metal-organic compounds
Aqua(2,2′-bipyrimidine-κ2N,N′)(succinato-κ2O1,O4)copper(II) dihydrate
aCollege of Mechanical and Material Engineering, Functional Materials Research Institute, China Three Gorges University, Yichang 443002, People's Republic of China
*Correspondence e-mail: lidongsheng1@126.com
In the 4H4O4)(C8H6N4)(H2O)]·2H2O, the CuII atom is chelated by a 2,2′-bipyrimidine (bpm) ligand and a succinate anion in the basal plane; a water molecule in the apical position completes the slightly distorted square-pyramidal coordination geometry. Another carboxylate O atom from an adjacent complex is located in the opposite apical direction, with a Cu⋯O distance of 2.706 (3) Å, and is not considered as a bridging atom. Extensive O—H⋯O and O—H⋯N hydrogen bonding is present in the crystal structure.
of the title compound, [Cu(CRelated literature
For general background, see: McCann et al. (1997); Ray et al. (2004); Zhang et al. (2004).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809013518/xu2509sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809013518/xu2509Isup2.hkl
A mixture of CuCl2.2H2O (0.017 g, 0.1 mmol), bpm (0.015 g, 0.1 mmol), sodium succinate (0.0139 g, 0.1 mmol) and distilled water (10 ml) was sealed in a 25 ml Teflon-lined stainless autoclave. The pH value of the mixture was adjusted to 6 by an aqueous solution of NaOH (0.1 mol/L), and then heated at 393 K for 3 days; blue crystals were obtained on cooling to room temperature at 5 K/h.
Water H atoms were located in a difference Fourier map and refined with distance restraints O—H = 0.85 (2) Å, Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions and treated using a riding-model approximation with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. View of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. |
[Cu(C4H4O4)(C8H6N4)(H2O)]·2H2O | F(000) = 804 |
Mr = 391.83 | Dx = 1.691 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3225 reflections |
a = 10.6905 (8) Å | θ = 1.9–25.1° |
b = 18.9321 (14) Å | µ = 1.46 mm−1 |
c = 7.6105 (6) Å | T = 293 K |
β = 92.229 (1)° | Prism, blue |
V = 1539.2 (2) Å3 | 0.30 × 0.20 × 0.09 mm |
Z = 4 |
Bruker SMART CCD diffractometer | 2735 independent reflections |
Radiation source: fine-focus sealed tube | 2085 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
ϕ and ω scans | θmax = 25.1°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −12→12 |
Tmin = 0.700, Tmax = 0.877 | k = −22→22 |
7725 measured reflections | l = −9→4 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.123 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0588P)2 + 1.4777P] where P = (Fo2 + 2Fc2)/3 |
