organic compounds
5-(3-Fluorophenyl)-1,3,4-thiadiazol-2-amine
aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn
The title compound, C8H6FN3S, was synthesized by the reaction of 3-fluorobenzoic acid and thiosemicarbazide. The dihedral angle between the planes of the thiadiazole and benzene rings is 37.3 (2)°. In the structure, two crystallographically independent molecules form a centrosymmetric dimer, in which two intermolecular N—H⋯N hydrogen bonds generate an R22(8) motif.
Related literature
For the biological activity of 1,3,4-thiadiazole derivatives, see: Nakagawa et al. (1996); Wang et al. (1999). For a similar structure, see: Wan et al. (2006). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809019333/at2787sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809019333/at2787Isup2.hkl
3-Fluoro-benzoic acid (2 mmol) and thiosemicarbazide (5 mmol) were mixed in a 25 ml flask, and kept in the oil bath at 363 K for 6 h. After cooling, the crude product (I) precipitated and was filted. Pure compound (I) was obtained by crystallization from ethanol (20 ml). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.
All H atoms were placed geometrically with C—H = 0.93 Å and N—H = 0.86 Å, and included in the
in riding motion approximation with Uiso(H) = 1.2Ueq of the carrier atom.Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C8H6FN3S | F(000) = 400 |
Mr = 195.23 | Dx = 1.492 Mg m−3 |
Monoclinic, P21/c | Melting point: 515 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 11.345 (2) Å | Cell parameters from 25 reflections |
b = 7.3130 (15) Å | θ = 10–13° |
c = 11.269 (2) Å | µ = 0.34 mm−1 |
β = 111.64 (3)° | T = 293 K |
V = 869.0 (3) Å3 | Block, colourless |
Z = 4 | 0.20 × 0.10 × 0.10 mm |
Enraf–Nonius CAD-4 diffractometer | 1177 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.021 |
Graphite monochromator | θmax = 25.3°, θmin = 1.9° |
ω/2θ scans | h = −13→0 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→8 |
Tmin = 0.935, Tmax = 0.967 | l = −12→13 |
1667 measured reflections | 3 standard reflections every 200 reflections |
1584 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.124 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.06P)2] where P = (Fo2 + 2Fc2)/3 |
1584 reflections | (Δ/σ)max < 0.001 |
118 parameters | Δρmax = 0.37 e Å−3 |
13 restraints | Δρmin = −0.25 e Å−3 |
C8H6FN3S | V = 869.0 (3) Å3 |
Mr = 195.23 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.345 (2) Å | µ = 0.34 mm−1 |
b = 7.3130 (15) Å | T = 293 K |
c = 11.269 (2) Å | 0.20 × 0.10 × 0.10 mm |
β = 111.64 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1177 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.021 |
Tmin = 0.935, Tmax = 0.967 | 3 standard reflections every 200 reflections |
1667 measured reflections | intensity decay: 1% |
1584 independent reflections |
R[F2 > 2σ(F2)] = 0.047 | 13 restraints |
wR(F2) = 0.124 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.37 e Å−3 |
1584 reflections | Δρmin = −0.25 e Å−3 |
118 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S | 0.82144 (7) | 0.08639 (11) | 0.55908 (6) | 0.0548 (3) | |
F | 0.5162 (3) | −0.2428 (3) | 0.0198 (2) | 0.1125 (9) | |
N1 | 0.8658 (2) | 0.1443 (3) | 0.3566 (2) | 0.0523 (6) | |
C1 | 0.7322 (3) | −0.2918 (5) | 0.3984 (3) | 0.0713 (9) | |
H1B | 0.7804 | −0.3036 | 0.4850 | 0.086* | |
N2 | 0.9262 (2) | 0.2841 (3) | 0.4381 (2) | 0.0551 (6) | |
C2 | 0.6592 (4) | −0.4354 (5) | 0.3322 (4) | 0.0817 (11) | |
H2B | 0.6585 | −0.5443 | 0.3746 | 0.098* | |
N3 | 0.9606 (3) | 0.3931 (4) | 0.6429 (2) | 0.0733 (9) | |
H3A | 1.0043 | 0.4846 | 0.6340 | 0.088* | |
H3B | 0.9481 | 0.3787 | 0.7131 | 0.088* | |
C3 | 0.5871 (4) | −0.4202 (5) | 0.2040 (4) | 0.0822 (12) | |
H3C | 0.5378 | −0.5175 | 0.1592 | 0.099* | |
C4 | 0.5898 (3) | −0.2597 (6) | 0.1447 (3) | 0.0741 (10) | |
C5 | 0.6637 (3) | −0.1132 (4) | 0.2071 (3) | 0.0639 (9) | |
H5A | 0.6658 | −0.0066 | 0.1628 | 0.077* | |
C6 | 0.7338 (3) | −0.1272 (4) | 0.3350 (3) | 0.0516 (7) | |
C7 | 0.8082 (3) | 0.0307 (4) | 0.4039 (2) | 0.0475 (7) | |
C8 | 0.9121 (3) | 0.2733 (4) | 0.5476 (2) | 0.0499 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S | 0.0686 (5) | 0.0626 (5) | 0.0402 (4) | −0.0130 (4) | 0.0282 (3) | 0.0002 (3) |
F | 0.1200 (19) | 0.122 (2) | 0.0888 (16) | −0.0253 (16) | 0.0307 (14) | −0.0193 (15) |
N1 | 0.0646 (15) | 0.0583 (14) | 0.0421 (12) | −0.0113 (12) | 0.0293 (11) | −0.0079 (11) |
C1 | 0.070 (2) | 0.068 (2) | 0.073 (2) | −0.0121 (18) | 0.0235 (17) | 0.0023 (18) |
N2 | 0.0753 (16) | 0.0580 (15) | 0.0433 (12) | −0.0172 (13) | 0.0353 (12) | −0.0097 (11) |
C2 | 0.074 (2) | 0.060 (2) | 0.112 (3) | −0.0081 (19) | 0.035 (2) | 0.001 (2) |
N3 | 0.110 (2) | 0.0800 (19) | 0.0452 (14) | −0.0379 (17) | 0.0462 (15) | −0.0191 (13) |
C3 | 0.074 (2) | 0.079 (3) | 0.104 (3) | −0.020 (2) | 0.045 (2) | −0.040 (2) |
C4 | 0.075 (2) | 0.091 (3) | 0.062 (2) | −0.024 (2) | 0.0319 (18) | −0.0344 (19) |
C5 | 0.075 (2) | 0.068 (2) | 0.0514 (17) | −0.0144 (17) | 0.0271 (16) | −0.0140 (16) |
C6 | 0.0557 (17) | 0.0533 (17) | 0.0519 (16) | 0.0000 (13) | 0.0270 (14) | −0.0051 (13) |
C7 | 0.0541 (16) | 0.0513 (16) | 0.0421 (14) | 0.0000 (13) | 0.0236 (13) | −0.0013 (12) |
C8 | 0.0634 (18) | 0.0556 (17) | 0.0374 (13) | −0.0068 (14) | 0.0265 (13) | −0.0025 (13) |
S—C8 | 1.744 (3) | C2—H2B | 0.9300 |
S—C7 | 1.747 (3) | N3—C8 | 1.338 (3) |
F—C4 | 1.351 (4) | N3—H3A | 0.8600 |
N1—C7 | 1.288 (3) | N3—H3B | 0.8600 |
N1—N2 | 1.377 (3) | C3—C4 | 1.357 (5) |
C1—C2 | 1.375 (5) | C3—H3C | 0.9300 |
C1—C6 | 1.403 (4) | C4—C5 | 1.382 (4) |
C1—H1B | 0.9300 | C5—C6 | 1.369 (4) |
N2—C8 | 1.303 (3) | C5—H5A | 0.9300 |
C2—C3 | 1.378 (5) | C6—C7 | 1.472 (4) |
C8—S—C7 | 86.76 (13) | F—C4—C3 | 118.3 (3) |
C7—N1—N2 | 114.0 (2) | F—C4—C5 | 119.0 (4) |
C2—C1—C6 | 119.8 (3) | C3—C4—C5 | 122.7 (3) |
C2—C1—H1B | 120.1 | C6—C5—C4 | 119.0 (3) |
C6—C1—H1B | 120.1 | C6—C5—H5A | 120.5 |
C8—N2—N1 | 112.5 (2) | C4—C5—H5A | 120.5 |
C1—C2—C3 | 120.9 (4) | C5—C6—C1 | 119.3 (3) |
C1—C2—H2B | 119.6 | C5—C6—C7 | 119.6 (3) |
C3—C2—H2B | 119.6 | C1—C6—C7 | 121.1 (3) |
C8—N3—H3A | 120.0 | N1—C7—C6 | 124.6 (2) |
C8—N3—H3B | 120.0 | N1—C7—S | 113.2 (2) |
H3A—N3—H3B | 120.0 | C6—C7—S | 122.1 (2) |
C4—C3—C2 | 118.3 (3) | N2—C8—N3 | 124.3 (3) |
C4—C3—H3C | 120.9 | N2—C8—S | 113.5 (2) |
C2—C3—H3C | 120.9 | N3—C8—S | 122.19 (19) |
C7—N1—N2—C8 | −0.2 (4) | N2—N1—C7—S | 0.5 (3) |
C6—C1—C2—C3 | −0.1 (5) | C5—C6—C7—N1 | −36.0 (4) |
C1—C2—C3—C4 | −0.1 (6) | C1—C6—C7—N1 | 144.6 (3) |
C2—C3—C4—F | −178.1 (3) | C5—C6—C7—S | 141.4 (3) |
C2—C3—C4—C5 | 1.3 (6) | C1—C6—C7—S | −37.9 (4) |
F—C4—C5—C6 | 177.0 (3) | C8—S—C7—N1 | −0.4 (2) |
C3—C4—C5—C6 | −2.4 (5) | C8—S—C7—C6 | −178.2 (2) |
C4—C5—C6—C1 | 2.2 (5) | N1—N2—C8—N3 | −179.5 (3) |
C4—C5—C6—C7 | −177.2 (3) | N1—N2—C8—S | −0.1 (3) |
C2—C1—C6—C5 | −1.0 (5) | C7—S—C8—N2 | 0.3 (2) |
C2—C1—C6—C7 | 178.4 (3) | C7—S—C8—N3 | 179.7 (3) |
N2—N1—C7—C6 | 178.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···N2i | 0.86 | 2.14 | 2.981 (5) | 165 |
Symmetry code: (i) −x+2, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C8H6FN3S |
Mr | 195.23 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 11.345 (2), 7.3130 (15), 11.269 (2) |
β (°) | 111.64 (3) |
V (Å3) | 869.0 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.34 |
Crystal size (mm) | 0.20 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.935, 0.967 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1667, 1584, 1177 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.124, 1.01 |
No. of reflections | 1584 |
No. of parameters | 118 |
No. of restraints | 13 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.25 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···N2i | 0.8600 | 2.1400 | 2.981 (5) | 165.00 |
Symmetry code: (i) −x+2, −y+1, −z+1. |
Acknowledgements
The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for providing the Enraf–Nonius CAD-4 diffractometer for this research project.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195–201. CrossRef CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wan, R., Han, F., Wu, F., Zhang, J.-J. & Wang, J.-T. (2006). Acta Cryst. E62, o5547–o5548. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903–1905. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing broad spectrum biological activities (Nakagawa et al., 1996). These compounds are known to exhibit diverse biological effects, such as insecticidal, fungicidal activities (Wang et al., 1999). We are focusing our synthetic and structural studies on thiadiazole derivatives and have published the structure of 5-(4-fluoro-phenyl)-[1,3,4]thiadiazol-2-ylamine (Wan et al., 2006). Here we report the crystal structure, (I).
In the title molecule (I), (Fig. 1), the dihedral angle between the thiadiazole and benzene ring is 37.3 (2)°, which is bigger than the angle in the structure of 5-(4-fluoro-phenyl)-[1,3,4]thiadiazol-2-ylamine (Wan et al., 2006), which is 30.1 (2)°. In the structure, two crystallographically independent molecules form a dimer structure, in which two intermolecular N—H···N hydrogen bonds generate a motif R22(8) (Fig. 2).