metal-organic compounds
Tris[2-(2-pyridyliminomethyl)phenolato(0.67−)]europium(III) nitrate
aSchool of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China
*Correspondence e-mail: qhzhao@ynu.edu.cn
The title compound, [Eu(C12H9.33N2O)3]NO3, was obtained by the reaction of Eu(NO3)·3H2O and the Schiff base ligand 2-(2-pyridyliminomethyl)phenol. The Eu atom is located on a threefold rotation axis and is nine-coordinated by three tridentate Schiff base ligands in a distorted tricapped trigonal-prismatic geometry. The O atom at the phenol hydroxy group is partially deprotonated and the H atoms are modelled with one-third occupancy according to the R. Offset face-to-face π–π [centroid–centroid distance = 3.886 (3) Å] and edge-to-face C—H⋯π interactions are found between adjacent molecules. An intramolecular O—H⋯N hydrogen bond is also present.
Related literature
For the synthesis, see: Sreenivasulu et al. (2005); Henry et al. (2008). For related structures, see: Li & Zhang (2004); You et al. (2004).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809017206/bq2130sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809017206/bq2130Isup2.hkl
All chemicals used (reagent grade) were commercially available. Salicylaldehyde (0.122 g, 1 mmol) and 2-aminomethylpyridine (0.108 g, 1 mmol) were dissolved in ethanol (5 ml) respectively at room temperature. Then the two solutions were mixed and stirred slowly for about 30 min. Finally, the yellow ligand was synthesized. Then Eu(NO3)2.3H2O (0.400 g, 1 mmol) in ethanol (5 ml) was added to it with stirring homogeneously. Yellow crystals suitable for X-ray ananlysis were obtained by slow evaporation at room temperature over several days.
H atoms bonded to C atoms were calculated geometrically and allowed to ride on the C atoms with distance restraints of C—H = 0.93Å and Uiso(H) = 1.2Ueq(C). The H atom bonded to atom O1 was located in a difference map and refined with the distance restraints O—H = 0.89 (14)Å and the H atoms was modelled with one-third occupancy.
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. |
[Eu(C12H9.33N2O)3]NO3 | F(000) = 2424 |
Mr = 806.61 | Dx = 1.651 Mg m−3 |
Hexagonal, R3 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -R 3 | θ = 1.9–28.4° |
a = 14.0398 (12) Å | µ = 1.99 mm−1 |
c = 28.509 (5) Å | T = 293 K |
V = 4866.7 (11) Å3 | Block, yellow |
Z = 6 | 0.21 × 0.15 × 0.10 mm |
Bruker APEXII 1K CCD area-detector diffractometer | 2599 independent reflections |
Radiation source: fine-focus sealed tube | 1711 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.092 |
ϕ and ω scans | θmax = 28.4°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −13→18 |
Tmin = 0.706, Tmax = 0.819 | k = −18→18 |
10540 measured reflections | l = −37→35 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.128 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.059P)2] where P = (Fo2 + 2Fc2)/3 |
2599 reflections | (Δ/σ)max < 0.001 |
155 parameters | Δρmax = 1.11 e Å−3 |
0 restraints | Δρmin = −0.90 e Å−3 |
[Eu(C12H9.33N2O)3]NO3 | Z = 6 |
Mr = 806.61 | Mo Kα radiation |
Hexagonal, R3 | µ = 1.99 mm−1 |
a = 14.0398 (12) Å | T = 293 K |
c = 28.509 (5) Å | 0.21 × 0.15 × 0.10 mm |
V = 4866.7 (11) Å3 |
Bruker APEXII 1K CCD area-detector diffractometer | 2599 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1711 reflections with I > 2σ(I) |
Tmin = 0.706, Tmax = 0.819 | Rint = 0.092 |
10540 measured reflections |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.128 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | Δρmax = 1.11 e Å−3 |
2599 reflections | Δρmin = −0.90 e Å−3 |
155 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Eu1 | 1.0000 | 0.0000 | 0.16281 (2) | 0.0373 (2) | |
O1 | 1.0522 (4) | 0.1495 (3) | 0.21296 (15) | 0.0466 (11) | |
H1B | 1.108 (11) | 0.139 (10) | 0.206 (4) | 0.05 (3)* | 0.33 |
O2 | 0.977 (3) | 0.068 (2) | 0.3090 (13) | 0.558 (19) | |
N1 | 1.1365 (4) | 0.0071 (4) | 0.09543 (18) | 0.0450 (12) | |
N2 | 1.1941 (4) | 0.1521 (4) | 0.14418 (17) | 0.0404 (12) | |
N3 | 1.0000 | 0.0000 | 0.3159 (6) | 0.142 (7) | |
C1 | 1.1473 (6) | −0.0492 (6) | 0.0603 (2) | 0.062 (2) | |
H1A | 1.0877 | −0.1170 | 0.0520 | 0.075* | |
C2 | 1.2458 (7) | −0.0091 (7) | 0.0357 (3) | 0.068 (2) | |
H2A | 1.2515 | −0.0495 | 0.0111 | 0.081* | |
C3 | 1.3364 (6) | 0.0926 (6) | 0.0483 (2) | 0.0623 (19) | |
H3A | 1.4029 | 0.1202 | 0.0324 | 0.075* | |
C4 | 1.3251 (5) | 0.1502 (5) | 0.0842 (2) | 0.0505 (16) | |
H4A | 1.3841 | 0.2173 | 0.0936 | 0.061* | |
C5 | 1.2233 (5) | 0.1064 (5) | 0.1066 (2) | 0.0453 (15) | |
C6 | 1.2517 (5) | 0.2543 (5) | 0.1551 (2) | 0.0460 (16) | |
H6A | 1.3151 | 0.2975 | 0.1377 | 0.055* | |
C7 | 1.2259 (5) | 0.3067 (5) | 0.1920 (2) | 0.0404 (14) | |
C8 | 1.1301 (5) | 0.2504 (5) | 0.2202 (2) | 0.0398 (14) | |
C9 | 1.1213 (5) | 0.3104 (6) | 0.2584 (2) | 0.0536 (17) | |
H9A | 1.0619 | 0.2753 | 0.2787 | 0.064* | |
C10 | 1.1979 (6) | 0.4187 (6) | 0.2661 (3) | 0.070 (2) | |
H10A | 1.1888 | 0.4552 | 0.2914 | 0.084* | |
C11 | 1.2886 (6) | 0.4749 (6) | 0.2370 (3) | 0.070 (2) | |
H11A | 1.3391 | 0.5488 | 0.2420 | 0.084* | |
C12 | 1.3017 (5) | 0.4186 (5) | 0.2009 (3) | 0.0581 (18) | |
H12A | 1.3626 | 0.4553 | 0.1814 | 0.070* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Eu1 | 0.0340 (2) | 0.0340 (2) | 0.0438 (3) | 0.01701 (11) | 0.000 | 0.000 |
O1 | 0.041 (2) | 0.040 (2) | 0.055 (3) | 0.018 (2) | 0.008 (2) | −0.001 (2) |
O2 | 0.46 (3) | 0.34 (3) | 1.02 (6) | 0.30 (2) | −0.05 (5) | 0.03 (4) |
N1 | 0.040 (3) | 0.047 (3) | 0.045 (3) | 0.019 (3) | 0.005 (2) | −0.006 (2) |
N2 | 0.033 (3) | 0.036 (3) | 0.050 (3) | 0.016 (2) | 0.002 (2) | −0.006 (2) |
N3 | 0.180 (12) | 0.180 (12) | 0.065 (9) | 0.090 (6) | 0.000 | 0.000 |
C1 | 0.066 (5) | 0.054 (4) | 0.060 (5) | 0.024 (4) | 0.004 (4) | −0.018 (4) |
C2 | 0.086 (6) | 0.087 (6) | 0.048 (4) | 0.055 (5) | 0.000 (4) | −0.014 (4) |
C3 | 0.061 (5) | 0.069 (5) | 0.063 (5) | 0.036 (4) | 0.008 (4) | −0.001 (4) |
C4 | 0.047 (4) | 0.053 (4) | 0.056 (4) | 0.029 (3) | 0.000 (3) | 0.001 (3) |
C5 | 0.041 (4) | 0.049 (4) | 0.052 (4) | 0.027 (3) | 0.001 (3) | 0.000 (3) |
C6 | 0.034 (3) | 0.035 (3) | 0.062 (4) | 0.012 (3) | 0.001 (3) | 0.000 (3) |
C7 | 0.040 (3) | 0.033 (3) | 0.047 (4) | 0.018 (3) | −0.002 (3) | −0.003 (3) |
C8 | 0.038 (3) | 0.039 (3) | 0.046 (4) | 0.022 (3) | −0.003 (3) | 0.000 (3) |
C9 | 0.049 (4) | 0.060 (4) | 0.053 (4) | 0.028 (4) | −0.001 (3) | −0.018 (3) |
C10 | 0.060 (5) | 0.061 (5) | 0.086 (6) | 0.029 (4) | −0.009 (4) | −0.035 (4) |
C11 | 0.057 (5) | 0.042 (4) | 0.098 (6) | 0.016 (4) | −0.004 (4) | −0.021 (4) |
C12 | 0.043 (4) | 0.042 (4) | 0.078 (5) | 0.013 (3) | −0.004 (4) | −0.011 (4) |
Eu1—O1 | 2.334 (4) | C1—C2 | 1.395 (10) |
Eu1—O1i | 2.334 (4) | C1—H1A | 0.9300 |
Eu1—O1ii | 2.334 (4) | C2—C3 | 1.403 (10) |
Eu1—N2i | 2.539 (5) | C2—H2A | 0.9300 |
Eu1—N2ii | 2.539 (5) | C3—C4 | 1.361 (9) |
Eu1—N2 | 2.539 (5) | C3—H3A | 0.9300 |
Eu1—N1ii | 2.680 (5) | C4—C5 | 1.397 (9) |
Eu1—N1i | 2.680 (5) | C4—H4A | 0.9300 |
Eu1—N1 | 2.680 (5) | C6—C7 | 1.430 (8) |
Eu1—C5ii | 3.154 (6) | C6—H6A | 0.9300 |
Eu1—C5i | 3.154 (6) | C7—C12 | 1.412 (8) |
Eu1—C5 | 3.154 (6) | C7—C8 | 1.420 (8) |
O1—C8 | 1.302 (7) | C8—C9 | 1.418 (8) |
O1—H1B | 0.89 (14) | C9—C10 | 1.372 (9) |
O2—N3 | 1.167 (16) | C9—H9A | 0.9300 |
N1—C1 | 1.330 (8) | C10—C11 | 1.389 (10) |
N1—C5 | 1.353 (8) | C10—H10A | 0.9300 |
N2—C6 | 1.285 (7) | C11—C12 | 1.365 (9) |
N2—C5 | 1.411 (7) | C11—H11A | 0.9300 |
N3—O2i | 1.167 (16) | C12—H12A | 0.9300 |
N3—O2ii | 1.167 (16) | ||
O1—Eu1—O1i | 86.41 (15) | O1i—Eu1—H1B | 101 (4) |
O1—Eu1—O1ii | 86.41 (15) | O1ii—Eu1—H1B | 71 (3) |
O1i—Eu1—O1ii | 86.41 (15) | N2i—Eu1—H1B | 102 (4) |
O1—Eu1—N2i | 80.87 (15) | N2ii—Eu1—H1B | 140 (3) |
O1i—Eu1—N2i | 69.51 (15) | N2—Eu1—H1B | 52 (4) |
O1ii—Eu1—N2i | 153.28 (16) | N1ii—Eu1—H1B | 167 (3) |
O1—Eu1—N2ii | 153.28 (16) | N1i—Eu1—H1B | 92 (3) |
O1i—Eu1—N2ii | 80.87 (15) | N1—Eu1—H1B | 102 (4) |
O1ii—Eu1—N2ii | 69.51 (15) | C5ii—Eu1—H1B | 166 (4) |
N2i—Eu1—N2ii | 115.74 (7) | C5i—Eu1—H1B | 97 (3) |
O1—Eu1—N2 | 69.51 (15) | C5—Eu1—H1B | 77 (4) |
O1i—Eu1—N2 | 153.28 (16) | C8—O1—Eu1 | 142.2 (4) |
O1ii—Eu1—N2 | 80.87 (15) | C8—O1—H1B | 83 (8) |
N2i—Eu1—N2 | 115.74 (8) | Eu1—O1—H1B | 68 (8) |
N2ii—Eu1—N2 | 115.74 (7) | C1—N1—C5 | 118.6 (6) |
O1—Eu1—N1ii | 151.37 (16) | C1—N1—Eu1 | 144.0 (4) |
O1i—Eu1—N1ii | 86.02 (16) | C5—N1—Eu1 | 97.4 (4) |
O1ii—Eu1—N1ii | 120.57 (15) | C6—N2—C5 | 121.9 (5) |
N2i—Eu1—N1ii | 70.61 (15) | C6—N2—Eu1 | 134.4 (4) |
N2ii—Eu1—N1ii | 51.09 (15) | C5—N2—Eu1 | 102.1 (3) |
N2—Eu1—N1ii | 120.68 (15) | O2i—N3—O2 | 117.2 (12) |
O1—Eu1—N1i | 86.02 (16) | O2i—N3—O2ii | 117.2 (12) |
O1i—Eu1—N1i | 120.57 (15) | O2—N3—O2ii | 117.2 (12) |
O1ii—Eu1—N1i | 151.37 (16) | N1—C1—C2 | 121.5 (7) |
N2i—Eu1—N1i | 51.09 (15) | N1—C1—H1A | 119.2 |
N2ii—Eu1—N1i | 120.68 (15) | C2—C1—H1A | 119.2 |
N2—Eu1—N1i | 70.61 (15) | C1—C2—C3 | 119.6 (6) |
N1ii—Eu1—N1i | 74.31 (17) | C1—C2—H2A | 120.2 |
O1—Eu1—N1 | 120.57 (15) | C3—C2—H2A | 120.2 |
O1i—Eu1—N1 | 151.37 (16) | C4—C3—C2 | 118.8 (7) |
O1ii—Eu1—N1 | 86.02 (16) | C4—C3—H3A | 120.6 |
N2i—Eu1—N1 | 120.68 (15) | C2—C3—H3A | 120.6 |
N2ii—Eu1—N1 | 70.61 (15) | C3—C4—C5 | 118.7 (6) |
N2—Eu1—N1 | 51.09 (15) | C3—C4—H4A | 120.7 |
N1ii—Eu1—N1 | 74.31 (17) | C5—C4—H4A | 120.7 |
N1i—Eu1—N1 | 74.31 (17) | N1—C5—C4 | 122.8 (6) |
O1—Eu1—C5ii | 168.10 (15) | N1—C5—N2 | 109.3 (5) |
O1i—Eu1—C5ii | 81.98 (16) | C4—C5—N2 | 127.9 (6) |
O1ii—Eu1—C5ii | 95.44 (15) | N1—C5—Eu1 | 57.4 (3) |
N2i—Eu1—C5ii | 92.55 (15) | C4—C5—Eu1 | 175.7 (5) |
N2ii—Eu1—C5ii | 25.94 (15) | N2—C5—Eu1 | 51.9 (3) |
N2—Eu1—C5ii | 122.40 (15) | N2—C6—C7 | 125.0 (6) |
N1ii—Eu1—C5ii | 25.18 (15) | N2—C6—H6A | 117.5 |
N1i—Eu1—C5ii | 97.61 (16) | C7—C6—H6A | 117.5 |
N1—Eu1—C5ii | 71.32 (15) | C12—C7—C8 | 119.7 (6) |
O1—Eu1—C5i | 81.98 (16) | C12—C7—C6 | 117.4 (6) |
O1i—Eu1—C5i | 95.44 (16) | C8—C7—C6 | 122.9 (5) |
O1ii—Eu1—C5i | 168.10 (15) | O1—C8—C9 | 119.5 (6) |
N2i—Eu1—C5i | 25.94 (15) | O1—C8—C7 | 124.2 (5) |
N2ii—Eu1—C5i | 122.40 (15) | C9—C8—C7 | 116.3 (5) |
N2—Eu1—C5i | 92.55 (15) | O1—C8—H1B | 36 (5) |
N1ii—Eu1—C5i | 71.32 (15) | C9—C8—H1B | 143 (5) |
N1i—Eu1—C5i | 25.18 (15) | C7—C8—H1B | 94 (5) |
N1—Eu1—C5i | 97.61 (16) | C10—C9—C8 | 121.9 (7) |
C5ii—Eu1—C5i | 96.46 (15) | C10—C9—H9A | 119.0 |
O1—Eu1—C5 | 95.44 (16) | C8—C9—H9A | 119.0 |
O1i—Eu1—C5 | 168.10 (15) | C9—C10—C11 | 121.4 (7) |
O1ii—Eu1—C5 | 81.98 (16) | C9—C10—H10A | 119.3 |
N2i—Eu1—C5 | 122.40 (15) | C11—C10—H10A | 119.3 |
N2ii—Eu1—C5 | 92.55 (15) | C12—C11—C10 | 118.2 (6) |
N2—Eu1—C5 | 25.94 (15) | C12—C11—H11A | 120.9 |
N1ii—Eu1—C5 | 97.61 (16) | C10—C11—H11A | 120.9 |
N1i—Eu1—C5 | 71.32 (15) | C11—C12—C7 | 122.3 (7) |
N1—Eu1—C5 | 25.18 (15) | C11—C12—H12A | 118.8 |
C5ii—Eu1—C5 | 96.46 (15) | C7—C12—H12A | 118.8 |
C5i—Eu1—C5 | 96.46 (15) |
Symmetry codes: (i) −y+1, x−y−1, z; (ii) −x+y+2, −x+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···N2 | 0.89 (14) | 2.09 (14) | 2.783 (6) | 134 (11) |
C12—H12A···Cg1iii | 0.93 | 2.88 | 3.788 (9) | 167 |
Symmetry code: (iii) x−y+2/3, x−2/3, −z+1/3. |
Experimental details
Crystal data | |
Chemical formula | [Eu(C12H9.33N2O)3]NO3 |
Mr | 806.61 |
Crystal system, space group | Hexagonal, R3 |
Temperature (K) | 293 |
a, c (Å) | 14.0398 (12), 28.509 (5) |
V (Å3) | 4866.7 (11) |
Z | 6 |
Radiation type | Mo Kα |
µ (mm−1) | 1.99 |
Crystal size (mm) | 0.21 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Bruker APEXII 1K CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.706, 0.819 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10540, 2599, 1711 |
Rint | 0.092 |
(sin θ/λ)max (Å−1) | 0.670 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.128, 1.00 |
No. of reflections | 2599 |
No. of parameters | 155 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.11, −0.90 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Eu1—O1 | 2.334 (4) | Eu1—N2 | 2.539 (5) |
Eu1—O1i | 2.334 (4) | Eu1—N1ii | 2.680 (5) |
Eu1—O1ii | 2.334 (4) | Eu1—N1i | 2.680 (5) |
Eu1—N2i | 2.539 (5) | Eu1—N1 | 2.680 (5) |
Eu1—N2ii | 2.539 (5) | ||
O1—Eu1—O1i | 86.41 (15) | O1—Eu1—N1ii | 151.37 (16) |
O1—Eu1—O1ii | 86.41 (15) | N2—Eu1—N1ii | 120.68 (15) |
O1—Eu1—N2i | 80.87 (15) | O1—Eu1—N1i | 86.02 (16) |
O1—Eu1—N2ii | 153.28 (16) | N2—Eu1—N1i | 70.61 (15) |
O1—Eu1—N2 | 69.51 (15) | O1—Eu1—N1 | 120.57 (15) |
O1i—Eu1—N2 | 153.28 (16) | N2—Eu1—N1 | 51.09 (15) |
O1ii—Eu1—N2 | 80.87 (15) | N1ii—Eu1—N1 | 74.31 (17) |
N2i—Eu1—N2 | 115.74 (8) | N1i—Eu1—N1 | 74.31 (17) |
N2ii—Eu1—N2 | 115.74 (7) | O1—Eu1—C5ii | 168.10 (15) |
Symmetry codes: (i) −y+1, x−y−1, z; (ii) −x+y+2, −x+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···N2 | 0.89 (14) | 2.09 (14) | 2.783 (6) | 134 (11) |
C12—H12A···Cg1iii | 0.93 | 2.88 | 3.788 (9) | 167 |
Symmetry code: (iii) x−y+2/3, x−2/3, −z+1/3. |
References
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Henry, N., Lagrenée, M. & Abraham, F. (2008). Inorg. Chem. Commun. 11, 1071–1074. Web of Science CSD CrossRef CAS Google Scholar
Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1017–m1019. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sreenivasulu, B., Vetrichelvan, M., Zhao, F., Gao, S. & Vittal, J. J. (2005). Eur. J. Inorg. Chem. pp. 4635–4645. Web of Science CSD CrossRef Google Scholar
You, Z.-L., Chen, B., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m884–m886. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
During the last decades, considerable amount of work was devoted to the synthesis, structure and properties of transition metal complexes derived from Schiff bases because of their potential applications in catalysis and enzymatic reactions, magnetism and molecular architecture (Henry et al. 2008; Li & Zhang, 2004). Herein, we report the Schiff base complex mentioned in the title by solvent evaporation method (Sreenivasulu et al., 2005).
As shown in Fig. 1, the central Eu of the title compound is nine-coordinated. The coordination environment is defined by six N atoms and three O atoms from the three different N-Salicylidene-2-aminopyride ligands. (You et al., 2004). The bond length of Eu(1)—N(1) (2.681 (5) Å) and Eu(1)—N(2) (2.540 (5) Å) are longer than Eu(1)—O(1) (2.332 (4) Å). The bond angle of O(1)#1-Eu(1)—N(2)#2 (69.37 (14)°) is larger than N(2)#2-Eu(1)—N(1) (51.11 (15)°).
In one schiff base ligand, all of the atoms are almost in one plane. The most evident distortion is associated with the C12 atom, which is 0.2017 (3)Å away from the mean plane. Meanwhile, the two aromatic rings of the same ligand form a dihedral angle of 14.072 (4)°, and between every two neighbour ligands coordinated to the Eu, the schiff bases appear an angle of 80.768 (3), 80.292 (4), 80.933 (3)°, respectively. The phenyl ring and pyridine ring of adjacent molecules exist the offset face-to-face pi-pi stacking interactions, with a distance of 3.886 (3)Å (13.245 (4)°) and the edge-to-face C—H-pi interactions were founded between the two phenyl rings of adjacent molecules with the distance of 3.785 (5) Å. The intramolecular hydrogen-bonding was also found between O1 and N2 atoms with the N···O separation of 2.783 (6) Å.