2735 reflections | (Δ/σ)max = 0.001 |
235 parameters | Δρmax = 0.46 e Å−3 |
10 restraints | Δρmin = −0.66 e Å−3 |
[Cu(C4H4O4)(C8H6N4)(H2O)]·2H2O | V = 1539.2 (2) Å3 |
Mr = 391.83 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.6905 (8) Å | µ = 1.46 mm−1 |
b = 18.9321 (14) Å | T = 293 K |
c = 7.6105 (6) Å | 0.30 × 0.20 × 0.09 mm |
β = 92.229 (1)° |
Bruker SMART CCD diffractometer | 2735 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2085 reflections with I > 2σ(I) |
Tmin = 0.700, Tmax = 0.877 | Rint = 0.036 |
7725 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 10 restraints |
wR(F2) = 0.123 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.46 e Å−3 |
2735 reflections | Δρmin = −0.66 e Å−3 |
235 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.83883 (5) | 0.98092 (2) | 0.42287 (7) | 0.0376 (2) | |
O1 | 0.7210 (3) | 0.94912 (16) | 0.1622 (4) | 0.0477 (8) | |
H1A | 0.673 (4) | 0.9136 (17) | 0.160 (6) | 0.072* | |
H1B | 0.774 (4) | 0.945 (2) | 0.082 (5) | 0.072* | |
O1W | 0.6018 (4) | 0.82533 (18) | 0.2132 (6) | 0.0724 (11) | |
H1WA | 0.5230 (12) | 0.819 (3) | 0.212 (9) | 0.109* | |
H1WB | 0.637 (4) | 0.790 (2) | 0.170 (9) | 0.109* | |
O2 | 0.7834 (3) | 1.07626 (14) | 0.4543 (4) | 0.0459 (7) | |
O2W | 0.6560 (4) | 0.3145 (2) | 0.2485 (6) | 0.0810 (12) | |
H2WB | 0.674 (7) | 0.2726 (15) | 0.280 (8) | 0.121* | |
H2WA | 0.676 (7) | 0.321 (3) | 0.143 (4) | 0.121* | |
O3 | 0.7344 (3) | 1.18623 (16) | 0.3913 (5) | 0.0606 (9) | |
O4 | 1.1035 (3) | 1.06421 (15) | 0.1176 (4) | 0.0490 (8) | |
O5 | 0.9903 (3) | 1.00736 (14) | 0.3069 (4) | 0.0395 (7) | |
N1 | 0.8883 (3) | 0.87826 (17) | 0.4388 (4) | 0.0362 (8) | |
N2 | 0.7034 (3) | 0.94476 (18) | 0.5757 (4) | 0.0382 (8) | |
N3 | 0.8133 (3) | 0.76731 (17) | 0.5315 (5) | 0.0468 (9) | |
N4 | 0.6295 (3) | 0.8392 (2) | 0.7042 (5) | 0.0494 (10) | |
C1 | 0.9872 (4) | 0.8470 (2) | 0.3680 (6) | 0.0435 (10) | |
H1C | 1.0466 | 0.8745 | 0.3135 | 0.052* | |
C2 | 1.0017 (4) | 0.7748 (2) | 0.3750 (6) | 0.0499 (11) | |
H2 | 1.0700 | 0.7525 | 0.3272 | 0.060* | |
C3 | 0.9102 (4) | 0.7374 (2) | 0.4561 (6) | 0.0491 (11) | |
H3 | 0.9164 | 0.6884 | 0.4584 | 0.059* | |
C4 | 0.8069 (4) | 0.8370 (2) | 0.5194 (5) | 0.0368 (9) | |
C5 | 0.7056 (4) | 0.8751 (2) | 0.6045 (5) | 0.0376 (9) | |
C6 | 0.5436 (4) | 0.8772 (3) | 0.7835 (7) | 0.0573 (13) | |
H6 | 0.4886 | 0.8539 | 0.8557 | 0.069* | |
C7 | 0.5319 (4) | 0.9492 (3) | 0.7641 (6) | 0.0546 (12) | |
H7 | 0.4704 | 0.9746 | 0.8201 | 0.066* | |
C8 | 0.6163 (4) | 0.9822 (2) | 0.6570 (6) | 0.0459 (11) | |
H8 | 0.6124 | 1.0309 | 0.6414 | 0.055* | |
C9 | 0.7701 (4) | 1.1270 (2) | 0.3460 (6) | 0.0413 (10) | |
C10 | 0.7927 (4) | 1.1167 (2) | 0.1584 (6) | 0.0442 (11) | |
H10A | 0.7179 | 1.0939 | 0.1097 | 0.053* | |
H10B | 0.7932 | 1.1638 | 0.1082 | 0.053* | |
C11 | 0.8904 (4) | 1.0823 (2) | 0.0863 (6) | 0.0409 (10) | |
H11A | 0.9243 | 1.1155 | 0.0036 | 0.049* | |
H11B | 0.8523 | 1.0448 | 0.0156 | 0.049* | |
C12 | 1.0022 (4) | 1.0491 (2) | 0.1772 (5) | 0.0370 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0438 (3) | 0.0255 (3) | 0.0444 (3) | 0.0014 (2) | 0.0122 (2) | 0.0028 (2) |
O1 | 0.0475 (18) | 0.0452 (17) | 0.0511 (19) | −0.0081 (14) | 0.0088 (15) | −0.0032 (15) |
O1W | 0.071 (2) | 0.0425 (19) | 0.104 (3) | −0.0055 (18) | 0.012 (2) | −0.008 (2) |
O2 | 0.0617 (19) | 0.0287 (14) | 0.0479 (18) | 0.0054 (14) | 0.0112 (15) | 0.0025 (13) |
O2W | 0.100 (3) | 0.063 (2) | 0.081 (3) | 0.028 (2) | 0.022 (3) | 0.024 (2) |
O3 | 0.083 (2) | 0.0362 (17) | 0.063 (2) | 0.0214 (17) | 0.0051 (19) | −0.0003 (16) |
O4 | 0.0475 (18) | 0.0434 (17) | 0.057 (2) | −0.0044 (14) | 0.0187 (16) | 0.0048 (15) |
O5 | 0.0417 (16) | 0.0332 (14) | 0.0439 (17) | −0.0001 (12) | 0.0055 (13) | 0.0063 (13) |
N1 | 0.0393 (18) | 0.0300 (17) | 0.0395 (19) | 0.0004 (15) | 0.0026 (16) | −0.0003 (15) |
N2 | 0.0403 (18) | 0.0358 (18) | 0.039 (2) | 0.0019 (15) | 0.0066 (16) | 0.0009 (15) |
N3 | 0.055 (2) | 0.0281 (18) | 0.057 (2) | −0.0029 (16) | 0.001 (2) | 0.0058 (17) |
N4 | 0.042 (2) | 0.049 (2) | 0.058 (2) | −0.0074 (17) | 0.0105 (19) | 0.0130 (19) |
C1 | 0.046 (2) | 0.041 (2) | 0.044 (2) | −0.001 (2) | 0.008 (2) | −0.002 (2) |
C2 | 0.052 (3) | 0.041 (2) | 0.057 (3) | 0.010 (2) | 0.005 (2) | −0.003 (2) |
C3 | 0.062 (3) | 0.030 (2) | 0.056 (3) | 0.006 (2) | 0.003 (2) | −0.001 (2) |
C4 | 0.038 (2) | 0.033 (2) | 0.039 (2) | −0.0051 (17) | 0.0001 (19) | 0.0064 (18) |
C5 | 0.038 (2) | 0.037 (2) | 0.038 (2) | −0.0028 (18) | −0.0011 (19) | 0.0060 (18) |
C6 | 0.045 (3) | 0.069 (3) | 0.059 (3) | −0.003 (2) | 0.011 (2) | 0.014 (3) |
C7 | 0.045 (3) | 0.068 (3) | 0.051 (3) | 0.005 (2) | 0.012 (2) | 0.002 (3) |
C8 | 0.050 (3) | 0.042 (2) | 0.046 (3) | 0.010 (2) | 0.005 (2) | 0.002 (2) |
C9 | 0.038 (2) | 0.032 (2) | 0.054 (3) | 0.0007 (18) | 0.006 (2) | 0.001 (2) |
C10 | 0.044 (2) | 0.033 (2) | 0.056 (3) | −0.0061 (19) | 0.001 (2) | 0.010 (2) |
C11 | 0.050 (2) | 0.031 (2) | 0.042 (2) | −0.0139 (19) | 0.003 (2) | 0.0073 (19) |
C12 | 0.048 (2) | 0.0251 (19) | 0.039 (2) | −0.0006 (18) | 0.008 (2) | −0.0044 (18) |
Cu1—O1 | 2.386 (3) | N4—C5 | 1.323 (5) |
Cu1—O2 | 1.918 (3) | N4—C6 | 1.330 (6) |
Cu1—O5 | 1.940 (3) | C1—C2 | 1.376 (6) |
Cu1—N1 | 2.017 (3) | C1—H1C | 0.9300 |
Cu1—N2 | 2.012 (3) | C2—C3 | 1.374 (6) |
O1—H1A | 0.85 (4) | C2—H2 | 0.9300 |
O1—H1B | 0.85 (4) | C3—H3 | 0.9300 |
O1W—H1WA | 0.85 (4) | C4—C5 | 1.472 (6) |
O1W—H1WB | 0.84 (4) | C6—C7 | 1.377 (7) |
O2—C9 | 1.270 (5) | C6—H6 | 0.9300 |
O2W—H2WB | 0.85 (4) | C7—C8 | 1.388 (6) |
O2W—H2WA | 0.85 (4) | C7—H7 | 0.9300 |
O3—C9 | 1.239 (5) | C8—H8 | 0.9300 |
O4—C12 | 1.224 (5) | C9—C10 | 1.469 (6) |
O5—C12 | 1.275 (5) | C10—C11 | 1.365 (5) |
N1—C4 | 1.336 (5) | C10—H10A | 0.9700 |
N1—C1 | 1.343 (5) | C10—H10B | 0.9700 |
N2—C5 | 1.336 (5) | C11—C12 | 1.495 (6) |
N2—C8 | 1.341 (5) | C11—H11A | 0.9700 |
N3—C4 | 1.324 (5) | C11—H11B | 0.9700 |
N3—C3 | 1.330 (5) | ||
O2—Cu1—O5 | 94.68 (12) | N3—C4—N1 | 125.6 (4) |
O2—Cu1—N2 | 90.87 (13) | N3—C4—C5 | 119.7 (3) |
O5—Cu1—N2 | 169.41 (13) | N1—C4—C5 | 114.7 (3) |
O2—Cu1—N1 | 168.87 (13) | N4—C5—N2 | 126.5 (4) |
O5—Cu1—N1 | 93.13 (13) | N4—C5—C4 | 118.6 (4) |
N2—Cu1—N1 | 80.22 (13) | N2—C5—C4 | 114.9 (3) |
O2—Cu1—O1 | 100.69 (12) | N4—C6—C7 | 123.2 (4) |
O5—Cu1—O1 | 96.32 (12) | N4—C6—H6 | 118.4 |
N2—Cu1—O1 | 91.50 (12) | C7—C6—H6 | 118.4 |
N1—Cu1—O1 | 86.30 (12) | C6—C7—C8 | 116.8 (4) |
Cu1—O1—H1A | 121 (4) | C6—C7—H7 | 121.6 |
Cu1—O1—H1B | 106 (3) | C8—C7—H7 | 121.6 |
H1A—O1—H1B | 109 (4) | N2—C8—C7 | 120.8 (4) |
H1WA—O1W—H1WB | 110 (5) | N2—C8—H8 | 119.6 |
C9—O2—Cu1 | 131.1 (3) | C7—C8—H8 | 119.6 |
H2WB—O2W—H2WA | 110 (6) | O3—C9—O2 | 122.1 (4) |
C12—O5—Cu1 | 128.5 (3) | O3—C9—C10 | 117.0 (4) |
C4—N1—C1 | 117.6 (3) | O2—C9—C10 | 120.9 (4) |
C4—N1—Cu1 | 114.7 (3) | C11—C10—C9 | 127.7 (4) |
C1—N1—Cu1 | 127.5 (3) | C11—C10—H10A | 105.4 |
C5—N2—C8 | 117.0 (4) | C9—C10—H10A | 105.4 |
C5—N2—Cu1 | 115.0 (3) | C11—C10—H10B | 105.4 |
C8—N2—Cu1 | 128.0 (3) | C9—C10—H10B | 105.4 |
C4—N3—C3 | 115.7 (4) | H10A—C10—H10B | 106.0 |
C5—N4—C6 | 115.7 (4) | C10—C11—C12 | 128.7 (4) |
N1—C1—C2 | 120.7 (4) | C10—C11—H11A | 105.1 |
N1—C1—H1C | 119.6 | C12—C11—H11A | 105.1 |
C2—C1—H1C | 119.6 | C10—C11—H11B | 105.1 |
C3—C2—C1 | 116.7 (4) | C12—C11—H11B | 105.1 |
C3—C2—H2 | 121.7 | H11A—C11—H11B | 105.9 |
C1—C2—H2 | 121.7 | O4—C12—O5 | 123.2 (4) |
N3—C3—C2 | 123.6 (4) | O4—C12—C11 | 115.7 (4) |
N3—C3—H3 | 118.2 | O5—C12—C11 | 121.1 (4) |
C2—C3—H3 | 118.2 | ||
O5—Cu1—O2—C9 | 51.3 (4) | C3—N3—C4—C5 | −177.7 (4) |
N2—Cu1—O2—C9 | −137.8 (4) | C1—N1—C4—N3 | −2.0 (6) |
N1—Cu1—O2—C9 | −174.3 (6) | Cu1—N1—C4—N3 | 173.5 (4) |
O1—Cu1—O2—C9 | −46.1 (4) | C1—N1—C4—C5 | 176.0 (4) |
O2—Cu1—O5—C12 | −50.4 (3) | Cu1—N1—C4—C5 | −8.5 (4) |
N2—Cu1—O5—C12 | −171.8 (6) | C6—N4—C5—N2 | −0.5 (7) |
N1—Cu1—O5—C12 | 137.5 (3) | C6—N4—C5—C4 | 177.1 (4) |
O1—Cu1—O5—C12 | 50.9 (3) | C8—N2—C5—N4 | 0.7 (6) |
O2—Cu1—N1—C4 | 43.9 (8) | Cu1—N2—C5—N4 | 177.8 (3) |
O5—Cu1—N1—C4 | 178.4 (3) | C8—N2—C5—C4 | −177.1 (4) |
N2—Cu1—N1—C4 | 6.7 (3) | Cu1—N2—C5—C4 | 0.0 (5) |
O1—Cu1—N1—C4 | −85.5 (3) | N3—C4—C5—N4 | 5.8 (6) |
O2—Cu1—N1—C1 | −141.1 (6) | N1—C4—C5—N4 | −172.3 (4) |
O5—Cu1—N1—C1 | −6.6 (4) | N3—C4—C5—N2 | −176.3 (4) |
N2—Cu1—N1—C1 | −178.3 (4) | N1—C4—C5—N2 | 5.6 (5) |
O1—Cu1—N1—C1 | 89.5 (4) | C5—N4—C6—C7 | 0.5 (7) |
O2—Cu1—N2—C5 | −176.8 (3) | N4—C6—C7—C8 | −0.6 (8) |
O5—Cu1—N2—C5 | −55.1 (8) | C5—N2—C8—C7 | −0.8 (6) |
N1—Cu1—N2—C5 | −3.5 (3) | Cu1—N2—C8—C7 | −177.4 (3) |
O1—Cu1—N2—C5 | 82.5 (3) | C6—C7—C8—N2 | 0.8 (7) |
O2—Cu1—N2—C8 | 0.0 (4) | Cu1—O2—C9—O3 | −178.8 (3) |
O5—Cu1—N2—C8 | 121.6 (7) | Cu1—O2—C9—C10 | 3.2 (6) |
N1—Cu1—N2—C8 | 173.2 (4) | O3—C9—C10—C11 | 137.1 (5) |
O1—Cu1—N2—C8 | −100.8 (4) | O2—C9—C10—C11 | −44.9 (7) |
C4—N1—C1—C2 | 1.6 (6) | C9—C10—C11—C12 | −3.2 (7) |
Cu1—N1—C1—C2 | −173.3 (3) | Cu1—O5—C12—O4 | 177.3 (3) |
N1—C1—C2—C3 | 0.5 (7) | Cu1—O5—C12—C11 | −3.5 (5) |
C4—N3—C3—C2 | 2.2 (7) | C10—C11—C12—O4 | −131.7 (4) |
C1—C2—C3—N3 | −2.5 (7) | C10—C11—C12—O5 | 49.0 (6) |
C3—N3—C4—N1 | 0.2 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O1W | 0.85 (4) | 1.89 (4) | 2.703 (5) | 162 (4) |
O1—H1B···O4i | 0.85 (4) | 2.05 (4) | 2.903 (4) | 178 (4) |
O1W—H1WA···O2Wii | 0.85 (4) | 1.95 (2) | 2.790 (6) | 169 (5) |
O1W—H1WB···N3iii | 0.84 (4) | 2.45 (5) | 3.216 (5) | 152 (4) |
O1W—H1WB···N4iii | 0.84 (4) | 2.46 (4) | 3.130 (5) | 137 (5) |
O2W—H2WA···O3iii | 0.85 (4) | 2.04 (4) | 2.876 (6) | 167 (5) |
O2W—H2WB···O3iv | 0.85 (4) | 1.94 (4) | 2.777 (5) | 168 (4) |
Symmetry codes: (i) −x+2, −y+2, −z; (ii) −x+1, y+1/2, −z+1/2; (iii) x, −y+3/2, z−1/2; (iv) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C4H4O4)(C8H6N4)(H2O)]·2H2O |
Mr | 391.83 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 10.6905 (8), 18.9321 (14), 7.6105 (6) |
β (°) | 92.229 (1) |
V (Å3) | 1539.2 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.46 |
Crystal size (mm) | 0.30 × 0.20 × 0.09 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.700, 0.877 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7725, 2735, 2085 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.123, 1.06 |
No. of reflections | 2735 |
No. of parameters | 235 |
No. of restraints | 10 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.46, −0.66 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).
Cu1—O1 | 2.386 (3) | Cu1—N1 | 2.017 (3) |
Cu1—O2 | 1.918 (3) | Cu1—N2 | 2.012 (3) |
Cu1—O5 | 1.940 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O1W | 0.85 (4) | 1.89 (4) | 2.703 (5) | 162 (4) |
O1—H1B···O4i | 0.85 (4) | 2.05 (4) | 2.903 (4) | 178 (4) |
O1W—H1WA···O2Wii | 0.85 (4) | 1.950 (17) | 2.790 (6) | 169 (5) |
O1W—H1WB···N3iii | 0.84 (4) | 2.45 (5) | 3.216 (5) | 152 (4) |
O1W—H1WB···N4iii | 0.84 (4) | 2.46 (4) | 3.130 (5) | 137 (5) |
O2W—H2WA···O3iii | 0.85 (4) | 2.04 (4) | 2.876 (6) | 167 (5) |
O2W—H2WB···O3iv | 0.85 (4) | 1.94 (4) | 2.777 (5) | 168 (4) |
Symmetry codes: (i) −x+2, −y+2, −z; (ii) −x+1, y+1/2, −z+1/2; (iii) x, −y+3/2, z−1/2; (iv) x, y−1, z. |
Acknowledgements
This work was supported financially by the National Natural Science Foundation of China (grant No. 20773104), the Program for New Century Excellent Talents in Universities (NCET-06-0891), the Natural Science Foundation of Hubei/Shaanxi Provinces of China (2008CDB030) and the Important Project of Hubei Provincial Education Office, China (Z20091301).
References
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
McCann, M., Casey, M.-T., Devereux, M., Curran, M. & Ferguson, G. (1997). Polyhedron, 15, 2547–2552. CSD CrossRef Web of Science Google Scholar
Ray, M.-S., Ghosh, A., Das, A., Drew, M.-G. B., Ribas-Ariňo, J., Novoa, J. & Ribas, J. (2004). Chem. Commun. pp. 1102–1103. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, J., Li, Zh.-J., Wen, Y.-H., Kang, Y., Cheng, J.-K. & Yao, Y.-G. (2004). Z. Anorg. Allg. Chem. 630, 2731–2735. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, the area of metal-organic framework materials has become one of the intense research activities for their fascinating structural diversities and potential applications in catalysis, nonlinear optics and molecular sensing. As an important family of multidentate O-donor ligands, saturated aliphatic carboxylate ligands have been extensively employed in the preparation of metal-organic complexes because of their potential properties and intriguing structural topologies (McCann et al., 1997; Ray et al., 2004; Zhang et al. 2004). Herein, we report the structure of the title complex.
The title compound contains one CuII cation, one suc ligands, one bpm ligands, one coordinated water and two lattice water molecules, as illustrated in Fig. 1. The CuII atom has a slightly distored square-pyramidal geometry (Table 1), in which the CuIIatom is coordinated by two N atoms of bpm ligand, two O atoms from carboxyl groups of succinate anions and one O atom from coordinated water molecule. Each unit is connected by O—H···O hydrogen bonds between carboxyl groups and coordinated water molecules (Table 2) into one-dimensional chain along c-axis. The lattice water molecule acts as both hydrogen-bond donor and acceptor. Just through hydrogen bonds (O—H···O) involving lattice water molecules, those one-dimensional chains are further connected to generate a three-dimensional supramolecular framework.