)0.576 (3)0.119 (14)*
H14B1.341 (5)0.663 (5)0.504 (4)0.16 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0496 (3)0.0325 (2)0.0400 (2)0.00195 (18)0.00673 (18)0.00217 (18)
N10.0429 (10)0.0346 (10)0.0423 (10)0.0008 (8)0.0046 (8)0.0015 (8)
N20.0455 (11)0.0419 (11)0.0439 (11)0.0006 (8)0.0062 (9)0.0001 (9)
O0.0800 (13)0.0372 (8)0.0422 (9)0.0034 (8)0.0052 (9)0.0025 (8)
C70.0422 (12)0.0466 (13)0.0379 (12)0.0001 (10)0.0076 (10)0.0020 (10)
C10.0418 (13)0.0339 (11)0.0414 (12)0.0036 (9)0.0047 (10)0.0028 (9)
C60.0388 (13)0.0380 (12)0.0513 (14)0.0008 (10)0.0050 (10)0.0000 (11)
C40.0496 (14)0.0398 (13)0.0466 (13)0.0069 (10)0.0020 (11)0.0021 (11)
C50.0507 (14)0.0354 (13)0.0547 (15)0.0018 (11)0.0085 (12)0.0051 (11)
C20.0449 (14)0.0416 (14)0.0648 (16)0.0060 (11)0.0029 (12)0.0021 (12)
C120.0568 (16)0.0512 (16)0.0472 (14)0.0059 (13)0.0103 (12)0.0003 (12)
C80.0476 (14)0.0508 (15)0.0414 (13)0.0060 (10)0.0142 (11)0.0070 (10)
C30.0388 (14)0.0512 (15)0.0672 (17)0.0062 (12)0.0045 (12)0.0028 (13)
C90.0657 (17)0.0606 (18)0.0435 (14)0.0125 (13)0.0119 (13)0.0114 (12)
C110.0481 (14)0.0743 (19)0.0431 (14)0.0056 (13)0.0077 (11)0.0004 (13)
C100.0530 (16)0.083 (2)0.0392 (14)0.0108 (15)0.0070 (12)0.0122 (14)
C130.067 (2)0.061 (2)0.075 (2)0.0100 (17)0.0148 (19)0.0089 (17)
C140.074 (3)0.112 (4)0.0518 (19)0.013 (2)0.0005 (17)0.013 (2)
Geometric parameters (Å, º) top
Ni—Oi1.8118 (16)C2—C31.374 (3)
Ni—O1.8118 (16)C2—H20.98 (3)
Ni—N11.8988 (18)C12—C111.364 (3)
Ni—N1i1.8988 (18)C12—H120.92 (2)
N1—N21.278 (2)C8—C91.413 (3)
N1—C11.451 (3)C3—H30.89 (2)
N2—C71.377 (3)C9—C101.361 (4)
O—C81.303 (3)C9—H90.95 (3)
C7—C121.408 (3)C11—C101.397 (4)
C7—C81.412 (3)C11—C141.513 (4)
C1—C61.373 (3)C10—H100.91 (3)
C1—C21.382 (3)C13—H13B0.92 (4)
C6—C51.381 (3)C13—H13A0.87 (5)
C6—H60.93 (2)C13—H13C0.81 (4)
C4—C51.377 (3)C14—H14C0.92 (4)
C4—C31.382 (3)C14—H14A0.95 (4)
C4—C131.514 (4)C14—H14B0.86 (5)
C5—H50.95 (2)
Oi—Ni—O180.000 (1)C11—C12—H12121.2 (16)
Oi—Ni—N188.33 (8)C7—C12—H12116.8 (16)
O—Ni—N191.67 (8)O—C8—C7123.7 (2)
Oi—Ni—N1i91.67 (8)O—C8—C9119.2 (2)
O—Ni—N1i88.33 (8)C7—C8—C9117.0 (2)
N1—Ni—N1i180.0C2—C3—C4121.8 (2)
N2—N1—C1111.38 (17)C2—C3—H3119.1 (17)
N2—N1—Ni128.07 (14)C4—C3—H3119.2 (17)
C1—N1—Ni120.38 (13)C10—C9—C8120.7 (3)
N1—N2—C7120.24 (19)C10—C9—H9122.2 (16)
C8—O—Ni124.29 (15)C8—C9—H9117.0 (16)
N2—C7—C12115.5 (2)C12—C11—C10117.3 (2)
N2—C7—C8124.1 (2)C12—C11—C14121.8 (3)
C12—C7—C8120.1 (2)C10—C11—C14120.8 (3)
C6—C1—C2120.0 (2)C9—C10—C11122.8 (3)
C6—C1—N1120.67 (19)C9—C10—H10117.0 (15)
C2—C1—N1119.3 (2)C11—C10—H10120.2 (14)
C1—C6—C5119.8 (2)C4—C13—H13B109 (2)
C1—C6—H6117.3 (15)C4—C13—H13A108 (3)
C5—C6—H6122.9 (15)H13B—C13—H13A101 (3)
C5—C4—C3118.0 (2)C4—C13—H13C115 (3)
C5—C4—C13121.3 (3)H13B—C13—H13C114 (3)
C3—C4—C13120.8 (3)H13A—C13—H13C108 (4)
C4—C5—C6121.2 (2)C11—C14—H14C109 (2)
C4—C5—H5121.9 (15)C11—C14—H14A111 (2)
C6—C5—H5116.9 (15)H14C—C14—H14A113 (3)
C3—C2—C1119.2 (2)C11—C14—H14B115 (3)
C3—C2—H2120.0 (15)H14C—C14—H14B104 (4)
C1—C2—H2120.8 (15)H14A—C14—H14B104 (4)
C11—C12—C7122.0 (3)
Symmetry code: (i) x+2, y+2, z.

Experimental details

Crystal data
Chemical formula[Ni(C14H13N2O)2]
Mr509.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.5211 (10), 10.8162 (11), 12.2647 (13)
β (°) 105.367 (2)
V3)1217.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.15 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.885, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
7063, 2775, 1890
Rint0.032
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.099, 1.02
No. of reflections2775
No. of parameters212
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.24, 0.19

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Ni—O1.8118 (16)Ni—N11.8988 (18)
 

Acknowledgements

Financial support from the Natural Science Foundation of China (grant Nos. 20872080 and 20772072) is gratefully acknowledged.

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFrey, M. (2005). PhD thesis, Darmstadt University of Technology, Germany.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds