organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1023-o1024

1-(3-Ammonio­methyl-2,4,6-tri­methyl­benz­yl)-3-(2,4,6-tri­methyl­phen­yl)imidazol-1-ium dibromide monohydrate

aKey Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China, and bJiangsu Key Laboratory for Supramolecular Medicinal Materials and Applications, College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210046, People's Republic of China
*Correspondence e-mail: luomm@scu.edu.cn

(Received 23 February 2009; accepted 4 April 2009; online 10 April 2009)

In the title compound, C25H35N32+·2Br·H2O, the dihedral angles between the imidazole ring and the two outer benzene rings are 80.16 (16) and 69.40 (18)°. The component species are linked by N—H⋯Br, O—H⋯Br and C—H⋯Br hydrogen bonds.

Related literature

For carbene ligands and complexes, see: Alcalde et al. (2007[Alcalde, E., Ceder, R. M., Lopez, C., Mesquida, N., Muller, G. & Rodriguez, S. (2007). Dalton. Trans. pp. 2696-2706.]); Douthwaite et al. (2004[Douthwaite, R. E., Houghton, J. & Kariuki, B. M. (2004). Chem. Commun. pp. 698-699.]); Magill et al. (2001[Magill, A. M., McGuinness, D. S., Cavell, K. J., Britovsek, G. J. P., Gibson, V. C., White, A. J. P., Wolliams, O. J., White, A. H. & Skelton, B. W. (2001). J. Organomet. Chem. 617-618, 546-560.]). For phosphine ligands and complexes, see: Cao et al. (2000[Cao, Z. X. & Hall, M. B. (2000). Organometallics, 19, 3338-3346.]); Liou et al. (1995[Liou, S.-Y., Gozin, M. & Milstein, D. (1995). J. Am. Chem. Soc. 117, 9774-9775.]); Rybtchinski et al. (1996[Rybtchinski, B., Vigalok, A., Ben-David, Y. & Milstein, D. (1996). J. Am. Chem. Soc. 118, 12406-12415.], 1999[Rybtchinski, B. & Milstein, D. (1999). J. Am. Chem. Soc. 121, 4528-4529.], 2001[Rybtchinski, B., Oevers, S., Montag, M., Vigalok, A., Rozenberg, H., Martin, J. M. L. & Milstein, D. (2001). J. Am. Chem. Soc. 123, 9064-9077.]). For a related synthesis, see: Gandelman et al. (1997[Gandelman, M., Vigalok, A., Shimon, L. J. W. & Milstein, D. (1997). Organometallics, 16, 3981-3986.]). For related literature, see: Caddick et al. (2004[Caddick, S., Cloke, F. G. N., Hitchcock, P. B. & Lewis, A. K. D. (2004). Angew. Chem. Int. Ed. 43, 5824-5827.]); Hahn (2006[Hahn, F. E. (2006). Angew. Chem. Int. Ed. 45, 1348-1352.]).

[Scheme 1]

Experimental

Crystal data
  • C25H35N32+·2Br·H2O

  • Mr = 555.40

  • Triclinic, [P \overline 1]

  • a = 10.594 (4) Å

  • b = 10.800 (3) Å

  • c = 13.193 (4) Å

  • α = 66.48 (4)°

  • β = 70.26 (4)°

  • γ = 80.58 (3)°

  • V = 1302.0 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.13 mm−1

  • T = 294 K

  • 0.50 × 0.46 × 0.40 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: spherical (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) Tmin = 0.303, Tmax = 0.367

  • 4856 measured reflections

  • 4745 independent reflections

  • 2966 reflections with I > 2σ(I)

  • Rint = 0.007

  • 3 standard reflections every 300 reflections intensity decay: 2.7%

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.203

  • S = 1.09

  • 4745 reflections

  • 300 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.01 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯Br1 0.81 (6) 2.58 (3) 3.355 (6) 160 (8)
O1—H1O2⋯Br2 0.82 (6) 2.49 (6) 3.283 (6) 165 (7)
N1—H1N⋯Br2 0.90 (5) 2.40 (3) 3.238 (5) 154 (6)
C9—H9B⋯Br2i 0.96 2.85 3.792 (7) 167
C12—H12A⋯Br2 0.96 2.82 3.765 (7) 168
C14—H14⋯Br1ii 0.93 2.79 3.436 (6) 128
C16—H16⋯Br2iii 0.93 2.81 3.597 (6) 143
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z; (iii) -x+1, -y+1, -z.

Data collection: DIFRAC (Gabe et al., 1993[Gabe, E. J., White, P. S. & Enright, G. D. (1993). American Crystallographic Association Pittsburgh Meeting, Abstract PA104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Transition metal complexes bearing N-heterocyclic carbene (NHC) ligands have attracted considerable attention in organometallic chemistry and catalysis. Compared to widely used phosphine complexes, the NHC complexes have been shown to be remarkably stable towards heat, air and moisture (Hahn, 2006). Rencently, phosphine complexes and phosphine-amido complexes were found to be active catalysts for the selective metal insertion into strong unstrained aryl-methyl bonds under very mild conditions (Cao et al., 2000; Gandelman et al., 1997; Liou et al., 1995; Rybtchinski et al., 1996; Rybtchinski et al., 1999; Rybtchinski et al., 2001). This prompted us to investigate whether NHC-amido complexes could provide different reactivity from phosphine-amido complexes in the aryl-methyl bond activation process. The title compound, a stable precursor of an NHC-amido ligand, was synthesized in moderate yield by reacting 1-[3-(bromomethyl)-2,4,6-trimethylbenzyl]-3-(2,4,6-trimethylphenyl)-1H-imidazol-3-ium bromide with a 10-fold excess of dimethylamine in methanol.

In the title compound (Fig. 1), the dihedral angles between the imidazole ring and the two outer benzene rings are 80.16 (16)° and 69.40 (18)°. A solvate water molecule and the bromide anions are linked to the main molecule via N—H···Br, O—H···Br and C—H···Br hydrogen bonds, and these intramolecular hydrogen bonds help to stabilize the crystal structure (Fig. 2).

Related literature top

For carbene ligands and complexes, see: Alcalde et al. (2007); Douthwaite et al. (2004); Magill et al. (2001). For phosphine ligands and complexes, see: Cao et al. (2000); Liou et al. (1995); Rybtchinski et al. (1996, 1999, 2001). For a related synthesis, see: Gandelman et al. (1997). For related literature, see: Caddick et al. (2004); Hahn (2006).

Experimental top

A mixture of 1-mesityl-1H-imidazole (2.79 g, 15.0 mmol) and 2,6-bis(bromomethyl)mesitylene (4.82 g, 15.0 mmol) in dioxane (30 ml) was heated under reflex with stirring for 0.5 h. After this the mixture was cooled to room temperature, the white precipitate was filtered and washed with ether to remove unreacted starting material. The resulting mixture of the monoimidazolium (4.42 g, 59.9%) and diimidazolium salts was separated by flash chromatography (CH2Cl2/CH3OH (10/1, v/v)). Then, the monoimidazolium salt was dissovled in 35 ml of methanol and a 10-fold excess of dimethylamine (4.04 g, 89.8 mmol) was added. The resulting reaction mixture was heated for 6 h at 333 K. The product was obtained as a white powder (3.99 g, 82.8%) after the solvent removal under vacuum. Crystallization by slow evaporation of the solvent from a dichloromethane solution at ambient temperature afforded colorless crystals over a period of several days. m.p. 501 K. 1H NMR (400 MHz, CDCl3): δ = 10.68 (brs, 1H, N-H), 10.31 (s, 1H, Imi-H), 8.30 (s, 1H, Imi-H), 7.09 (s, 1H, Imi-H), 6.98 (m, 3H, Ar-H), 6.00 (s, 2H, Imi-CH2), 4.58 (s, 2H, NHCH2), 2.97 (s, 6H, NHCH3), 2.69 (s, 3H, ArCH3), 2.47 (s, 3H, ArCH3), 2.33 (s, 3H, ArCH3), 2.31 (s, 3H, ArCH3), 2.06 (s, 3H, ArCH3), 2.04 (s, 3H, ArCH3). 13C NMR (400 MHz, CDCl3): δ = 141.2, 140.7, 140.5, 139.9, 137.2, 134.1, 132.0, 130.7, 129.8, 128.5, 126.2, 123.9, 123.5, 56.1, 48.6, 21.2, 21.1, 20.2, 18.4, 17.6. MS (ESI) m/z = 455.5 [M - H2O - HBr]+, 376.1 [M - H2O - HBr - Br]+.

Refinement top

H atoms of the water molecule and N-H hydrogen atoms were located in difference Fourier maps and were refined isotropically with O-H and N-H distances of 0.82 (1) and 0.91 (1) Å, and their Uiso values were freely refined. All other H atoms were positioned geometrically, with C-H = 0.93, 0.96 and 0.97 Å for aromatic/imidazole, methyl and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: DIFRAC (Gabe et al., 1993); cell refinement: DIFRAC (Gabe et al., 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding are omitted.
1-(3-Ammoniomethyl-2,4,6-trimethylbenzyl)-3-(2,4,6-trimethylphenyl)imidazol- 1-ium dibromide monohydrate top
Crystal data top
C25H35N32+·2Br·H2OZ = 2
Mr = 555.40F(000) = 572
Triclinic, P1Dx = 1.417 Mg m3
Hall symbol: -P 1Melting point: 501 K
a = 10.594 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.800 (3) ÅCell parameters from 23 reflections
c = 13.193 (4) Åθ = 4.5–7.8°
α = 66.48 (4)°µ = 3.13 mm1
β = 70.26 (4)°T = 294 K
γ = 80.58 (3)°Block, colourless
V = 1302.0 (9) Å30.50 × 0.46 × 0.40 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2966 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.007
Graphite monochromatorθmax = 25.6°, θmin = 1.8°
ω/2θ scansh = 1212
Absorption correction: for a sphere
(Farrugia, 1999)
k = 413
Tmin = 0.303, Tmax = 0.367l = 1415
4856 measured reflections3 standard reflections every 300 reflections
4745 independent reflections intensity decay: 2.7%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: mixed
wR(F2) = 0.203H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.12P)2 + 0.3033P]
where P = (Fo2 + 2Fc2)/3
4745 reflections(Δ/σ)max < 0.001
300 parametersΔρmax = 1.01 e Å3
4 restraintsΔρmin = 0.58 e Å3
Crystal data top
C25H35N32+·2Br·H2Oγ = 80.58 (3)°
Mr = 555.40V = 1302.0 (9) Å3
Triclinic, P1Z = 2
a = 10.594 (4) ÅMo Kα radiation
b = 10.800 (3) ŵ = 3.13 mm1
c = 13.193 (4) ÅT = 294 K
α = 66.48 (4)°0.50 × 0.46 × 0.40 mm
β = 70.26 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2966 reflections with I > 2σ(I)
Absorption correction: for a sphere
(Farrugia, 1999)
Rint = 0.007
Tmin = 0.303, Tmax = 0.3673 standard reflections every 300 reflections
4856 measured reflections intensity decay: 2.7%
4745 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0654 restraints
wR(F2) = 0.203H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 1.01 e Å3
4745 reflectionsΔρmin = 0.58 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.05853 (7)0.78890 (7)0.34382 (7)0.0653 (3)
Br20.53218 (8)0.62059 (8)0.28647 (7)0.0652 (3)
O10.3386 (6)0.7953 (7)0.1251 (4)0.0685 (14)
H1O10.272 (4)0.815 (8)0.170 (4)0.07 (3)*
H1O20.397 (5)0.764 (8)0.157 (5)0.07 (3)*
N10.3013 (5)0.4016 (4)0.4497 (4)0.0341 (10)
H1N0.383 (3)0.438 (6)0.413 (5)0.056 (19)*
N20.3043 (4)0.0868 (4)0.1764 (4)0.0308 (9)
N30.1566 (4)0.2120 (4)0.0972 (4)0.0336 (10)
C10.3488 (5)0.1091 (5)0.3941 (5)0.0326 (11)
C20.4293 (5)0.0520 (5)0.3132 (4)0.0303 (11)
C30.5697 (5)0.0588 (5)0.2778 (5)0.0339 (12)
C40.6263 (5)0.1238 (5)0.3225 (5)0.0342 (12)
H40.71930.12540.30100.041*
C50.5505 (5)0.1865 (5)0.3978 (4)0.0301 (11)
C60.4093 (5)0.1809 (5)0.4329 (4)0.0305 (11)
C70.3254 (5)0.2517 (5)0.5130 (5)0.0341 (12)
H7A0.36990.24080.56940.041*
H7B0.23950.20890.55480.041*
C80.2255 (6)0.4298 (6)0.3664 (5)0.0455 (14)
H8A0.26430.37720.31870.068*
H8B0.22940.52410.31830.068*
H8C0.13360.40640.40810.068*
C90.2247 (6)0.4663 (6)0.5380 (6)0.0473 (15)
H9A0.21310.56160.49840.071*
H9B0.27450.45110.59090.071*
H9C0.13840.42670.58020.071*
C100.1998 (5)0.0854 (6)0.4431 (5)0.0398 (13)
H10A0.15370.15550.39480.060*
H10B0.16780.08640.52010.060*
H10C0.18330.00060.44550.060*
C110.6620 (6)0.0024 (6)0.1924 (5)0.0444 (14)
H11A0.64640.09710.22150.067*
H11B0.75370.01000.18260.067*
H11C0.64440.04130.11910.067*
C120.6214 (6)0.2566 (6)0.4402 (5)0.0385 (12)
H12A0.60900.35260.40460.058*
H12B0.71540.23260.42020.058*
H12C0.58500.22920.52290.058*
C130.3650 (6)0.0154 (5)0.2643 (5)0.0351 (12)
H13A0.43180.07070.22860.042*
H13B0.29600.07410.32650.042*
C140.1737 (5)0.1112 (5)0.1895 (4)0.0302 (11)
H140.10520.06440.25390.036*
C150.3735 (6)0.1725 (6)0.0688 (5)0.0421 (14)
H150.46630.17500.03710.050*
C160.2853 (6)0.2512 (6)0.0174 (5)0.0437 (14)
H160.30420.31870.05620.052*
C170.0284 (5)0.2702 (5)0.0807 (5)0.0350 (12)
C180.0477 (5)0.3458 (6)0.1462 (5)0.0378 (12)
C190.1741 (6)0.3945 (6)0.1334 (5)0.0417 (13)
H190.22710.44490.17640.050*
C200.2221 (5)0.3696 (6)0.0589 (5)0.0414 (13)
C210.1385 (6)0.3010 (6)0.0093 (6)0.0489 (15)
H210.16820.28950.06360.059*
C220.0132 (6)0.2492 (6)0.0001 (5)0.0423 (13)
C230.0000 (7)0.3743 (7)0.2297 (6)0.0521 (16)
H23A0.03640.46030.23340.078*
H23B0.09630.37570.20370.078*
H23C0.02920.30500.30520.078*
C240.3623 (7)0.4168 (8)0.0498 (8)0.066 (2)
H24A0.41660.43230.11870.099*
H24B0.40160.34880.04130.099*
H24C0.35750.49930.01640.099*
C250.0750 (8)0.1756 (9)0.0766 (8)0.073 (2)
H25A0.02580.16440.12150.109*
H25B0.10220.08860.02930.109*
H25C0.15290.22710.12780.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0458 (4)0.0520 (4)0.0827 (6)0.0118 (3)0.0013 (3)0.0227 (4)
Br20.0657 (5)0.0598 (5)0.0600 (5)0.0090 (3)0.0138 (4)0.0137 (4)
O10.058 (3)0.106 (4)0.053 (3)0.005 (3)0.016 (3)0.039 (3)
N10.036 (2)0.034 (2)0.040 (3)0.0018 (19)0.012 (2)0.020 (2)
N20.037 (2)0.028 (2)0.032 (2)0.0007 (18)0.0126 (19)0.0136 (19)
N30.033 (2)0.034 (2)0.030 (2)0.0029 (18)0.0117 (19)0.0063 (19)
C10.031 (3)0.030 (3)0.034 (3)0.004 (2)0.010 (2)0.009 (2)
C20.035 (3)0.024 (2)0.033 (3)0.004 (2)0.012 (2)0.008 (2)
C30.036 (3)0.026 (3)0.037 (3)0.003 (2)0.011 (2)0.009 (2)
C40.028 (3)0.030 (3)0.042 (3)0.003 (2)0.012 (2)0.009 (2)
C50.037 (3)0.022 (2)0.033 (3)0.004 (2)0.019 (2)0.003 (2)
C60.037 (3)0.028 (3)0.027 (3)0.006 (2)0.011 (2)0.007 (2)
C70.042 (3)0.032 (3)0.031 (3)0.001 (2)0.014 (2)0.011 (2)
C80.061 (4)0.035 (3)0.050 (4)0.004 (3)0.036 (3)0.012 (3)
C90.051 (3)0.044 (3)0.056 (4)0.004 (3)0.011 (3)0.033 (3)
C100.034 (3)0.047 (3)0.048 (3)0.000 (2)0.013 (3)0.027 (3)
C110.037 (3)0.050 (3)0.053 (4)0.000 (3)0.009 (3)0.030 (3)
C120.042 (3)0.034 (3)0.046 (3)0.007 (2)0.018 (3)0.015 (3)
C130.043 (3)0.027 (3)0.040 (3)0.001 (2)0.020 (2)0.013 (2)
C140.027 (3)0.033 (3)0.029 (3)0.007 (2)0.007 (2)0.009 (2)
C150.029 (3)0.052 (3)0.033 (3)0.004 (3)0.005 (2)0.007 (3)
C160.037 (3)0.052 (3)0.033 (3)0.012 (3)0.008 (2)0.005 (3)
C170.033 (3)0.036 (3)0.033 (3)0.005 (2)0.010 (2)0.009 (2)
C180.039 (3)0.037 (3)0.033 (3)0.004 (2)0.011 (2)0.009 (2)
C190.040 (3)0.037 (3)0.039 (3)0.001 (2)0.010 (3)0.008 (3)
C200.034 (3)0.036 (3)0.051 (4)0.006 (2)0.017 (3)0.007 (3)
C210.054 (4)0.047 (3)0.056 (4)0.004 (3)0.034 (3)0.013 (3)
C220.045 (3)0.043 (3)0.045 (3)0.003 (3)0.019 (3)0.017 (3)
C230.050 (4)0.067 (4)0.045 (4)0.007 (3)0.018 (3)0.027 (3)
C240.049 (4)0.057 (4)0.099 (6)0.004 (3)0.044 (4)0.021 (4)
C250.075 (5)0.090 (6)0.084 (6)0.022 (4)0.042 (4)0.059 (5)
Geometric parameters (Å, º) top
O1—H1O10.81 (6)C10—H10C0.9600
O1—H1O20.82 (6)C11—H11A0.9600
N1—C81.482 (7)C11—H11B0.9600
N1—C71.521 (7)C11—H11C0.9600
N1—C91.526 (7)C12—H12A0.9600
N1—H1N0.90 (5)C12—H12B0.9600
N2—C141.330 (6)C12—H12C0.9600
N2—C151.371 (7)C13—H13A0.9700
N2—C131.492 (7)C13—H13B0.9700
N3—C141.314 (6)C14—H140.9300
N3—C161.418 (7)C15—C161.328 (8)
N3—C171.449 (7)C15—H150.9300
C1—C61.405 (7)C16—H160.9300
C1—C21.409 (7)C17—C221.387 (8)
C1—C101.512 (7)C17—C181.393 (8)
C2—C31.406 (7)C18—C191.396 (8)
C2—C131.497 (7)C18—C231.503 (8)
C3—C41.380 (8)C19—C201.376 (9)
C3—C111.517 (7)C19—H190.9300
C4—C51.382 (7)C20—C211.386 (9)
C4—H40.9300C20—C241.518 (8)
C5—C61.412 (7)C21—C221.379 (8)
C5—C121.503 (7)C21—H210.9300
C6—C71.510 (7)C22—C251.511 (9)
C7—H7A0.9700C23—H23A0.9600
C7—H7B0.9700C23—H23B0.9600
C8—H8A0.9600C23—H23C0.9600
C8—H8B0.9600C24—H24A0.9600
C8—H8C0.9600C24—H24B0.9600
C9—H9A0.9600C24—H24C0.9600
C9—H9B0.9600C25—H25A0.9600
C9—H9C0.9600C25—H25B0.9600
C10—H10A0.9600C25—H25C0.9600
C10—H10B0.9600
H1O1—O1—H1O2109 (6)H11A—C11—H11C109.5
C8—N1—C7113.5 (4)H11B—C11—H11C109.5
C8—N1—C9108.8 (4)C5—C12—H12A109.5
C7—N1—C9109.4 (4)C5—C12—H12B109.5
C8—N1—H1N111 (4)H12A—C12—H12B109.5
C7—N1—H1N107 (4)C5—C12—H12C109.5
C9—N1—H1N108 (4)H12A—C12—H12C109.5
C14—N2—C15108.3 (4)H12B—C12—H12C109.5
C14—N2—C13125.8 (4)N2—C13—C2110.9 (4)
C15—N2—C13125.9 (4)N2—C13—H13A109.5
C14—N3—C16107.7 (4)C2—C13—H13A109.5
C14—N3—C17125.5 (4)N2—C13—H13B109.5
C16—N3—C17126.7 (4)C2—C13—H13B109.5
C6—C1—C2119.5 (5)H13A—C13—H13B108.1
C6—C1—C10120.9 (5)N3—C14—N2109.3 (4)
C2—C1—C10119.5 (5)N3—C14—H14125.3
C3—C2—C1120.1 (5)N2—C14—H14125.3
C3—C2—C13120.0 (5)C16—C15—N2108.4 (5)
C1—C2—C13119.9 (5)C16—C15—H15125.8
C4—C3—C2118.8 (5)N2—C15—H15125.8
C4—C3—C11118.5 (5)C15—C16—N3106.2 (5)
C2—C3—C11122.7 (5)C15—C16—H16126.9
C3—C4—C5122.7 (5)N3—C16—H16126.9
C3—C4—H4118.6C22—C17—C18122.7 (5)
C5—C4—H4118.6C22—C17—N3118.7 (5)
C4—C5—C6118.7 (5)C18—C17—N3118.6 (5)
C4—C5—C12118.8 (5)C17—C18—C19117.4 (5)
C6—C5—C12122.6 (5)C17—C18—C23122.8 (5)
C1—C6—C5120.0 (4)C19—C18—C23119.7 (5)
C1—C6—C7120.9 (5)C20—C19—C18121.6 (5)
C5—C6—C7119.1 (4)C20—C19—H19119.2
C6—C7—N1113.2 (4)C18—C19—H19119.2
C6—C7—H7A108.9C19—C20—C21118.3 (5)
N1—C7—H7A108.9C19—C20—C24121.4 (6)
C6—C7—H7B108.9C21—C20—C24120.4 (6)
N1—C7—H7B108.9C22—C21—C20122.9 (6)
H7A—C7—H7B107.8C22—C21—H21118.6
N1—C8—H8A109.5C20—C21—H21118.6
N1—C8—H8B109.5C21—C22—C17116.9 (5)
H8A—C8—H8B109.5C21—C22—C25121.1 (6)
N1—C8—H8C109.5C17—C22—C25122.0 (5)
H8A—C8—H8C109.5C18—C23—H23A109.5
H8B—C8—H8C109.5C18—C23—H23B109.5
N1—C9—H9A109.5H23A—C23—H23B109.5
N1—C9—H9B109.5C18—C23—H23C109.5
H9A—C9—H9B109.5H23A—C23—H23C109.5
N1—C9—H9C109.5H23B—C23—H23C109.5
H9A—C9—H9C109.5C20—C24—H24A109.5
H9B—C9—H9C109.5C20—C24—H24B109.5
C1—C10—H10A109.5H24A—C24—H24B109.5
C1—C10—H10B109.5C20—C24—H24C109.5
H10A—C10—H10B109.5H24A—C24—H24C109.5
C1—C10—H10C109.5H24B—C24—H24C109.5
H10A—C10—H10C109.5C22—C25—H25A109.5
H10B—C10—H10C109.5C22—C25—H25B109.5
C3—C11—H11A109.5H25A—C25—H25B109.5
C3—C11—H11B109.5C22—C25—H25C109.5
H11A—C11—H11B109.5H25A—C25—H25C109.5
C3—C11—H11C109.5H25B—C25—H25C109.5
C6—C1—C2—C34.4 (7)C17—N3—C14—N2178.2 (5)
C10—C1—C2—C3172.1 (5)C15—N2—C14—N32.5 (6)
C6—C1—C2—C13175.3 (5)C13—N2—C14—N3176.9 (4)
C10—C1—C2—C138.2 (7)C14—N2—C15—C161.5 (6)
C1—C2—C3—C40.9 (7)C13—N2—C15—C16177.9 (5)
C13—C2—C3—C4178.8 (5)N2—C15—C16—N30.0 (7)
C1—C2—C3—C11179.1 (5)C14—N3—C16—C151.5 (6)
C13—C2—C3—C111.3 (8)C17—N3—C16—C15179.2 (5)
C2—C3—C4—C52.2 (8)C14—N3—C17—C22110.0 (6)
C11—C3—C4—C5177.8 (5)C16—N3—C17—C2269.2 (7)
C3—C4—C5—C61.7 (8)C14—N3—C17—C1870.5 (7)
C3—C4—C5—C12179.0 (5)C16—N3—C17—C18110.3 (6)
C2—C1—C6—C54.9 (7)C22—C17—C18—C194.0 (8)
C10—C1—C6—C5171.5 (5)N3—C17—C18—C19176.5 (5)
C2—C1—C6—C7175.7 (4)C22—C17—C18—C23177.0 (6)
C10—C1—C6—C77.9 (8)N3—C17—C18—C232.5 (8)
C4—C5—C6—C11.9 (7)C17—C18—C19—C200.3 (8)
C12—C5—C6—C1177.4 (5)C23—C18—C19—C20179.3 (6)
C4—C5—C6—C7178.6 (5)C18—C19—C20—C213.7 (9)
C12—C5—C6—C72.1 (7)C18—C19—C20—C24176.9 (6)
C1—C6—C7—N197.4 (6)C19—C20—C21—C224.4 (9)
C5—C6—C7—N183.1 (6)C24—C20—C21—C22176.3 (6)
C8—N1—C7—C662.4 (6)C20—C21—C22—C170.9 (9)
C9—N1—C7—C6175.9 (4)C20—C21—C22—C25179.7 (7)
C14—N2—C13—C2109.4 (6)C18—C17—C22—C213.4 (9)
C15—N2—C13—C269.9 (6)N3—C17—C22—C21177.1 (5)
C3—C2—C13—N2104.4 (5)C18—C17—C22—C25175.4 (6)
C1—C2—C13—N275.3 (6)N3—C17—C22—C254.1 (9)
C16—N3—C14—N22.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···Br10.81 (6)2.58 (3)3.355 (6)160 (8)
O1—H1O2···Br20.82 (6)2.49 (6)3.283 (6)165 (7)
N1—H1N···Br20.90 (5)2.40 (3)3.238 (5)154 (6)
C9—H9B···Br2i0.962.853.792 (7)167
C12—H12A···Br20.962.823.765 (7)168
C14—H14···Br1ii0.932.793.436 (6)128
C16—H16···Br2iii0.932.813.597 (6)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC25H35N32+·2Br·H2O
Mr555.40
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)10.594 (4), 10.800 (3), 13.193 (4)
α, β, γ (°)66.48 (4), 70.26 (4), 80.58 (3)
V3)1302.0 (9)
Z2
Radiation typeMo Kα
µ (mm1)3.13
Crystal size (mm)0.50 × 0.46 × 0.40
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionFor a sphere
(Farrugia, 1999)
Tmin, Tmax0.303, 0.367
No. of measured, independent and
observed [I > 2σ(I)] reflections
4856, 4745, 2966
Rint0.007
(sin θ/λ)max1)0.607
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.203, 1.09
No. of reflections4745
No. of parameters300
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.01, 0.58

Computer programs: DIFRAC (Gabe et al., 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···Br10.81 (6)2.58 (3)3.355 (6)160 (8)
O1—H1O2···Br20.82 (6)2.49 (6)3.283 (6)165 (7)
N1—H1N···Br20.90 (5)2.40 (3)3.238 (5)154 (6)
C9—H9B···Br2i0.962.853.792 (7)167
C12—H12A···Br20.962.823.765 (7)168
C14—H14···Br1ii0.932.793.436 (6)128
C16—H16···Br2iii0.932.813.597 (6)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x+1, y+1, z.
 

Acknowledgements

Financial support for this work by the Natural Science Foundation of China is gratefully acknowledged.

References

First citationAlcalde, E., Ceder, R. M., Lopez, C., Mesquida, N., Muller, G. & Rodriguez, S. (2007). Dalton. Trans. pp. 2696–2706.  Web of Science CrossRef Google Scholar
First citationCaddick, S., Cloke, F. G. N., Hitchcock, P. B. & Lewis, A. K. D. (2004). Angew. Chem. Int. Ed. 43, 5824–5827.  Web of Science CSD CrossRef CAS Google Scholar
First citationCao, Z. X. & Hall, M. B. (2000). Organometallics, 19, 3338–3346.  Web of Science CrossRef CAS Google Scholar
First citationDouthwaite, R. E., Houghton, J. & Kariuki, B. M. (2004). Chem. Commun. pp. 698–699.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J., White, P. S. & Enright, G. D. (1993). American Crystallographic Association Pittsburgh Meeting, Abstract PA104.  Google Scholar
First citationGandelman, M., Vigalok, A., Shimon, L. J. W. & Milstein, D. (1997). Organometallics, 16, 3981–3986.  CSD CrossRef CAS Web of Science Google Scholar
First citationHahn, F. E. (2006). Angew. Chem. Int. Ed. 45, 1348–1352.  Web of Science CrossRef CAS Google Scholar
First citationLiou, S.-Y., Gozin, M. & Milstein, D. (1995). J. Am. Chem. Soc. 117, 9774–9775.  CSD CrossRef CAS Web of Science Google Scholar
First citationMagill, A. M., McGuinness, D. S., Cavell, K. J., Britovsek, G. J. P., Gibson, V. C., White, A. J. P., Wolliams, O. J., White, A. H. & Skelton, B. W. (2001). J. Organomet. Chem. 617–618, 546–560.  Web of Science CSD CrossRef CAS Google Scholar
First citationRybtchinski, B. & Milstein, D. (1999). J. Am. Chem. Soc. 121, 4528–4529.  Web of Science CrossRef CAS Google Scholar
First citationRybtchinski, B., Oevers, S., Montag, M., Vigalok, A., Rozenberg, H., Martin, J. M. L. & Milstein, D. (2001). J. Am. Chem. Soc. 123, 9064–9077.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRybtchinski, B., Vigalok, A., Ben-David, Y. & Milstein, D. (1996). J. Am. Chem. Soc. 118, 12406–12415.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1023-o1024
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds