metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris[2-(2-pyridylimino­meth­yl)phenol­ato(0.67−)]europium(III) nitrate

aSchool of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China
*Correspondence e-mail: qhzhao@ynu.edu.cn

(Received 2 March 2009; accepted 20 May 2009; online 29 May 2009)

The title compound, [Eu(C12H9.33N2O)3]NO3, was obtained by the reaction of Eu(NO3)·3H2O and the Schiff base ligand 2-(2-pyridylimino­meth­yl)phenol. The Eu atom is located on a threefold rotation axis and is nine-coordinated by three tridentate Schiff base ligands in a distorted tricapped trigonal-prismatic geometry. The O atom at the phenol hydr­oxy group is partially deprotonated and the H atoms are modelled with one-third occupancy according to the space group R[\overline{3}]. Offset face-to-face ππ [centroid–centroid distance = 3.886 (3) Å] and edge-to-face C—H⋯π inter­actions are found between adjacent mol­ecules. An intra­molecular O—H⋯N hydrogen bond is also present.

Related literature

For the synthesis, see: Sreenivasulu et al. (2005[Sreenivasulu, B., Vetrichelvan, M., Zhao, F., Gao, S. & Vittal, J. J. (2005). Eur. J. Inorg. Chem. pp. 4635-4645.]); Henry et al. (2008[Henry, N., Lagrenée, M. & Abraham, F. (2008). Inorg. Chem. Commun. 11, 1071-1074.]). For related structures, see: Li & Zhang (2004[Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1017-m1019.]); You et al. (2004[You, Z.-L., Chen, B., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m884-m886.]).

[Scheme 1]

Experimental

Crystal data
  • [Eu(C12H9.33N2O)3]NO3

  • Mr = 806.61

  • Hexagonal, [R \overline 3]

  • a = 14.0398 (12) Å

  • c = 28.509 (5) Å

  • V = 4866.7 (11) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 1.99 mm−1

  • T = 293 K

  • 0.21 × 0.15 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany..]) Tmin = 0.706, Tmax = 0.819

  • 10540 measured reflections

  • 2599 independent reflections

  • 1711 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.128

  • S = 1.00

  • 2599 reflections

  • 155 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.90 e Å−3

Table 1
Selected geometric parameters (Å, °)

Eu1—O1 2.334 (4)
Eu1—N2 2.539 (5)
Eu1—N1 2.680 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯N2 0.89 (14) 2.09 (14) 2.783 (6) 134 (11)
C12—H12ACg1iii 0.93 2.88 3.788 (9) 167
Symmetry code: (iii) [x-y+{\script{2\over 3}}, x-{\script{2\over 3}}, -z+{\script{1\over 3}}]. Cg1 is the centroid of the C7–C12 benzene ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During the last decades, considerable amount of work was devoted to the synthesis, structure and properties of transition metal complexes derived from Schiff bases because of their potential applications in catalysis and enzymatic reactions, magnetism and molecular architecture (Henry et al. 2008; Li & Zhang, 2004). Herein, we report the Schiff base complex mentioned in the title by solvent evaporation method (Sreenivasulu et al., 2005).

As shown in Fig. 1, the central Eu of the title compound is nine-coordinated. The coordination environment is defined by six N atoms and three O atoms from the three different N-Salicylidene-2-aminopyride ligands. (You et al., 2004). The bond length of Eu(1)—N(1) (2.681 (5) Å) and Eu(1)—N(2) (2.540 (5) Å) are longer than Eu(1)—O(1) (2.332 (4) Å). The bond angle of O(1)#1-Eu(1)—N(2)#2 (69.37 (14)°) is larger than N(2)#2-Eu(1)—N(1) (51.11 (15)°).

In one schiff base ligand, all of the atoms are almost in one plane. The most evident distortion is associated with the C12 atom, which is 0.2017 (3)Å away from the mean plane. Meanwhile, the two aromatic rings of the same ligand form a dihedral angle of 14.072 (4)°, and between every two neighbour ligands coordinated to the Eu, the schiff bases appear an angle of 80.768 (3), 80.292 (4), 80.933 (3)°, respectively. The phenyl ring and pyridine ring of adjacent molecules exist the offset face-to-face pi-pi stacking interactions, with a distance of 3.886 (3)Å (13.245 (4)°) and the edge-to-face C—H-pi interactions were founded between the two phenyl rings of adjacent molecules with the distance of 3.785 (5) Å. The intramolecular hydrogen-bonding was also found between O1 and N2 atoms with the N···O separation of 2.783 (6) Å.

Related literature top

For the potential applications of transition metal complexes derived from Schiff bases, see: Li & Zhang (2004); Henry et al. (2008). For the synthesis, see: Sreenivasulu et al. (2005). For a related structure, see: You et al. (2004). Cg1 is the centroid of the C7–C12 benzene ring.

Experimental top

All chemicals used (reagent grade) were commercially available. Salicylaldehyde (0.122 g, 1 mmol) and 2-aminomethylpyridine (0.108 g, 1 mmol) were dissolved in ethanol (5 ml) respectively at room temperature. Then the two solutions were mixed and stirred slowly for about 30 min. Finally, the yellow ligand was synthesized. Then Eu(NO3)2.3H2O (0.400 g, 1 mmol) in ethanol (5 ml) was added to it with stirring homogeneously. Yellow crystals suitable for X-ray ananlysis were obtained by slow evaporation at room temperature over several days.

Refinement top

H atoms bonded to C atoms were calculated geometrically and allowed to ride on the C atoms with distance restraints of C—H = 0.93Å and Uiso(H) = 1.2Ueq(C). The H atom bonded to atom O1 was located in a difference map and refined with the distance restraints O—H = 0.89 (14)Å and the H atoms was modelled with one-third occupancy.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Tris[2-(2-pyridyliminomethyl)phenolato(0.67-)]europium(III) nitrate top
Crystal data top
[Eu(C12H9.33N2O)3]NO3F(000) = 2424
Mr = 806.61Dx = 1.651 Mg m3
Hexagonal, R3Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -R 3θ = 1.9–28.4°
a = 14.0398 (12) ŵ = 1.99 mm1
c = 28.509 (5) ÅT = 293 K
V = 4866.7 (11) Å3Block, yellow
Z = 60.21 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII 1K CCD area-detector
diffractometer
2599 independent reflections
Radiation source: fine-focus sealed tube1711 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
ϕ and ω scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1318
Tmin = 0.706, Tmax = 0.819k = 1818
10540 measured reflectionsl = 3735
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.059P)2]
where P = (Fo2 + 2Fc2)/3
2599 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 1.11 e Å3
0 restraintsΔρmin = 0.90 e Å3
Crystal data top
[Eu(C12H9.33N2O)3]NO3Z = 6
Mr = 806.61Mo Kα radiation
Hexagonal, R3µ = 1.99 mm1
a = 14.0398 (12) ÅT = 293 K
c = 28.509 (5) Å0.21 × 0.15 × 0.10 mm
V = 4866.7 (11) Å3
Data collection top
Bruker APEXII 1K CCD area-detector
diffractometer
2599 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1711 reflections with I > 2σ(I)
Tmin = 0.706, Tmax = 0.819Rint = 0.092
10540 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 1.11 e Å3
2599 reflectionsΔρmin = 0.90 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Eu11.00000.00000.16281 (2)0.0373 (2)
O11.0522 (4)0.1495 (3)0.21296 (15)0.0466 (11)
H1B1.108 (11)0.139 (10)0.206 (4)0.05 (3)*0.33
O20.977 (3)0.068 (2)0.3090 (13)0.558 (19)
N11.1365 (4)0.0071 (4)0.09543 (18)0.0450 (12)
N21.1941 (4)0.1521 (4)0.14418 (17)0.0404 (12)
N31.00000.00000.3159 (6)0.142 (7)
C11.1473 (6)0.0492 (6)0.0603 (2)0.062 (2)
H1A1.08770.11700.05200.075*
C21.2458 (7)0.0091 (7)0.0357 (3)0.068 (2)
H2A1.25150.04950.01110.081*
C31.3364 (6)0.0926 (6)0.0483 (2)0.0623 (19)
H3A1.40290.12020.03240.075*
C41.3251 (5)0.1502 (5)0.0842 (2)0.0505 (16)
H4A1.38410.21730.09360.061*
C51.2233 (5)0.1064 (5)0.1066 (2)0.0453 (15)
C61.2517 (5)0.2543 (5)0.1551 (2)0.0460 (16)
H6A1.31510.29750.13770.055*
C71.2259 (5)0.3067 (5)0.1920 (2)0.0404 (14)
C81.1301 (5)0.2504 (5)0.2202 (2)0.0398 (14)
C91.1213 (5)0.3104 (6)0.2584 (2)0.0536 (17)
H9A1.06190.27530.27870.064*
C101.1979 (6)0.4187 (6)0.2661 (3)0.070 (2)
H10A1.18880.45520.29140.084*
C111.2886 (6)0.4749 (6)0.2370 (3)0.070 (2)
H11A1.33910.54880.24200.084*
C121.3017 (5)0.4186 (5)0.2009 (3)0.0581 (18)
H12A1.36260.45530.18140.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.0340 (2)0.0340 (2)0.0438 (3)0.01701 (11)0.0000.000
O10.041 (2)0.040 (2)0.055 (3)0.018 (2)0.008 (2)0.001 (2)
O20.46 (3)0.34 (3)1.02 (6)0.30 (2)0.05 (5)0.03 (4)
N10.040 (3)0.047 (3)0.045 (3)0.019 (3)0.005 (2)0.006 (2)
N20.033 (3)0.036 (3)0.050 (3)0.016 (2)0.002 (2)0.006 (2)
N30.180 (12)0.180 (12)0.065 (9)0.090 (6)0.0000.000
C10.066 (5)0.054 (4)0.060 (5)0.024 (4)0.004 (4)0.018 (4)
C20.086 (6)0.087 (6)0.048 (4)0.055 (5)0.000 (4)0.014 (4)
C30.061 (5)0.069 (5)0.063 (5)0.036 (4)0.008 (4)0.001 (4)
C40.047 (4)0.053 (4)0.056 (4)0.029 (3)0.000 (3)0.001 (3)
C50.041 (4)0.049 (4)0.052 (4)0.027 (3)0.001 (3)0.000 (3)
C60.034 (3)0.035 (3)0.062 (4)0.012 (3)0.001 (3)0.000 (3)
C70.040 (3)0.033 (3)0.047 (4)0.018 (3)0.002 (3)0.003 (3)
C80.038 (3)0.039 (3)0.046 (4)0.022 (3)0.003 (3)0.000 (3)
C90.049 (4)0.060 (4)0.053 (4)0.028 (4)0.001 (3)0.018 (3)
C100.060 (5)0.061 (5)0.086 (6)0.029 (4)0.009 (4)0.035 (4)
C110.057 (5)0.042 (4)0.098 (6)0.016 (4)0.004 (4)0.021 (4)
C120.043 (4)0.042 (4)0.078 (5)0.013 (3)0.004 (4)0.011 (4)
Geometric parameters (Å, º) top
Eu1—O12.334 (4)C1—C21.395 (10)
Eu1—O1i2.334 (4)C1—H1A0.9300
Eu1—O1ii2.334 (4)C2—C31.403 (10)
Eu1—N2i2.539 (5)C2—H2A0.9300
Eu1—N2ii2.539 (5)C3—C41.361 (9)
Eu1—N22.539 (5)C3—H3A0.9300
Eu1—N1ii2.680 (5)C4—C51.397 (9)
Eu1—N1i2.680 (5)C4—H4A0.9300
Eu1—N12.680 (5)C6—C71.430 (8)
Eu1—C5ii3.154 (6)C6—H6A0.9300
Eu1—C5i3.154 (6)C7—C121.412 (8)
Eu1—C53.154 (6)C7—C81.420 (8)
O1—C81.302 (7)C8—C91.418 (8)
O1—H1B0.89 (14)C9—C101.372 (9)
O2—N31.167 (16)C9—H9A0.9300
N1—C11.330 (8)C10—C111.389 (10)
N1—C51.353 (8)C10—H10A0.9300
N2—C61.285 (7)C11—C121.365 (9)
N2—C51.411 (7)C11—H11A0.9300
N3—O2i1.167 (16)C12—H12A0.9300
N3—O2ii1.167 (16)
O1—Eu1—O1i86.41 (15)O1i—Eu1—H1B101 (4)
O1—Eu1—O1ii86.41 (15)O1ii—Eu1—H1B71 (3)
O1i—Eu1—O1ii86.41 (15)N2i—Eu1—H1B102 (4)
O1—Eu1—N2i80.87 (15)N2ii—Eu1—H1B140 (3)
O1i—Eu1—N2i69.51 (15)N2—Eu1—H1B52 (4)
O1ii—Eu1—N2i153.28 (16)N1ii—Eu1—H1B167 (3)
O1—Eu1—N2ii153.28 (16)N1i—Eu1—H1B92 (3)
O1i—Eu1—N2ii80.87 (15)N1—Eu1—H1B102 (4)
O1ii—Eu1—N2ii69.51 (15)C5ii—Eu1—H1B166 (4)
N2i—Eu1—N2ii115.74 (7)C5i—Eu1—H1B97 (3)
O1—Eu1—N269.51 (15)C5—Eu1—H1B77 (4)
O1i—Eu1—N2153.28 (16)C8—O1—Eu1142.2 (4)
O1ii—Eu1—N280.87 (15)C8—O1—H1B83 (8)
N2i—Eu1—N2115.74 (8)Eu1—O1—H1B68 (8)
N2ii—Eu1—N2115.74 (7)C1—N1—C5118.6 (6)
O1—Eu1—N1ii151.37 (16)C1—N1—Eu1144.0 (4)
O1i—Eu1—N1ii86.02 (16)C5—N1—Eu197.4 (4)
O1ii—Eu1—N1ii120.57 (15)C6—N2—C5121.9 (5)
N2i—Eu1—N1ii70.61 (15)C6—N2—Eu1134.4 (4)
N2ii—Eu1—N1ii51.09 (15)C5—N2—Eu1102.1 (3)
N2—Eu1—N1ii120.68 (15)O2i—N3—O2117.2 (12)
O1—Eu1—N1i86.02 (16)O2i—N3—O2ii117.2 (12)
O1i—Eu1—N1i120.57 (15)O2—N3—O2ii117.2 (12)
O1ii—Eu1—N1i151.37 (16)N1—C1—C2121.5 (7)
N2i—Eu1—N1i51.09 (15)N1—C1—H1A119.2
N2ii—Eu1—N1i120.68 (15)C2—C1—H1A119.2
N2—Eu1—N1i70.61 (15)C1—C2—C3119.6 (6)
N1ii—Eu1—N1i74.31 (17)C1—C2—H2A120.2
O1—Eu1—N1120.57 (15)C3—C2—H2A120.2
O1i—Eu1—N1151.37 (16)C4—C3—C2118.8 (7)
O1ii—Eu1—N186.02 (16)C4—C3—H3A120.6
N2i—Eu1—N1120.68 (15)C2—C3—H3A120.6
N2ii—Eu1—N170.61 (15)C3—C4—C5118.7 (6)
N2—Eu1—N151.09 (15)C3—C4—H4A120.7
N1ii—Eu1—N174.31 (17)C5—C4—H4A120.7
N1i—Eu1—N174.31 (17)N1—C5—C4122.8 (6)
O1—Eu1—C5ii168.10 (15)N1—C5—N2109.3 (5)
O1i—Eu1—C5ii81.98 (16)C4—C5—N2127.9 (6)
O1ii—Eu1—C5ii95.44 (15)N1—C5—Eu157.4 (3)
N2i—Eu1—C5ii92.55 (15)C4—C5—Eu1175.7 (5)
N2ii—Eu1—C5ii25.94 (15)N2—C5—Eu151.9 (3)
N2—Eu1—C5ii122.40 (15)N2—C6—C7125.0 (6)
N1ii—Eu1—C5ii25.18 (15)N2—C6—H6A117.5
N1i—Eu1—C5ii97.61 (16)C7—C6—H6A117.5
N1—Eu1—C5ii71.32 (15)C12—C7—C8119.7 (6)
O1—Eu1—C5i81.98 (16)C12—C7—C6117.4 (6)
O1i—Eu1—C5i95.44 (16)C8—C7—C6122.9 (5)
O1ii—Eu1—C5i168.10 (15)O1—C8—C9119.5 (6)
N2i—Eu1—C5i25.94 (15)O1—C8—C7124.2 (5)
N2ii—Eu1—C5i122.40 (15)C9—C8—C7116.3 (5)
N2—Eu1—C5i92.55 (15)O1—C8—H1B36 (5)
N1ii—Eu1—C5i71.32 (15)C9—C8—H1B143 (5)
N1i—Eu1—C5i25.18 (15)C7—C8—H1B94 (5)
N1—Eu1—C5i97.61 (16)C10—C9—C8121.9 (7)
C5ii—Eu1—C5i96.46 (15)C10—C9—H9A119.0
O1—Eu1—C595.44 (16)C8—C9—H9A119.0
O1i—Eu1—C5168.10 (15)C9—C10—C11121.4 (7)
O1ii—Eu1—C581.98 (16)C9—C10—H10A119.3
N2i—Eu1—C5122.40 (15)C11—C10—H10A119.3
N2ii—Eu1—C592.55 (15)C12—C11—C10118.2 (6)
N2—Eu1—C525.94 (15)C12—C11—H11A120.9
N1ii—Eu1—C597.61 (16)C10—C11—H11A120.9
N1i—Eu1—C571.32 (15)C11—C12—C7122.3 (7)
N1—Eu1—C525.18 (15)C11—C12—H12A118.8
C5ii—Eu1—C596.46 (15)C7—C12—H12A118.8
C5i—Eu1—C596.46 (15)
Symmetry codes: (i) y+1, xy1, z; (ii) x+y+2, x+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N20.89 (14)2.09 (14)2.783 (6)134 (11)
C12—H12A···Cg1iii0.932.883.788 (9)167
Symmetry code: (iii) xy+2/3, x2/3, z+1/3.

Experimental details

Crystal data
Chemical formula[Eu(C12H9.33N2O)3]NO3
Mr806.61
Crystal system, space groupHexagonal, R3
Temperature (K)293
a, c (Å)14.0398 (12), 28.509 (5)
V3)4866.7 (11)
Z6
Radiation typeMo Kα
µ (mm1)1.99
Crystal size (mm)0.21 × 0.15 × 0.10
Data collection
DiffractometerBruker APEXII 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.706, 0.819
No. of measured, independent and
observed [I > 2σ(I)] reflections
10540, 2599, 1711
Rint0.092
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.128, 1.00
No. of reflections2599
No. of parameters155
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.11, 0.90

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Eu1—O12.334 (4)Eu1—N22.539 (5)
Eu1—O1i2.334 (4)Eu1—N1ii2.680 (5)
Eu1—O1ii2.334 (4)Eu1—N1i2.680 (5)
Eu1—N2i2.539 (5)Eu1—N12.680 (5)
Eu1—N2ii2.539 (5)
O1—Eu1—O1i86.41 (15)O1—Eu1—N1ii151.37 (16)
O1—Eu1—O1ii86.41 (15)N2—Eu1—N1ii120.68 (15)
O1—Eu1—N2i80.87 (15)O1—Eu1—N1i86.02 (16)
O1—Eu1—N2ii153.28 (16)N2—Eu1—N1i70.61 (15)
O1—Eu1—N269.51 (15)O1—Eu1—N1120.57 (15)
O1i—Eu1—N2153.28 (16)N2—Eu1—N151.09 (15)
O1ii—Eu1—N280.87 (15)N1ii—Eu1—N174.31 (17)
N2i—Eu1—N2115.74 (8)N1i—Eu1—N174.31 (17)
N2ii—Eu1—N2115.74 (7)O1—Eu1—C5ii168.10 (15)
Symmetry codes: (i) y+1, xy1, z; (ii) x+y+2, x+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N20.89 (14)2.09 (14)2.783 (6)134 (11)
C12—H12A···Cg1iii0.932.883.788 (9)167
Symmetry code: (iii) xy+2/3, x2/3, z+1/3.
 

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHenry, N., Lagrenée, M. & Abraham, F. (2008). Inorg. Chem. Commun. 11, 1071–1074.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1017–m1019.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany..  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreenivasulu, B., Vetrichelvan, M., Zhao, F., Gao, S. & Vittal, J. J. (2005). Eur. J. Inorg. Chem. pp. 4635–4645.  Web of Science CSD CrossRef Google Scholar
First citationYou, Z.-L., Chen, B., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m884–m886.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds