organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-{1,1′-[Pentane-1,5-diylbis(­oxy­nitrilo)]di­ethyl­idyne}di-1-naphthol

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 30 April 2009; accepted 4 May 2009; online 14 May 2009)

The title compound, C29H30N2O4, adopts a distorted Z configuration with respect to the oxime group, which is almost coplanar with the adjacent naphthalene ring [dihedral angle = 4.11 (2)°]. There is one half-mol­ecule in the asymmetric unit, with a crystallographic twofold rotation axis passing through the central C atom of the –CH=N—O-(CH)5—O—N=CH– bridge. Within the mol­ecule, the dihedral angle formed by the two naphthalene rings is 79.08 (3)°, and there are two intra­molecular O—H⋯N hydrogen bonds.

Related literature

The condensation of primary amines with active carbonyl compounds can yield Schiff bases, see: Atwood & Harvey (2001[Atwood, D. A. & Harvey, M. J. (2001). Chem. Rev. 101, 37-52.]); Casellato & Vigato (1977[Casellato, U. & Vigato, P. A. (1977). Coord. Chem. Rev. 23, 31-50.]). For related structures, see: Dong et al. (2008a[Dong, W.-K., He, X.-N., Guan, Y.-H., Xu, L. & Ren, Z.-L. (2008a). Acta Cryst. E64, o1600-o1601.],b[Dong, W.-K., Lv, Z.-W., He, X.-N., Guan, Y.-H. & Tong, J.-F. (2008b). Acta Cryst. E64, o2059.],c[Dong, W.-K., He, X.-N., Sun, Y.-X., Xu, L. & Guan, Y.-H. (2008c). Acta Cryst. E64, o1917.], 2009[Dong, W.-K., Sun, Y.-X., Zhang, Y.-P., Li, L., He, X.-N. & Tang, X.-L. (2009). Inorg. Chim. Acta, 362, 117-124.]); Shi et al. (2007[Shi, J., Dong, W., Zhang, Y. & Gao, S. (2007). Acta Cryst. E63, o4080.]); Yeap et al. (2008[Yeap, C. S., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, o1854.]).

[Scheme 1]

Experimental

Crystal data
  • C29H30N2O4

  • Mr = 470.55

  • Monoclinic, C 2

  • a = 14.0683 (12) Å

  • b = 4.5659 (7) Å

  • c = 19.048 (2) Å

  • β = 97.321 (1)°

  • V = 1213.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.49 × 0.45 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Goöttingen, Germany.]) Tmin = 0.959, Tmax = 0.982

  • 3170 measured reflections

  • 1218 independent reflections

  • 814 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.111

  • S = 1.02

  • 1218 reflections

  • 159 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.82 1.83 2.552 (3) 145

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The condensation of primary amines with active carbonyl compounds can yield Schiff bases (Casellato & Vigato, 1977; Atwood & Harvey, 2001) that are still now regarded as one of the most potential group of chelators for facile preparations of metallo-organic hybrid materials (Yeap et al., 2008). Many Schiff base complexes have been structurally characterized, but at present, a new class of salen-type bisoxime compounds have been synthesized by using an O-alkyloxime unit (–CHN—O-(CH)n—O—NCH–) instead of the (–CHN-(CH)n—NCH–) group (Dong et al., 2008a,b), the large electronegativity of O atoms is expected to affect strongly the electronic properties of N2O2 coordination sphere. Herein, we report on the synthesis and crystal structure of 2,2'-{1,1'-[pentane-1,5-diylbis(oxynitrilo)]diethylidyne}dinaphthol, (I), (Fig. 1).

The single-crystal structure of the title compound (I) is built up by only the C29H30N2O4 molecule, in which all bond lengths are in normal ranges. It adopts a distorted Z configuration with respect to the bisoxime group which is coplanar with the adjacent naphthalene ring (Dong et al., 2008c). The structure of (I) reveals the C1, C2, C3, C2# and C1# atoms in the (–CHN—O-(CH)5—O—NCH–) bridge lying on a plane. The dihedral angle formed by the two naphthalene rings in each molecule of the title compound is about 79.08°. Within each half of the molecule, the dihedral angle formed by the plane of the (–(CH)5–) bridge and the adjacent naphthalene ring is about 62.74°. There are two intramolecular hydrogen bonds, O2—H2···N1 (Table 1), indicating a strong hydrogen-bonding interaction.

Related literature top

The condensation of primary amines with active carbonyl compounds can yield Schiff bases, see: Atwood & Harvey (2001); Casellato & Vigato (1977). For related structures, see: Dong et al. (2008a,b,c, 2009); Shi et al. (2007); Yeap et al. (2008).

Experimental top

2,2'-{1,1'-[Pentane-1,5-diylbis(oxynitrilo)]diethylidyne}dinaphthol was synthesized according to an analogous method reported earlier (Shi et al., 2007; Dong et al., 2009). To an ethanol solution (5 ml) of 2-acetyl-1-naphthol (374.7 mg, 2.02 mmol) was added dropwise an ethanol solution (3 ml) of 1,5-bis(aminooxy)pentane (133.5 mg, 0.94 mmol). The mixture solution was stirred at 328–333 K for 70 h. After cooling to room temperature, the precipitate was filtered off, and washed successively three times with ethanol. The product was dried in vacuo and purified by recrystallization from ethanol to yield 367.5 mg (yield, 83.1%) of solid; m.p. 394–396 K. Colourless needle-like single crystals suitable for X-ray diffraction studies were obtained by slow evaporation from a solution of chloroform/methanol (1:1) of 2,2'-{1,1'-[pentane-1,5-diylbis(oxynitrilo)]diethylidyne}dinaphthol at room temperature for about three weeks. Analysis calculated for C29H30N2O4: C 74.02, H 6.43, N 5.99 (%); Found: C 74.05, H 6.39, N 6.07(%).

Refinement top

H atoms were treated as riding atoms with distances C—H = 0.96 (CH3), C—H = 0.97 (CH2), 0.93 Å (CH), O—H = 0.82 Å [Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(C,O)].

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom-numbering scheme [symmetry code: (#1) - x, y, -z]. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
2,2'-{1,1'-[Pentane-1,5-diylbis(oxynitrilo)]diethylidyne}di-1-naphthol top
Crystal data top
C29H30N2O4F(000) = 500
Mr = 470.55Dx = 1.288 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 907 reflections
a = 14.0683 (12) Åθ = 2.9–22.5°
b = 4.5659 (7) ŵ = 0.09 mm1
c = 19.048 (2) ÅT = 298 K
β = 97.321 (1)°Block-like, yellow
V = 1213.6 (2) Å30.49 × 0.45 × 0.21 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1218 independent reflections
Radiation source: fine-focus sealed tube814 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 169
Tmin = 0.959, Tmax = 0.982k = 55
3170 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.057P)2]
where P = (Fo2 + 2Fc2)/3
1218 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.11 e Å3
1 restraintΔρmin = 0.13 e Å3
Crystal data top
C29H30N2O4V = 1213.6 (2) Å3
Mr = 470.55Z = 2
Monoclinic, C2Mo Kα radiation
a = 14.0683 (12) ŵ = 0.09 mm1
b = 4.5659 (7) ÅT = 298 K
c = 19.048 (2) Å0.49 × 0.45 × 0.21 mm
β = 97.321 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1218 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
814 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.982Rint = 0.034
3170 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.111H-atom parameters constrained
S = 1.02Δρmax = 0.11 e Å3
1218 reflectionsΔρmin = 0.13 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.2185 (2)0.0996 (7)0.16024 (12)0.0654 (8)
O10.24369 (16)0.2609 (7)0.10176 (10)0.0807 (7)
O20.09872 (13)0.1007 (6)0.23812 (10)0.0734 (7)
H20.11570.00560.20540.110*
C10.1626 (2)0.4239 (10)0.07147 (17)0.0768 (10)
H1A0.13760.53430.10860.092*
H1B0.18290.56330.03790.092*
C20.0834 (2)0.2382 (10)0.03427 (15)0.0700 (9)
H2A0.10850.12180.00180.084*
H2B0.06060.10490.06810.084*
C30.00000.4226 (13)0.00000.0661 (13)
H3A0.02230.54780.03570.079*0.50
H3B0.02230.54780.03570.079*0.50
C40.3854 (2)0.0583 (12)0.16832 (16)0.0890 (13)
H4A0.38630.06680.12790.134*
H4B0.43210.00870.20610.134*
H4C0.40040.25520.15590.134*
C50.2876 (2)0.0510 (9)0.19192 (15)0.0621 (9)
C60.1752 (2)0.2479 (9)0.27207 (14)0.0543 (8)
C70.2658 (2)0.2281 (8)0.25198 (13)0.0527 (8)
C80.3400 (2)0.3899 (9)0.29307 (16)0.0673 (10)
H80.40220.37710.28160.081*
C90.3230 (2)0.5610 (10)0.34806 (16)0.0710 (10)
H90.37310.66600.37280.085*
C100.2308 (2)0.5826 (8)0.36834 (14)0.0575 (8)
C110.1552 (2)0.4251 (8)0.32992 (14)0.0533 (7)
C120.0631 (2)0.4448 (10)0.35059 (15)0.0704 (10)
H120.01280.34200.32550.084*
C130.0467 (3)0.6102 (10)0.40623 (17)0.0794 (11)
H130.01450.61700.41980.095*
C140.1205 (3)0.7717 (11)0.44378 (16)0.0804 (11)
H140.10830.88830.48170.097*
C150.2101 (3)0.7583 (10)0.42496 (17)0.0722 (10)
H150.25890.86760.45010.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0693 (18)0.071 (2)0.0551 (13)0.0114 (18)0.0037 (13)0.0008 (16)
O10.0745 (15)0.0976 (19)0.0678 (13)0.0151 (17)0.0001 (12)0.0131 (16)
O20.0503 (12)0.0963 (19)0.0721 (13)0.0068 (14)0.0014 (10)0.0109 (14)
C10.090 (2)0.067 (2)0.0693 (19)0.015 (3)0.0063 (19)0.006 (2)
C20.080 (2)0.066 (2)0.0609 (17)0.006 (2)0.0040 (16)0.003 (2)
C30.081 (3)0.061 (3)0.057 (2)0.0000.012 (2)0.000
C40.066 (2)0.132 (4)0.071 (2)0.001 (3)0.0156 (17)0.012 (3)
C50.0552 (19)0.077 (2)0.0519 (17)0.010 (2)0.0001 (15)0.0130 (19)
C60.0465 (17)0.065 (2)0.0489 (15)0.0020 (19)0.0041 (13)0.0072 (18)
C70.0489 (18)0.062 (2)0.0458 (15)0.0028 (18)0.0001 (13)0.0135 (17)
C80.0472 (18)0.088 (3)0.0649 (19)0.006 (2)0.0019 (15)0.007 (2)
C90.054 (2)0.090 (3)0.0660 (19)0.014 (2)0.0010 (16)0.000 (2)
C100.0544 (18)0.065 (2)0.0518 (16)0.0001 (19)0.0018 (15)0.0119 (19)
C110.0501 (17)0.060 (2)0.0490 (15)0.0016 (17)0.0035 (13)0.0130 (18)
C120.055 (2)0.095 (3)0.0608 (18)0.001 (2)0.0049 (15)0.001 (2)
C130.067 (2)0.100 (3)0.073 (2)0.008 (2)0.0121 (19)0.002 (2)
C140.089 (3)0.090 (3)0.0620 (19)0.008 (3)0.011 (2)0.003 (2)
C150.074 (2)0.077 (3)0.0620 (18)0.009 (2)0.0031 (17)0.004 (2)
Geometric parameters (Å, º) top
N1—C51.278 (4)C5—C71.465 (5)
N1—O11.417 (3)C6—C71.380 (4)
O1—C11.422 (4)C6—C111.424 (4)
O2—C61.360 (3)C7—C81.428 (4)
O2—H20.8200C8—C91.352 (4)
C1—C21.503 (4)C8—H80.9300
C1—H1A0.9700C9—C101.402 (4)
C1—H1B0.9700C9—H90.9300
C2—C31.522 (5)C10—C151.404 (5)
C2—H2A0.9700C10—C111.410 (4)
C2—H2B0.9700C11—C121.404 (4)
C3—C2i1.522 (5)C12—C131.345 (5)
C3—H3A0.9700C12—H120.9300
C3—H3B0.9700C13—C141.395 (5)
C4—C51.501 (4)C13—H130.9300
C4—H4A0.9600C14—C151.355 (4)
C4—H4B0.9600C14—H140.9300
C4—H4C0.9600C15—H150.9300
C5—N1—O1113.5 (3)O2—C6—C7122.6 (3)
N1—O1—C1108.8 (2)O2—C6—C11115.3 (2)
C6—O2—H2109.5C7—C6—C11122.2 (3)
O1—C1—C2113.8 (3)C6—C7—C8116.8 (3)
O1—C1—H1A108.8C6—C7—C5123.1 (3)
C2—C1—H1A108.8C8—C7—C5120.1 (3)
O1—C1—H1B108.8C9—C8—C7122.3 (3)
C2—C1—H1B108.8C9—C8—H8118.9
H1A—C1—H1B107.7C7—C8—H8118.9
C1—C2—C3112.0 (3)C8—C9—C10121.0 (3)
C1—C2—H2A109.2C8—C9—H9119.5
C3—C2—H2A109.2C10—C9—H9119.5
C1—C2—H2B109.2C9—C10—C15122.8 (3)
C3—C2—H2B109.2C9—C10—C11119.0 (3)
H2A—C2—H2B107.9C15—C10—C11118.2 (3)
C2—C3—C2i112.9 (5)C12—C11—C10119.0 (3)
C2—C3—H3A109.0C12—C11—C6122.3 (3)
C2i—C3—H3A109.0C10—C11—C6118.8 (3)
C2—C3—H3B109.0C13—C12—C11121.0 (3)
C2i—C3—H3B109.0C13—C12—H12119.5
H3A—C3—H3B107.8C11—C12—H12119.5
C5—C4—H4A109.5C12—C13—C14120.6 (3)
C5—C4—H4B109.5C12—C13—H13119.7
H4A—C4—H4B109.5C14—C13—H13119.7
C5—C4—H4C109.5C15—C14—C13119.8 (4)
H4A—C4—H4C109.5C15—C14—H14120.1
H4B—C4—H4C109.5C13—C14—H14120.1
N1—C5—C7116.3 (3)C14—C15—C10121.4 (4)
N1—C5—C4122.8 (3)C14—C15—H15119.3
C7—C5—C4120.9 (3)C10—C15—H15119.3
C5—N1—O1—C1178.9 (3)C8—C9—C10—C15179.8 (4)
N1—O1—C1—C269.9 (4)C8—C9—C10—C110.7 (5)
O1—C1—C2—C3177.5 (2)C9—C10—C11—C12179.5 (3)
C1—C2—C3—C2i176.6 (3)C15—C10—C11—C121.4 (5)
O1—N1—C5—C7178.7 (3)C9—C10—C11—C60.4 (4)
O1—N1—C5—C40.9 (5)C15—C10—C11—C6179.5 (3)
O2—C6—C7—C8178.8 (3)O2—C6—C11—C120.3 (5)
C11—C6—C7—C81.3 (5)C7—C6—C11—C12179.8 (3)
O2—C6—C7—C50.9 (5)O2—C6—C11—C10179.4 (3)
C11—C6—C7—C5179.0 (3)C7—C6—C11—C100.7 (5)
N1—C5—C7—C63.4 (5)C10—C11—C12—C130.2 (5)
C4—C5—C7—C6174.5 (4)C6—C11—C12—C13178.9 (3)
N1—C5—C7—C8176.3 (3)C11—C12—C13—C141.5 (6)
C4—C5—C7—C85.8 (5)C12—C13—C14—C151.2 (6)
C6—C7—C8—C91.6 (5)C13—C14—C15—C100.4 (6)
C5—C7—C8—C9178.6 (3)C9—C10—C15—C14179.2 (4)
C7—C8—C9—C101.4 (5)C11—C10—C15—C141.7 (6)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.832.552 (3)145

Experimental details

Crystal data
Chemical formulaC29H30N2O4
Mr470.55
Crystal system, space groupMonoclinic, C2
Temperature (K)298
a, b, c (Å)14.0683 (12), 4.5659 (7), 19.048 (2)
β (°) 97.321 (1)
V3)1213.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.49 × 0.45 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.959, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
3170, 1218, 814
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.111, 1.02
No. of reflections1218
No. of parameters159
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.13

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.832.552 (3)145.00
 

Acknowledgements

The authors acknowledge finanical support from the `Jing Lan' Talent Engineering Fund of Lanzhou Jiaotong University.

References

First citationAtwood, D. A. & Harvey, M. J. (2001). Chem. Rev. 101, 37–52.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCasellato, U. & Vigato, P. A. (1977). Coord. Chem. Rev. 23, 31–50.  CrossRef CAS Web of Science Google Scholar
First citationDong, W.-K., He, X.-N., Guan, Y.-H., Xu, L. & Ren, Z.-L. (2008a). Acta Cryst. E64, o1600–o1601.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., He, X.-N., Sun, Y.-X., Xu, L. & Guan, Y.-H. (2008c). Acta Cryst. E64, o1917.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., Lv, Z.-W., He, X.-N., Guan, Y.-H. & Tong, J.-F. (2008b). Acta Cryst. E64, o2059.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., Sun, Y.-X., Zhang, Y.-P., Li, L., He, X.-N. & Tang, X.-L. (2009). Inorg. Chim. Acta, 362, 117–124.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Goöttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J., Dong, W., Zhang, Y. & Gao, S. (2007). Acta Cryst. E63, o4080.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYeap, C. S., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, o1854.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds