organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1263-o1264

S-5-Amino-2-(di­methyl­ammonio)phenyl sulfo­thio­ate

aFaculty of Textile Technology, Laboratory of Applied Chemistry, University of Zagreb, Prilaz baruna Filipovića 28a, HR-10000 Zagreb, Croatia
*Correspondence e-mail: gpavlov@ttf.hr

(Received 28 April 2009; accepted 5 May 2009; online 14 May 2009)

The title compound, C8H12N2O3S2, has been isolated as a by-product in the synthesis of methyl­ene blue dye. The compound crystallizes with four independent mol­ecules in the unit cell (Z′= 4). The zwitterionic form of the mol­ecule was established on the basis of the hydrogen atom located at the dimethyl­amino group. The crystal structure is dominated by inter­molecular hydrogen bonds of the N—H⋯O type formed between amino and ammonio N—H groups and O atoms from the sulfothio­ate group. There are in addition two weak inter­molecular N—H⋯N inter­actions and some non-conventional C—H⋯O hydrogen bonds.

Related literature

For the preparation, see: Bennett & Bell (1943[Bennett, G. M. & Bell, E. V. (1943). Organic Syntheses, Coll. Vol. 2, p. 223. New York, John Wiley & Sons.]); Bogert & Updike (1927[Bogert, M. T. & Updike, I. A. (1927). J. Am. Chem. Soc. 49, 1373-1382.]); Leventis et al. (1997[Leventis, N., Chen, M. & Sortiriou-Leventis, C. (1997). Tetrahedron, 53, 10083-10092.]). For information on methyl­ene blue see: Hunger (2003[Hunger, K. (2003). Industrial Dyes: Chemistry, Properties, Application. Winheim: Wiley-VCH.]); Zollinger (1991[Zollinger, H. (1991). Color Chemistry, 2nd ed. Weinheim: VCH.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Bertolasi et al. (1999[Bertolasi, V., Gilli, P., Ferretti, V., Gilli, G. & Fernàndez-Castaño, C. (1999). Acta Cryst. B55, 985-993.]); Trinajstić (1968[Trinajstić, N. (1968). Tetrahedron Lett., 12, 1529-1532.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N2O3S2

  • Mr = 248.32

  • Triclinic, [P \overline 1]

  • a = 10.4173 (2) Å

  • b = 14.1160 (4) Å

  • c = 15.3048 (4) Å

  • α = 93.474 (2)°

  • β = 101.0918 (19)°

  • γ = 93.0199 (19)°

  • V = 2199.73 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 296 K

  • 0.67 × 0.44 × 0.28 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire 3 CCD detector

  • Absorption correction: multi-scan CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]). Tmin = 0.66, Tmax = 0.88

  • 39152 measured reflections

  • 9530 independent reflections

  • 6061 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.131

  • S = 0.96

  • 9530 reflections

  • 585 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AA⋯O2Ai 0.86 (3) 2.40 (3) 3.204 (3) 157 (3)
N1A—H1AB⋯O3Bi 0.89 (3) 2.38 (3) 3.189 (3) 152 (3)
N2A—H2A⋯O3A 0.81 (3) 2.31 (2) 2.983 (3) 141 (2)
N2A—H2A⋯O3Bii 0.81 (2) 2.48 (2) 3.003 (3) 124 (3)
N1B—H1B⋯O1B 0.86 (2) 2.28 (3) 2.940 (3) 134 (2)
N1B—H1B⋯O1Aii 0.86 (2) 2.45 (2) 3.016 (3) 124 (1)
N2B—H2BA⋯O2Biii 0.86 (2) 2.48 (2) 3.266 (3) 153 (3)
N2B—H2BB⋯O1Ai 0.87 (3) 2.39 (3) 3.237 (3) 163 (3)
N1C—H1CA⋯O2Civ 0.81 (3) 2.44 (3) 3.149 (3) 147 (3)
N1C—H1CB⋯O3Dv 0.83 (3) 2.55 (3) 3.349 (3) 162 (3)
N2C—H2C⋯O2C 0.82 (3) 2.41 (3) 2.982 (3) 128 (3)
N2C—H2C⋯N2Dvi 0.82 (2) 2.44 (3) 3.122 (4) 143 (3)
N1D—H1D⋯N1Cvii 0.81 (3) 2.31 (3) 3.013 (3) 146 (3)
N2D—H2DA⋯O1Dviii 0.79 (3) 2.30 (3) 3.040 (4) 155 (3)
N2D—H2DB⋯O3Cix 0.99 (3) 2.40 (3) 3.314 (4) 154 (2)
C8A—H8AA⋯O2Di 0.96 2.37 3.273 (3) 157
C8B—H8BA⋯O3Di 0.96 2.54 3.437 (4) 155
C7D—H7DA⋯O2Bx 0.96 2.51 3.370 (4) 149
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+2, -z+1; (iv) -x+1, -y+2, -z+2; (v) x, y+1, z+1; (vi) x, y, z+1; (vii) x, y-1, z-1; (viii) -x+2, -y+1, -z; (ix) x, y, z-1; (x) -x+1, -y+1, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Phenothiazine dyes, from which methylene blue is the best known (Zollinger, 1991; Hunger, 2003) are a class of colorants with application in various fields. Methylene blue is commercially produced by oxidation of 4-N,N-dimethylaminoaniline with Na2Cr2O7 in the presence of Na2S2O3, followed by further oxidation in the presence of N,N-dimethylaniline, usually without isolation of intermediate 4-N,N-dimethylaminoaniline-2-tiosulfuric acid (Leventis et al., 1997).

Following one of the well known methods for preparation of 4-N,N-dimethylaminoaniline-2-tiosulfuric acid (Bogert & Updike, 1927), we isolated S-5-amino-2-(dimethylammonio)phenyl sulfothioate (I) (Scheme 1), in zwitterionic form as a by-product. The product crystallizes with 4 independent molecules in the asymmetric unit, labelled as A, B, C and D (Fig.1.).

The molecule contains three substituents on the phenyl core (Fig.1.): the amino group, the dimethylammonium cation and the sulfothioate anion with individual geometries in accordance with literature data (Allen et al., 1987).

The S—C bonds span the range 1.769 (2) - 1.777 (2) Å reflecting aproximately 20% of π bond character (Trinajstić, 1968). The Car—N bonds formed by amino groups have significant π character (1.367 (3), 1.363 (3), 1.379 (3),1.392 (4)Å in A, B, C and D respectively). Finally, C—N bonds in the N,N-dimethylammono moieties are essentially single bonds, with a 1.468 (3) - 1.500 (4) Å span. The C—S—S and O—S—S angles span the range 99.12 (8) - 100.37 (8)° and 100.32 (9) - 107.73 (9)°, respectively.

A molecular overlap of all four units (Fig.2.) indicates that the largest conformational difference between them arises in the spatial orientation of the dimethylammonio units relative to the phenyl rings, as well as in the sulfothioate part of the molecule While the conformations of molecules A (in green in fig. 2) and B (blue) are almost identical, molecule D (yellow) exhibits some conformational differences and molecule C (red) has a completely different spatial orientation of the mentioned substitutents. (See the Supplementary Material for torsion angles defining their geometries)

The rather complex hydrogen bonding network includes three fairly strong N—H···O intramolecular H-bonds and a number of N—H···O, N—H···N and a few non-conventional C—H···O intermolecular H-bonds (Fig. 3 and Table 1). All amino as well as ammonio NH's participate in N—H···O H-bond formation, with almost all nitrogens acting as double proton donors and many oxygens as double proton acceptors (Table 1). There are a couple of homonuclear N—H···N intermolecular interactions with N···N values in the range 3.013 (3)—3.122 (4) Å which compares fairly well with the mean value N···N = 2.97 (10) Å found by Bertolasi and co-workers for non-resonant N—H···N intermolecular hydrogen bonds in pyrazoles (Bertolasi et al.,1999). Finally, there are some non-conventional C—H···O bonds linking Car-H groups and S—SO3- fragments (Table 1, three final entries).

Related literature top

For the preparation, see: Bennett & Bell (1943); Bogert & Updike (1927); Leventis et al. (1997). For information on methylene blue see: Hunger (2003); Zollinger (1991). For bond-length data, see: Allen et al. (1987); Bertolasi et al. (1999); Trinajstić (1968).

Experimental top

N,N-dimethylaniline was dissolved in aqueous HCl and nitrosilated with NaNO2 (Bennett & Bell, 1943). The resulting crude 4-nitroso-N,N-dimethylaniline hydrochloride was isolated and dissolved in aqueous acetic acid. The cold water solution of Na2S2O3 was added and the reaction mixture was stirred at 273 - 278 K for several hours (Bogert & Updike, 1927), and left for two days at room temperature. The crude product was filtered off, and crystallized from water. The S-2-amino-5-(dimethylammonio)phenyl sulfothioate has been isolated, but after standing of mother liquor in refrigerator for several weeks S-5-amino-2-(dimethylammonio)phenyl sulfothioate (1 b) has been crystallized in the form of gray-greenish prism, as well. Spectroscopic analysis, IR (ATR, cm-1): 3455 (w), 3403 (w), 3360 (w), 3328 (w), 3079 (w), 1631 (m), 1600 (m), 1496 (m), 1465 (m), 1369 (w), 1296 (w), 1211 (s), 1228 (m), 1049 (m), 1012 (s), 985 (m), 893 (w), 870 (m), 822 (s), 613 (s), 494 (s). 1H NMR (600 MHz, DMSO-d6):δ 9.62 (br s, 1H), 7.55 (d, 1H, J = 8.8 Hz), 6.96 (s, 1H), 6.75 (d, 1H, J = 8.8 Hz), 5.85 (br s, 2H), 3.13 (s, 6H). Analysis, calculated for C8H12N2O3S2: C 38.69, H 4.87, N 11.28%; found: C 38.42, H 4.96, N 11.13%.

Refinement top

Hydrogen atoms bonded to amino and ammonio nitrogens were found in the difference Fourier electron-density maps and freely refined . The exceptions were the H's attached to N2B which N-H distances wouldn't refie properly and were accordingly restrained to the target value of 0.87 (1) Å. In all cases Uiso (H) = 1.2 Ueq (N). All hydrogens attached to carbon atoms were located at calculated positions and refined by applying the riding model (Uiso (H) = 1.2 Ueq (C) and Csp2-H distance 0.93 Å; Csp3-H 0.96 Å and Uiso (H) = 1.5 Ueq (C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Each molecule is denoted by letters A, B, C and D.
[Figure 2] Fig. 2. Molecular overlap of the four crystallographically independent molecules A, B, C and D in (I) (molecule A shown in green, B in blue, C in red and D in yellow).
[Figure 3] Fig. 3. Crystal structure of (I).
S-5-amino-2-(dimethylammonio)phenyl sulfothioate top
Crystal data top
C8H12N2O3S2Z = 8
Mr = 248.32F(000) = 1040
Triclinic, P1Dx = 1.500 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4173 (2) ÅCell parameters from 16121 reflections
b = 14.1160 (4) Åθ = 4.1–34.9°
c = 15.3048 (4) ŵ = 0.47 mm1
α = 93.474 (2)°T = 296 K
β = 101.0918 (19)°Prism, green
γ = 93.0199 (19)°0.67 × 0.44 × 0.28 mm
V = 2199.73 (10) Å3
Data collection top
Enhance (Mo) X-ray Source
diffractometer
9530 independent reflections
Radiation source: fine-focus sealed tube6061 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω–scanθmax = 27.0°, θmin = 4.1°
Absorption correction: multi-scan
CrysAlis RED (Oxford Diffraction, 2006).
h = 1313
Tmin = 0.66, Tmax = 0.88k = 1818
39152 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0861P)2]
where P = (Fo2 + 2Fc2)/3
9530 reflections(Δ/σ)max = 0.001
585 parametersΔρmax = 0.97 e Å3
2 restraintsΔρmin = 0.34 e Å3
Crystal data top
C8H12N2O3S2γ = 93.0199 (19)°
Mr = 248.32V = 2199.73 (10) Å3
Triclinic, P1Z = 8
a = 10.4173 (2) ÅMo Kα radiation
b = 14.1160 (4) ŵ = 0.47 mm1
c = 15.3048 (4) ÅT = 296 K
α = 93.474 (2)°0.67 × 0.44 × 0.28 mm
β = 101.0918 (19)°
Data collection top
Enhance (Mo) X-ray Source
diffractometer
9530 independent reflections
Absorption correction: multi-scan
CrysAlis RED (Oxford Diffraction, 2006).
6061 reflections with I > 2σ(I)
Tmin = 0.66, Tmax = 0.88Rint = 0.029
39152 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0472 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.97 e Å3
9530 reflectionsΔρmin = 0.34 e Å3
585 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.27663 (7)0.24900 (4)0.55734 (4)0.04401 (17)
S2A0.17068 (6)0.27335 (4)0.42951 (4)0.03945 (16)
S1B0.17849 (6)0.77005 (4)0.44199 (4)0.04073 (16)
S2B0.28071 (7)0.74990 (4)0.57259 (4)0.04367 (17)
S1C0.90558 (6)0.91691 (4)1.04578 (4)0.04246 (17)
S2C0.81879 (6)0.81735 (5)1.11966 (4)0.04335 (17)
S1D0.61090 (7)0.40268 (5)0.03857 (5)0.05126 (19)
S2D0.74027 (6)0.32095 (5)0.12351 (4)0.04467 (17)
O1A0.10076 (19)0.18205 (13)0.40364 (13)0.0593 (5)
O2A0.2658 (2)0.29550 (14)0.37611 (12)0.0605 (5)
O3A0.09201 (19)0.35090 (14)0.44440 (13)0.0616 (5)
O1B0.09958 (19)0.84839 (14)0.45331 (13)0.0618 (5)
O2B0.2759 (2)0.78960 (15)0.38979 (13)0.0622 (5)
O3B0.1079 (2)0.67865 (13)0.41843 (14)0.0637 (6)
O1C0.7534 (2)0.86953 (15)1.17901 (13)0.0648 (6)
O2C0.72798 (19)0.75774 (13)1.05336 (13)0.0568 (5)
O3C0.9318 (2)0.77085 (16)1.15941 (15)0.0755 (7)
O1D0.79910 (18)0.26208 (13)0.06400 (13)0.0570 (5)
O2D0.8338 (2)0.38584 (16)0.18086 (13)0.0723 (6)
O3D0.64858 (19)0.27025 (16)0.16585 (14)0.0708 (6)
N1A0.6882 (2)0.4774 (2)0.60426 (19)0.0580 (7)
H1AA0.724 (3)0.534 (2)0.611 (2)0.070*
H1AB0.730 (3)0.434 (2)0.578 (2)0.070*
N2A0.16030 (19)0.42056 (14)0.63661 (13)0.0346 (4)
H2A0.123 (3)0.3825 (18)0.5971 (17)0.042*
N1B0.16318 (18)0.92695 (14)0.64003 (13)0.0342 (4)
H1B0.125 (2)0.8810 (18)0.6033 (17)0.041*
N2B0.6913 (2)0.97876 (18)0.60693 (18)0.0574 (6)
H2BA0.728 (3)1.0353 (11)0.611 (2)0.069*
H2BB0.740 (3)0.9344 (16)0.592 (2)0.069*
N1C0.5436 (2)1.14941 (16)0.96753 (16)0.0456 (5)
H1CA0.468 (3)1.155 (2)0.9449 (19)0.055*
H1CB0.567 (3)1.167 (2)1.021 (2)0.055*
N2C0.7612 (2)0.80939 (15)0.87260 (14)0.0408 (5)
H2C0.802 (3)0.7874 (19)0.9172 (19)0.049*
N1D0.6621 (2)0.29835 (17)0.13159 (15)0.0514 (6)
H1D0.641 (3)0.277 (2)0.088 (2)0.062*
N2D0.9370 (3)0.65704 (18)0.0356 (2)0.0590 (7)
H2DA0.998 (3)0.669 (2)0.058 (2)0.071*
H2DB0.956 (3)0.676 (2)0.029 (2)0.071*
C1A0.3592 (2)0.36262 (15)0.58949 (14)0.0329 (5)
C2A0.2975 (2)0.43572 (15)0.62711 (14)0.0335 (5)
C3A0.3675 (2)0.52188 (17)0.65689 (16)0.0410 (6)
H3A0.32730.57060.68280.049*
C4A0.4955 (2)0.53522 (17)0.64817 (17)0.0438 (6)
H4A0.54100.59340.66800.053*
C5A0.5594 (2)0.46343 (17)0.61024 (16)0.0395 (5)
C6A0.4886 (2)0.37750 (17)0.58151 (15)0.0383 (5)
H6A0.52920.32870.55620.046*
C7A0.1503 (3)0.3849 (2)0.72493 (18)0.0560 (7)
H7AA0.19390.32680.73210.084*
H7AB0.05970.37330.72790.084*
H7AC0.19090.43160.77160.084*
C8A0.0830 (2)0.50585 (17)0.61936 (17)0.0429 (6)
H8AA0.11030.55330.66800.064*
H8AB0.00850.48800.61400.064*
H8AC0.09760.53110.56500.064*
C1B0.3640 (2)0.86418 (15)0.59945 (14)0.0328 (5)
C2B0.2993 (2)0.94133 (15)0.62723 (14)0.0314 (5)
C3B0.3651 (2)1.03014 (16)0.64587 (15)0.0351 (5)
H3B0.32231.08160.66450.042*
C4B0.4937 (2)1.04259 (17)0.63691 (16)0.0397 (6)
H4B0.53621.10300.64830.048*
C5B0.5620 (2)0.96619 (18)0.61100 (15)0.0389 (5)
C6B0.4939 (2)0.87747 (17)0.59219 (16)0.0389 (5)
H6B0.53690.82580.57430.047*
C7B0.0834 (2)1.01044 (18)0.61966 (19)0.0477 (6)
H7BA0.11031.06010.66630.072*
H7BB0.00760.99180.61560.072*
H7BC0.09631.03320.56390.072*
C8B0.1591 (3)0.8972 (2)0.73143 (17)0.0510 (7)
H8BA0.20660.84120.74160.076*
H8BB0.06960.88390.73660.076*
H8BC0.19840.94750.77490.076*
C1C0.7619 (2)0.95106 (16)0.97633 (15)0.0350 (5)
C2C0.7015 (2)0.89590 (16)0.89877 (15)0.0363 (5)
C3C0.5886 (3)0.92509 (19)0.84673 (16)0.0458 (6)
H3C0.54860.88860.79510.055*
C4C0.5352 (2)1.00708 (18)0.87041 (16)0.0434 (6)
H4C0.45881.02510.83490.052*
C5C0.5937 (2)1.06415 (17)0.94707 (16)0.0395 (6)
C6C0.7070 (2)1.03473 (16)0.99900 (15)0.0385 (5)
H6C0.74731.07181.05020.046*
C7C0.6643 (3)0.7310 (2)0.8276 (2)0.0587 (8)
H7CA0.60000.71940.86370.088*
H7CB0.70910.67420.82010.088*
H7CC0.62180.74900.77030.088*
C8C0.8610 (3)0.8316 (2)0.8170 (2)0.0637 (8)
H8CA0.81890.85690.76280.096*
H8CB0.90130.77450.80300.096*
H8CC0.92670.87760.84970.096*
C1D0.7193 (2)0.44478 (18)0.02904 (17)0.0418 (6)
C2D0.7337 (2)0.39226 (18)0.10609 (16)0.0431 (6)
C3D0.8142 (3)0.4285 (2)0.15952 (19)0.0560 (7)
H3D0.82210.39400.21170.067*
C4D0.8823 (3)0.5146 (2)0.1365 (2)0.0570 (7)
H4D0.93620.53810.17320.068*
C5D0.8720 (3)0.56763 (18)0.05842 (19)0.0477 (6)
C6D0.7879 (2)0.53183 (18)0.00654 (18)0.0464 (6)
H6D0.77750.56730.04460.056*
C7D0.7421 (4)0.2254 (2)0.1671 (2)0.0863 (12)
H7DA0.76040.24310.22330.129*
H7DB0.69410.16450.17540.129*
H7DC0.82300.22180.12550.129*
C8D0.5332 (4)0.3075 (3)0.1930 (3)0.1163 (18)
H8DA0.48540.35440.16720.174*
H8DB0.48330.24740.20160.174*
H8DC0.54840.32660.24950.174*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0557 (4)0.0249 (3)0.0488 (4)0.0009 (3)0.0044 (3)0.0018 (3)
S2A0.0402 (3)0.0342 (3)0.0421 (3)0.0021 (2)0.0077 (3)0.0067 (3)
S1B0.0383 (3)0.0345 (3)0.0474 (4)0.0011 (2)0.0069 (3)0.0054 (3)
S2B0.0524 (4)0.0267 (3)0.0507 (4)0.0020 (3)0.0070 (3)0.0037 (3)
S1C0.0371 (3)0.0453 (4)0.0428 (4)0.0040 (3)0.0024 (3)0.0083 (3)
S2C0.0480 (4)0.0448 (4)0.0393 (3)0.0058 (3)0.0109 (3)0.0098 (3)
S1D0.0471 (4)0.0546 (4)0.0591 (4)0.0077 (3)0.0228 (3)0.0164 (3)
S2D0.0464 (4)0.0473 (4)0.0400 (3)0.0045 (3)0.0089 (3)0.0053 (3)
O1A0.0602 (12)0.0481 (11)0.0633 (12)0.0190 (9)0.0083 (10)0.0155 (9)
O2A0.0684 (13)0.0674 (13)0.0461 (11)0.0160 (10)0.0207 (10)0.0056 (9)
O3A0.0599 (12)0.0586 (12)0.0607 (12)0.0230 (10)0.0036 (10)0.0075 (10)
O1B0.0626 (13)0.0545 (12)0.0621 (12)0.0253 (10)0.0056 (10)0.0082 (10)
O2B0.0588 (12)0.0774 (14)0.0526 (12)0.0061 (10)0.0193 (10)0.0036 (10)
O3B0.0637 (13)0.0478 (11)0.0727 (14)0.0182 (9)0.0085 (11)0.0149 (10)
O1C0.0782 (14)0.0701 (14)0.0517 (11)0.0039 (11)0.0293 (11)0.0032 (10)
O2C0.0680 (13)0.0452 (11)0.0577 (11)0.0107 (9)0.0182 (10)0.0004 (9)
O3C0.0591 (13)0.0903 (16)0.0842 (15)0.0214 (12)0.0141 (12)0.0499 (13)
O1D0.0537 (11)0.0524 (11)0.0653 (12)0.0077 (9)0.0130 (10)0.0006 (9)
O2D0.0725 (14)0.0822 (15)0.0527 (12)0.0187 (12)0.0004 (11)0.0131 (11)
O3D0.0548 (12)0.0899 (16)0.0757 (14)0.0013 (11)0.0221 (11)0.0434 (12)
N1A0.0433 (14)0.0511 (15)0.0812 (18)0.0032 (11)0.0200 (13)0.0013 (13)
N2A0.0359 (11)0.0301 (10)0.0359 (11)0.0014 (8)0.0034 (9)0.0002 (8)
N1B0.0322 (10)0.0324 (10)0.0369 (11)0.0018 (8)0.0052 (8)0.0008 (8)
N2B0.0412 (14)0.0536 (15)0.0800 (18)0.0008 (11)0.0214 (12)0.0008 (13)
N1C0.0443 (13)0.0454 (13)0.0461 (13)0.0043 (11)0.0045 (11)0.0080 (11)
N2C0.0419 (12)0.0451 (12)0.0352 (11)0.0018 (9)0.0101 (9)0.0019 (9)
N1D0.0587 (15)0.0587 (15)0.0343 (12)0.0145 (11)0.0063 (11)0.0082 (10)
N2D0.0496 (15)0.0496 (14)0.0814 (19)0.0042 (11)0.0239 (14)0.0028 (13)
C1A0.0384 (13)0.0280 (11)0.0312 (11)0.0032 (9)0.0031 (10)0.0035 (9)
C2A0.0363 (12)0.0305 (12)0.0326 (12)0.0012 (9)0.0043 (10)0.0033 (9)
C3A0.0416 (14)0.0322 (12)0.0483 (14)0.0016 (10)0.0086 (11)0.0039 (11)
C4A0.0462 (15)0.0325 (13)0.0500 (15)0.0064 (11)0.0074 (12)0.0032 (11)
C5A0.0390 (14)0.0418 (14)0.0371 (13)0.0014 (11)0.0061 (11)0.0046 (11)
C6A0.0423 (14)0.0371 (13)0.0355 (13)0.0085 (10)0.0064 (10)0.0019 (10)
C7A0.0530 (17)0.0684 (19)0.0510 (16)0.0038 (14)0.0162 (14)0.0205 (14)
C8A0.0401 (14)0.0372 (13)0.0472 (14)0.0105 (11)0.0021 (11)0.0038 (11)
C1B0.0387 (13)0.0260 (11)0.0323 (12)0.0040 (9)0.0032 (10)0.0030 (9)
C2B0.0347 (12)0.0317 (12)0.0275 (11)0.0025 (9)0.0050 (9)0.0026 (9)
C3B0.0408 (13)0.0288 (12)0.0361 (12)0.0047 (10)0.0084 (10)0.0012 (10)
C4B0.0424 (14)0.0339 (13)0.0412 (13)0.0044 (10)0.0070 (11)0.0010 (10)
C5B0.0361 (13)0.0462 (14)0.0342 (12)0.0013 (11)0.0069 (10)0.0016 (11)
C6B0.0396 (13)0.0387 (13)0.0392 (13)0.0088 (10)0.0087 (11)0.0005 (10)
C7B0.0368 (14)0.0405 (14)0.0628 (17)0.0099 (11)0.0019 (12)0.0007 (12)
C8B0.0443 (15)0.0677 (18)0.0444 (15)0.0017 (13)0.0161 (12)0.0102 (13)
C1C0.0358 (12)0.0369 (13)0.0313 (12)0.0034 (10)0.0043 (10)0.0063 (10)
C2C0.0414 (14)0.0378 (13)0.0290 (12)0.0053 (10)0.0082 (10)0.0011 (10)
C3C0.0508 (16)0.0537 (16)0.0285 (12)0.0093 (13)0.0013 (11)0.0008 (11)
C4C0.0411 (14)0.0478 (15)0.0390 (13)0.0002 (11)0.0010 (11)0.0096 (11)
C5C0.0420 (14)0.0389 (13)0.0389 (13)0.0006 (11)0.0096 (11)0.0106 (11)
C6C0.0460 (14)0.0331 (12)0.0341 (12)0.0049 (10)0.0042 (11)0.0029 (10)
C7C0.0556 (18)0.0495 (17)0.0652 (18)0.0066 (14)0.0060 (15)0.0155 (14)
C8C0.073 (2)0.069 (2)0.0572 (18)0.0051 (16)0.0384 (16)0.0039 (15)
C1D0.0416 (14)0.0443 (14)0.0428 (14)0.0059 (11)0.0124 (11)0.0135 (11)
C2D0.0471 (15)0.0427 (14)0.0391 (13)0.0023 (11)0.0071 (11)0.0100 (11)
C3D0.0672 (19)0.0568 (17)0.0493 (16)0.0014 (14)0.0253 (14)0.0048 (13)
C4D0.0582 (18)0.0557 (17)0.0645 (18)0.0055 (14)0.0309 (15)0.0115 (15)
C5D0.0434 (15)0.0433 (15)0.0601 (17)0.0048 (12)0.0161 (13)0.0120 (13)
C6D0.0512 (16)0.0407 (14)0.0510 (15)0.0083 (12)0.0169 (13)0.0074 (12)
C7D0.126 (3)0.060 (2)0.081 (2)0.027 (2)0.059 (2)0.0250 (18)
C8D0.095 (3)0.128 (4)0.097 (3)0.051 (3)0.052 (2)0.057 (3)
Geometric parameters (Å, º) top
S1A—C1A1.775 (2)C4A—H4A0.9300
S1A—S2A2.1105 (9)C5A—C6A1.388 (3)
S2A—O2A1.4342 (19)C6A—H6A0.9300
S2A—O3A1.4346 (19)C7A—H7AA0.9600
S2A—O1A1.4411 (18)C7A—H7AB0.9600
S1B—O2B1.4328 (19)C7A—H7AC0.9600
S1B—O1B1.4339 (19)C8A—H8AA0.9600
S1B—O3B1.4411 (18)C8A—H8AB0.9600
S1B—S2B2.1194 (9)C8A—H8AC0.9600
S2B—C1B1.777 (2)C1B—C6B1.383 (3)
S1C—C1C1.769 (2)C1B—C2B1.397 (3)
S1C—S2C2.1267 (9)C2B—C3B1.384 (3)
S2C—O3C1.428 (2)C3B—C4B1.376 (3)
S2C—O1C1.429 (2)C3B—H3B0.9300
S2C—O2C1.441 (2)C4B—C5B1.402 (3)
S1D—C1D1.775 (2)C4B—H4B0.9300
S1D—S2D2.1233 (10)C5B—C6B1.393 (3)
S2D—O2D1.428 (2)C6B—H6B0.9300
S2D—O3D1.4376 (19)C7B—H7BA0.9600
S2D—O1D1.4396 (19)C7B—H7BB0.9600
N1A—C5A1.367 (3)C7B—H7BC0.9600
N1A—H1AA0.86 (3)C8B—H8BA0.9600
N1A—H1AB0.89 (3)C8B—H8BB0.9600
N2A—C2A1.470 (3)C8B—H8BC0.9600
N2A—C7A1.491 (3)C1C—C6C1.393 (3)
N2A—C8A1.492 (3)C1C—C2C1.400 (3)
N2A—H2A0.81 (3)C2C—C3C1.385 (3)
N1B—C2B1.473 (3)C3C—C4C1.369 (4)
N1B—C7B1.492 (3)C3C—H3C0.9300
N1B—C8B1.492 (3)C4C—C5C1.398 (3)
N1B—H1B0.86 (2)C4C—H4C0.9300
N2B—C5B1.363 (3)C5C—C6C1.388 (3)
N2B—H2BA0.86 (2)C6C—H6C0.9300
N2B—H2BB0.87 (3)C7C—H7CA0.9600
N1C—C5C1.379 (3)C7C—H7CB0.9600
N1C—H1CA0.81 (3)C7C—H7CC0.9600
N1C—H1CB0.83 (3)C8C—H8CA0.9600
N2C—C2C1.468 (3)C8C—H8CB0.9600
N2C—C8C1.496 (3)C8C—H8CC0.9600
N2C—C7C1.497 (3)C1D—C6D1.379 (3)
N2C—H2C0.82 (3)C1D—C2D1.392 (3)
N1D—C2D1.479 (3)C2D—C3D1.380 (3)
N1D—C8D1.500 (4)C3D—C4D1.366 (4)
N1D—C7D1.500 (4)C3D—H3D0.9300
N1D—H1D0.82 (3)C4D—C5D1.396 (4)
N2D—C5D1.392 (4)C4D—H4D0.9300
N2D—H2DA0.79 (3)C5D—C6D1.387 (3)
N2D—H2DB0.99 (3)C6D—H6D0.9300
C1A—C6A1.383 (3)C7D—H7DA0.9600
C1A—C2A1.396 (3)C7D—H7DB0.9600
C2A—C3A1.389 (3)C7D—H7DC0.9600
C3A—C4A1.370 (3)C8D—H8DA0.9600
C3A—H3A0.9300C8D—H8DB0.9600
C4A—C5A1.399 (3)C8D—H8DC0.9600
C1A—S1A—S2A100.38 (8)H8AA—C8A—H8AC109.5
O2A—S2A—O3A113.54 (13)H8AB—C8A—H8AC109.5
O2A—S2A—O1A113.29 (11)C6B—C1B—C2B119.4 (2)
O3A—S2A—O1A115.94 (12)C6B—C1B—S2B119.89 (17)
O2A—S2A—S1A106.64 (9)C2B—C1B—S2B120.70 (17)
O3A—S2A—S1A104.90 (9)C3B—C2B—C1B119.8 (2)
O1A—S2A—S1A100.82 (9)C3B—C2B—N1B120.32 (19)
O2B—S1B—O1B113.64 (13)C1B—C2B—N1B119.88 (19)
O2B—S1B—O3B113.81 (12)C4B—C3B—C2B120.2 (2)
O1B—S1B—O3B115.59 (13)C4B—C3B—H3B119.9
O2B—S1B—S2B106.63 (9)C2B—C3B—H3B119.9
O1B—S1B—S2B104.64 (9)C3B—C4B—C5B121.4 (2)
O3B—S1B—S2B100.73 (9)C3B—C4B—H4B119.3
C1B—S2B—S1B99.21 (8)C5B—C4B—H4B119.3
C1C—S1C—S2C99.12 (8)N2B—C5B—C6B121.8 (2)
O3C—S2C—O1C116.76 (14)N2B—C5B—C4B120.6 (2)
O3C—S2C—O2C113.72 (14)C6B—C5B—C4B117.5 (2)
O1C—S2C—O2C111.87 (13)C1B—C6B—C5B121.7 (2)
O3C—S2C—S1C100.41 (9)C1B—C6B—H6B119.1
O1C—S2C—S1C107.73 (9)C5B—C6B—H6B119.1
O2C—S2C—S1C104.76 (8)N1B—C7B—H7BA109.5
C1D—S1D—S2D99.41 (9)N1B—C7B—H7BB109.5
O2D—S2D—O3D115.78 (14)H7BA—C7B—H7BB109.5
O2D—S2D—O1D112.56 (12)N1B—C7B—H7BC109.5
O3D—S2D—O1D114.26 (13)H7BA—C7B—H7BC109.5
O2D—S2D—S1D107.46 (11)H7BB—C7B—H7BC109.5
O3D—S2D—S1D100.31 (9)N1B—C8B—H8BA109.5
O1D—S2D—S1D104.81 (9)N1B—C8B—H8BB109.5
C5A—N1A—H1AA119 (2)H8BA—C8B—H8BB109.5
C5A—N1A—H1AB122 (2)N1B—C8B—H8BC109.5
H1AA—N1A—H1AB116 (3)H8BA—C8B—H8BC109.5
C2A—N2A—C7A111.71 (19)H8BB—C8B—H8BC109.5
C2A—N2A—C8A113.43 (18)C6C—C1C—C2C118.9 (2)
C7A—N2A—C8A111.0 (2)C6C—C1C—S1C119.49 (18)
C2A—N2A—H2A108.8 (19)C2C—C1C—S1C121.57 (18)
C7A—N2A—H2A109.6 (19)C3C—C2C—C1C119.6 (2)
C8A—N2A—H2A101.8 (19)C3C—C2C—N2C121.1 (2)
C2B—N1B—C7B113.76 (18)C1C—C2C—N2C119.3 (2)
C2B—N1B—C8B111.14 (18)C4C—C3C—C2C120.8 (2)
C7B—N1B—C8B111.0 (2)C4C—C3C—H3C119.6
C2B—N1B—H1B108.5 (17)C2C—C3C—H3C119.6
C7B—N1B—H1B105.6 (17)C3C—C4C—C5C121.1 (2)
C8B—N1B—H1B106.4 (17)C3C—C4C—H4C119.5
C5B—N2B—H2BA120 (2)C5C—C4C—H4C119.5
C5B—N2B—H2BB126 (2)N1C—C5C—C6C121.3 (2)
H2BA—N2B—H2BB114 (3)N1C—C5C—C4C120.6 (2)
C5C—N1C—H1CA116 (2)C6C—C5C—C4C118.0 (2)
C5C—N1C—H1CB112 (2)C5C—C6C—C1C121.7 (2)
H1CA—N1C—H1CB117 (3)C5C—C6C—H6C119.2
C2C—N2C—C8C111.0 (2)C1C—C6C—H6C119.2
C2C—N2C—C7C114.1 (2)N2C—C7C—H7CA109.5
C8C—N2C—C7C111.1 (2)N2C—C7C—H7CB109.5
C2C—N2C—H2C109.4 (19)H7CA—C7C—H7CB109.5
C8C—N2C—H2C105 (2)N2C—C7C—H7CC109.5
C7C—N2C—H2C105 (2)H7CA—C7C—H7CC109.5
C2D—N1D—C8D111.1 (2)H7CB—C7C—H7CC109.5
C2D—N1D—C7D113.7 (2)N2C—C8C—H8CA109.5
C8D—N1D—C7D112.6 (3)N2C—C8C—H8CB109.5
C2D—N1D—H1D110 (2)H8CA—C8C—H8CB109.5
C8D—N1D—H1D103 (2)N2C—C8C—H8CC109.5
C7D—N1D—H1D106 (2)H8CA—C8C—H8CC109.5
C5D—N2D—H2DA118 (2)H8CB—C8C—H8CC109.5
C5D—N2D—H2DB114.4 (18)C6D—C1D—C2D119.2 (2)
H2DA—N2D—H2DB111 (3)C6D—C1D—S1D119.8 (2)
C6A—C1A—C2A119.5 (2)C2D—C1D—S1D120.95 (19)
C6A—C1A—S1A119.55 (17)C3D—C2D—C1D119.8 (2)
C2A—C1A—S1A120.89 (17)C3D—C2D—N1D119.8 (2)
C3A—C2A—C1A119.5 (2)C1D—C2D—N1D120.4 (2)
C3A—C2A—N2A120.5 (2)C4D—C3D—C2D120.6 (3)
C1A—C2A—N2A120.00 (19)C4D—C3D—H3D119.7
C4A—C3A—C2A120.1 (2)C2D—C3D—H3D119.7
C4A—C3A—H3A120.0C3D—C4D—C5D120.7 (2)
C2A—C3A—H3A120.0C3D—C4D—H4D119.7
C3A—C4A—C5A121.6 (2)C5D—C4D—H4D119.7
C3A—C4A—H4A119.2C6D—C5D—N2D120.2 (3)
C5A—C4A—H4A119.2C6D—C5D—C4D118.2 (2)
N1A—C5A—C6A121.7 (2)N2D—C5D—C4D121.4 (2)
N1A—C5A—C4A120.7 (2)C1D—C6D—C5D121.5 (2)
C6A—C5A—C4A117.6 (2)C1D—C6D—H6D119.3
C1A—C6A—C5A121.7 (2)C5D—C6D—H6D119.3
C1A—C6A—H6A119.2N1D—C7D—H7DA109.5
C5A—C6A—H6A119.2N1D—C7D—H7DB109.5
N2A—C7A—H7AA109.5H7DA—C7D—H7DB109.5
N2A—C7A—H7AB109.5N1D—C7D—H7DC109.5
H7AA—C7A—H7AB109.5H7DA—C7D—H7DC109.5
N2A—C7A—H7AC109.5H7DB—C7D—H7DC109.5
H7AA—C7A—H7AC109.5N1D—C8D—H8DA109.5
H7AB—C7A—H7AC109.5N1D—C8D—H8DB109.5
N2A—C8A—H8AA109.5H8DA—C8D—H8DB109.5
N2A—C8A—H8AB109.5N1D—C8D—H8DC109.5
H8AA—C8A—H8AB109.5H8DA—C8D—H8DC109.5
N2A—C8A—H8AC109.5H8DB—C8D—H8DC109.5
C1A—S1A—S2A—O2A62.82 (12)C3B—C4B—C5B—N2B176.6 (2)
C1A—S1A—S2A—O3A57.91 (12)C3B—C4B—C5B—C6B1.7 (3)
C1A—S1A—S2A—O1A178.68 (11)C2B—C1B—C6B—C5B0.7 (3)
O2B—S1B—S2B—C1B61.78 (12)S2B—C1B—C6B—C5B178.81 (18)
O1B—S1B—S2B—C1B58.93 (12)N2B—C5B—C6B—C1B177.6 (2)
O3B—S1B—S2B—C1B179.18 (12)C4B—C5B—C6B—C1B0.6 (4)
C1C—S1C—S2C—O3C165.76 (14)S2C—S1C—C1C—C6C98.42 (18)
C1C—S1C—S2C—O1C71.61 (13)S2C—S1C—C1C—C2C81.58 (19)
C1C—S1C—S2C—O2C47.64 (12)C6C—C1C—C2C—C3C0.4 (3)
C1D—S1D—S2D—O2D70.29 (13)S1C—C1C—C2C—C3C179.58 (18)
C1D—S1D—S2D—O3D168.34 (13)C6C—C1C—C2C—N2C177.8 (2)
C1D—S1D—S2D—O1D49.66 (13)S1C—C1C—C2C—N2C2.2 (3)
S2A—S1A—C1A—C6A99.70 (18)C8C—N2C—C2C—C3C91.1 (3)
S2A—S1A—C1A—C2A83.71 (18)C7C—N2C—C2C—C3C35.3 (3)
C6A—C1A—C2A—C3A0.7 (3)C8C—N2C—C2C—C1C87.1 (3)
S1A—C1A—C2A—C3A175.85 (17)C7C—N2C—C2C—C1C146.5 (2)
C6A—C1A—C2A—N2A179.5 (2)C1C—C2C—C3C—C4C0.2 (4)
S1A—C1A—C2A—N2A2.9 (3)N2C—C2C—C3C—C4C178.4 (2)
C7A—N2A—C2A—C3A87.4 (3)C2C—C3C—C4C—C5C0.7 (4)
C8A—N2A—C2A—C3A39.0 (3)C3C—C4C—C5C—N1C176.2 (2)
C7A—N2A—C2A—C1A91.4 (3)C3C—C4C—C5C—C6C0.6 (3)
C8A—N2A—C2A—C1A142.3 (2)N1C—C5C—C6C—C1C176.8 (2)
C1A—C2A—C3A—C4A0.9 (4)C4C—C5C—C6C—C1C0.0 (3)
N2A—C2A—C3A—C4A179.7 (2)C2C—C1C—C6C—C5C0.5 (3)
C2A—C3A—C4A—C5A0.5 (4)S1C—C1C—C6C—C5C179.46 (17)
C3A—C4A—C5A—N1A178.3 (3)S2D—S1D—C1D—C6D93.5 (2)
C3A—C4A—C5A—C6A0.0 (4)S2D—S1D—C1D—C2D88.2 (2)
C2A—C1A—C6A—C5A0.2 (3)C6D—C1D—C2D—C3D1.1 (4)
S1A—C1A—C6A—C5A176.44 (18)S1D—C1D—C2D—C3D177.2 (2)
N1A—C5A—C6A—C1A178.4 (2)C6D—C1D—C2D—N1D179.6 (2)
C4A—C5A—C6A—C1A0.2 (4)S1D—C1D—C2D—N1D2.1 (3)
S1B—S2B—C1B—C6B99.62 (19)C8D—N1D—C2D—C3D87.0 (4)
S1B—S2B—C1B—C2B79.84 (18)C7D—N1D—C2D—C3D41.2 (4)
C6B—C1B—C2B—C3B0.9 (3)C8D—N1D—C2D—C1D92.3 (3)
S2B—C1B—C2B—C3B178.55 (17)C7D—N1D—C2D—C1D139.5 (3)
C6B—C1B—C2B—N1B176.6 (2)C1D—C2D—C3D—C4D1.5 (4)
S2B—C1B—C2B—N1B3.9 (3)N1D—C2D—C3D—C4D179.2 (3)
C7B—N1B—C2B—C3B34.7 (3)C2D—C3D—C4D—C5D0.0 (5)
C8B—N1B—C2B—C3B91.5 (2)C3D—C4D—C5D—C6D1.9 (4)
C7B—N1B—C2B—C1B147.8 (2)C3D—C4D—C5D—N2D177.6 (3)
C8B—N1B—C2B—C1B86.0 (3)C2D—C1D—C6D—C5D0.7 (4)
C1B—C2B—C3B—C4B0.2 (3)S1D—C1D—C6D—C5D179.1 (2)
N1B—C2B—C3B—C4B177.7 (2)N2D—C5D—C6D—C1D178.0 (3)
C2B—C3B—C4B—C5B1.5 (4)C4D—C5D—C6D—C1D2.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O2Ai0.86 (3)2.40 (3)3.204 (3)157 (3)
N1A—H1AB···O3Bi0.89 (3)2.38 (3)3.189 (3)152 (3)
N2A—H2A···O3A0.81 (3)2.31 (2)2.983 (3)141 (2)
N2A—H2A···O3Bii0.81 (2)2.48 (2)3.003 (3)124 (3)
N1B—H1B···O1B0.86 (2)2.28 (3)2.940 (3)134 (2)
N1B—H1B···O1Aii0.86 (2)2.45 (2)3.016 (3)124 (1)
N2B—H2BA···O2Biii0.86 (2)2.48 (2)3.266 (3)153 (3)
N2B—H2BB···O1Ai0.87 (3)2.39 (3)3.237 (3)163 (3)
N1C—H1CA···O2Civ0.81 (3)2.44 (3)3.149 (3)147 (3)
N1C—H1CB···O3Dv0.83 (3)2.55 (3)3.349 (3)162 (3)
N2C—H2C···O2C0.82 (3)2.41 (3)2.982 (3)128 (3)
N2C—H2C···N2Dvi0.82 (2)2.44 (3)3.122 (4)143 (3)
N1D—H1D···N1Cvii0.81 (3)2.31 (3)3.013 (3)146 (3)
N2D—H2DA···O1Dviii0.79 (3)2.30 (3)3.040 (4)155 (3)
N2D—H2DB···O3Cix0.99 (3)2.40 (3)3.314 (4)154 (2)
C8A—H8AA···O2Di0.962.373.273 (3)157
C8B—H8BA···O3Di0.962.543.437 (4)155
C7D—H7DA···O2Bx0.962.513.370 (4)149
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x+1, y+2, z+2; (v) x, y+1, z+1; (vi) x, y, z+1; (vii) x, y1, z1; (viii) x+2, y+1, z; (ix) x, y, z1; (x) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H12N2O3S2
Mr248.32
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.4173 (2), 14.1160 (4), 15.3048 (4)
α, β, γ (°)93.474 (2), 101.0918 (19), 93.0199 (19)
V3)2199.73 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.67 × 0.44 × 0.28
Data collection
DiffractometerEnhance (Mo) X-ray Source
diffractometer
Absorption correctionMulti-scan
CrysAlis RED (Oxford Diffraction, 2006).
Tmin, Tmax0.66, 0.88
No. of measured, independent and
observed [I > 2σ(I)] reflections
39152, 9530, 6061
Rint0.029
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.131, 0.96
No. of reflections9530
No. of parameters585
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.97, 0.34

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O2Ai0.86 (3)2.40 (3)3.204 (3)157 (3)
N1A—H1AB···O3Bi0.89 (3)2.38 (3)3.189 (3)152 (3)
N2A—H2A···O3A0.81 (3)2.31 (2)2.983 (3)141 (2)
N2A—H2A···O3Bii0.81 (2)2.48 (2)3.003 (3)124 (3)
N1B—H1B···O1B0.86 (2)2.28 (3)2.940 (3)134 (2)
N1B—H1B···O1Aii0.86 (2)2.45 (2)3.016 (3)124 (1)
N2B—H2BA···O2Biii0.86 (2)2.48 (2)3.266 (3)153 (3)
N2B—H2BB···O1Ai0.87 (3)2.39 (3)3.237 (3)163 (3)
N1C—H1CA···O2Civ0.81 (3)2.44 (3)3.149 (3)147 (3)
N1C—H1CB···O3Dv0.83 (3)2.55 (3)3.349 (3)162 (3)
N2C—H2C···O2C0.82 (3)2.41 (3)2.982 (3)128 (3)
N2C—H2C···N2Dvi0.82 (2)2.44 (3)3.122 (4)143 (3)
N1D—H1D···N1Cvii0.81 (3)2.31 (3)3.013 (3)146 (3)
N2D—H2DA···O1Dviii0.79 (3)2.30 (3)3.040 (4)155 (3)
N2D—H2DB···O3Cix0.99 (3)2.40 (3)3.314 (4)154 (2)
C8A—H8AA···O2Di0.96002.37003.273 (3)157
C8B—H8BA···O3Di0.96002.54003.437 (4)155
C7D—H7DA···O2Bx0.96002.51003.370 (4)149
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x+1, y+2, z+2; (v) x, y+1, z+1; (vi) x, y, z+1; (vii) x, y1, z1; (viii) x+2, y+1, z; (ix) x, y, z1; (x) x+1, y+1, z.
 

Acknowledgements

This research was supported by the Ministry of Science and Technology of the Republic of Croatia (grant Nos. 117–0000000–3283 and 098–1191344–2943).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBennett, G. M. & Bell, E. V. (1943). Organic Syntheses, Coll. Vol. 2, p. 223. New York, John Wiley & Sons.  Google Scholar
First citationBertolasi, V., Gilli, P., Ferretti, V., Gilli, G. & Fernàndez-Castaño, C. (1999). Acta Cryst. B55, 985–993.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBogert, M. T. & Updike, I. A. (1927). J. Am. Chem. Soc. 49, 1373–1382.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHunger, K. (2003). Industrial Dyes: Chemistry, Properties, Application. Winheim: Wiley-VCH.  Google Scholar
First citationLeventis, N., Chen, M. & Sortiriou-Leventis, C. (1997). Tetrahedron, 53, 10083–10092.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrinajstić, N. (1968). Tetrahedron Lett., 12, 1529–1532.  Google Scholar
First citationZollinger, H. (1991). Color Chemistry, 2nd ed. Weinheim: VCH.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1263-o1264
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds