organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2-Di­methyl-1,3-dioxolan-4-yl)methyl 3-carb­oxy­propanoate

aDepartment of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice, Poland, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

(Received 22 April 2009; accepted 23 April 2009; online 7 May 2009)

In the title compound, C10H16O6, the five-membered ring has an envelope conformation. The packing involves hydrogen-bonded carboxylic acid inversion dimers and three C—H⋯O inter­actions.

Related literature

For related literature, see: Osanai et al. (1997[Osanai, S., Higami, M., Ono, Y. & Ohta, E. (1997). J. Mater. Chem. 7, 1405-1408.]); Scriba (1993[Scriba, G. K. E. (1993). Arch. Pharm. (Weinheim), 326, 477-481.], 1995[Scriba, G. K. E. (1995). Arch. Pharm. (Weinheim), 328, 271-276.]). The structure of a related derivative is reported in the preceeding paper, see: Kuś et al. (2009[Kuś, P., Rojkiewicz, M., Zięba, G., Witoszek, M. & Jones, P. G. (2009). Acta Cryst. E65, o1191]).

[Scheme 1]

Experimental

Crystal data
  • C10H16O6

  • Mr = 232.23

  • Monoclinic, P 21 /c

  • a = 20.7650 (12) Å

  • b = 5.7007 (3) Å

  • c = 9.6964 (7) Å

  • β = 98.658 (5)°

  • V = 1134.73 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.96 mm−1

  • T = 100 K

  • 0.2 × 0.1 × 0.1 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with an Atlas (Nova) detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.]) Tmin = 0.880, Tmax = 1.000 (expected range = 0.799–0.908)

  • 10581 measured reflections

  • 2304 independent reflections

  • 2170 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.125

  • S = 1.14

  • 2304 reflections

  • 156 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H01⋯O2i 0.80 (3) 1.86 (3) 2.6582 (19) 175 (3)
C3—H3A⋯O3ii 0.99 2.36 3.211 (2) 144
C2—H2B⋯O4iii 0.99 2.57 3.489 (2) 155
C7—H7B⋯O5iv 0.99 2.60 3.506 (3) 152
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Isopropylidene groups are often used as protecting or activating units in polyhydroxyalkyl compounds used for synthesis of sugar-like derivatives; for a brief introduction and the structure of a related derivative, see the accompanying paper (Kuś et al., 2009).

Hemi-esters of succinic acid are often used for the synthesis of amphiphilic compounds with well organized structure (Osanai et al., 1997). Non-symmetrical esters of succinic acid have been used for the synthesis of prodrugs that release the corresponding drugs very slowly; e.g. steroid drugs (Scriba, 1995) or Phenytoin (Scriba, 1993). Solketal (D,L-isopropylideneglycerol, Aldrich) was used for the synthesis of compound 1.

The molecule of compound 1 is shown in Fig. 1. Bond lengths and angles may be regarded as normal. The chain C2 through to C7 has an approximately extended conformation (absolute torsion angles between 158 and 174°). The five-membered ring displays an envelope conformation, with local mirror symmetry about C8 and the midpoint of C6—C7.

The molecular packing (Fig. 2) is dominated by the formation of the well known carboxylic acid dimers via classical hydrogen bonding. Three further contacts, of the type C—H···O, link the molecules to a three-dimensional pattern.

Related literature top

For related literature, see: Osanai et al. (1997); Scriba (1993, 1995). The structure of a related derivative is reported in the preceeding paper, see: Kuś et al. (2009)

Experimental top

Compound 1 was obtained from solketal and succinic anhydride as described by Scriba (1993). Slow crystallization from petroleum ether gave crystals suitable for X-ray analysis. The analytical and spectroscopic data are consistent with the literature. M.p. 60° C. 1H NMR (CDCl3, 400 MHz): δ 4.32 (q, 1H), 4.21–4.05 (m, 3H), 3.75–3.72 (dd, 1H), 2.67 (t, 4H), 1.43 (s, 3H), 1.36 (s, 3H). 13C NMR (100 MHz): δ 207.34, 172.10, 110.03, 73.62, 66.39, 65.13, 31.03, 28.97, 26.78, 25.46. MS (ESI): m/z (%) = 231 (100) [M—H]-. IR: CO at 1724, 1711 and 1694 cm-1 (s), C—O at 1234 cm-1 (m), 1,3-dioxalone at 975 cm-1 (s).

Refinement top

The OH hydrogen was refined freely. Methyl H atoms were identified in difference syntheses and refined as idealized rigid groups (C—H 0.98 Å, H—C—H 109.5°) allowed to rotate but not tip. Other H atoms were included at calculated positions and refined using a riding model, with fixed C—H bond lengths of 0.95 Å (CH, aromatic), 0.99 Å (CH2) and 1.00 Å (CH, sp3); Uiso(H) values were fixed at 1.2Ueq of the parent C atom (1.2Ueq for methyl H).

The atom C6 is disordered over two sites with occupancy ratio 0.9:0.1, corresponding to a second conformation of the five-membered ring. An appropriate set of similarity restraints was used to ensure stability of refinement.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound in the crystal structure. Displacement ellipsoids represent 50% probability levels.
[Figure 2] Fig. 2. Packing diagram of the title compound. H atoms not involved in H bonding (thick dashed lines) are omitted for clarity. The interaction H7B···O5, which links the five-membered rings parallel to the c axis (the view direction), is not shown.
2,2-Dimethyl-1,3-dioxolan-4-ylmethyl 3-carboxypropanoate top
Crystal data top
C10H16O6Dx = 1.359 Mg m3
Mr = 232.23Melting point: 333 K
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 20.7650 (12) ÅCell parameters from 7029 reflections
b = 5.7007 (3) Åθ = 4.3–75.7°
c = 9.6964 (7) ŵ = 0.96 mm1
β = 98.658 (5)°T = 100 K
V = 1134.73 (12) Å3Block, colourless
Z = 40.2 × 0.1 × 0.1 mm
F(000) = 496
Data collection top
Oxford Diffraction Xcalibur
diffractometer with an Atlas (Nova) detector
2304 independent reflections
Radiation source: Nova (Cu) X-ray Source2170 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 10.3543 pixels mm-1θmax = 74.5°, θmin = 4.3°
ω scansh = 2525
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 76
Tmin = 0.880, Tmax = 1.000l = 1012
10581 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0399P)2 + 1.0966P]
where P = (Fo2 + 2Fc2)/3
2304 reflections(Δ/σ)max = 0.015
156 parametersΔρmax = 0.27 e Å3
4 restraintsΔρmin = 0.25 e Å3
Crystal data top
C10H16O6V = 1134.73 (12) Å3
Mr = 232.23Z = 4
Monoclinic, P21/cCu Kα radiation
a = 20.7650 (12) ŵ = 0.96 mm1
b = 5.7007 (3) ÅT = 100 K
c = 9.6964 (7) Å0.2 × 0.1 × 0.1 mm
β = 98.658 (5)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with an Atlas (Nova) detector
2304 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
2170 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 1.000Rint = 0.028
10581 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0514 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.27 e Å3
2304 reflectionsΔρmin = 0.25 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.44071 (7)0.1502 (2)0.58989 (15)0.0287 (3)
H010.4643 (14)0.164 (5)0.533 (3)0.047 (8)*
O20.47778 (6)0.2189 (2)0.59298 (14)0.0278 (3)
C10.44377 (9)0.0675 (3)0.63543 (19)0.0243 (4)
C20.40364 (9)0.1107 (3)0.7496 (2)0.0265 (4)
H2A0.42990.07010.84030.032*
H2B0.36530.00550.73560.032*
C30.38031 (9)0.3632 (3)0.75537 (19)0.0258 (4)
H3A0.35990.38490.84050.031*
H3B0.41830.46970.76200.031*
C40.33223 (9)0.4289 (3)0.6303 (2)0.0258 (4)
O30.32078 (7)0.3156 (3)0.52376 (14)0.0340 (4)
O40.30257 (6)0.6315 (2)0.65113 (14)0.0295 (3)
C50.26115 (10)0.7325 (4)0.5323 (2)0.0339 (5)
H5A0.23720.60730.47520.041*0.893 (8)
H5B0.28770.82050.47310.041*0.893 (8)
H5C0.27980.88860.51700.041*0.107 (8)
H5D0.26750.63540.45080.041*0.107 (8)
O50.16891 (7)0.7592 (3)0.65090 (18)0.0426 (4)
O60.10733 (7)0.9607 (3)0.48082 (18)0.0453 (4)
C60.21452 (11)0.8932 (4)0.5879 (3)0.0318 (7)0.893 (8)
H60.23851.00410.65730.038*0.893 (8)
C70.17233 (11)1.0302 (5)0.4709 (3)0.0459 (6)
H7A0.17791.20140.48520.055*0.893 (8)
H7B0.18390.98860.37860.055*0.893 (8)
H7C0.18961.15530.53710.055*0.107 (8)
H7D0.18011.06640.37490.055*0.107 (8)
C6'0.1934 (9)0.766 (4)0.523 (2)0.069 (10)*0.107 (8)
H6'0.16990.64850.45720.083*0.107 (8)
C80.10751 (10)0.8735 (4)0.6185 (2)0.0388 (5)
C90.10142 (14)1.0693 (5)0.7197 (3)0.0568 (7)
H9A0.10501.00540.81440.085*
H9B0.05901.14610.69520.085*
H9C0.13621.18410.71560.085*
C100.05421 (12)0.6939 (5)0.6160 (3)0.0532 (7)
H10A0.06090.56800.55080.080*
H10B0.01190.76860.58610.080*
H10C0.05520.62820.70970.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0314 (7)0.0253 (7)0.0316 (7)0.0017 (6)0.0123 (6)0.0010 (6)
O20.0279 (7)0.0250 (7)0.0322 (7)0.0018 (5)0.0100 (5)0.0003 (6)
C10.0223 (8)0.0241 (9)0.0256 (9)0.0016 (7)0.0007 (7)0.0022 (7)
C20.0272 (9)0.0277 (10)0.0254 (9)0.0004 (7)0.0062 (7)0.0022 (8)
C30.0266 (9)0.0265 (10)0.0247 (9)0.0005 (7)0.0055 (7)0.0011 (7)
C40.0233 (9)0.0273 (10)0.0285 (9)0.0009 (7)0.0097 (7)0.0007 (8)
O30.0374 (8)0.0391 (8)0.0256 (7)0.0069 (6)0.0048 (6)0.0039 (6)
O40.0263 (7)0.0284 (7)0.0337 (7)0.0036 (6)0.0043 (5)0.0010 (6)
C50.0313 (10)0.0355 (11)0.0351 (11)0.0064 (9)0.0060 (8)0.0049 (9)
O50.0274 (7)0.0484 (10)0.0538 (10)0.0046 (7)0.0119 (7)0.0075 (8)
O60.0294 (8)0.0545 (11)0.0509 (10)0.0047 (7)0.0020 (7)0.0003 (8)
C60.0259 (12)0.0271 (12)0.0427 (14)0.0002 (9)0.0058 (9)0.0001 (10)
C70.0337 (11)0.0421 (13)0.0610 (16)0.0041 (10)0.0038 (10)0.0111 (12)
C80.0279 (10)0.0437 (13)0.0449 (12)0.0028 (9)0.0057 (9)0.0062 (10)
C90.0505 (15)0.0572 (17)0.0653 (17)0.0003 (13)0.0173 (13)0.0208 (14)
C100.0335 (12)0.0614 (17)0.0661 (17)0.0081 (12)0.0118 (11)0.0125 (14)
Geometric parameters (Å, º) top
O1—C11.316 (2)C2—H2A0.9900
O2—C11.225 (2)C2—H2B0.9900
C1—C21.502 (3)C3—H3A0.9900
C2—C31.523 (3)C3—H3B0.9900
C3—C41.498 (3)C5—H5A0.9900
C4—O31.211 (2)C5—H5B0.9900
C4—O41.338 (2)C5—H5C0.9900
O4—C51.449 (2)C5—H5D0.9900
C5—C6'1.408 (16)C6—H61.0000
C5—C61.492 (3)C7—H7A0.9900
O5—C6'1.409 (17)C7—H7B0.9900
O5—C81.424 (3)C7—H7C0.9900
O5—C61.424 (3)C7—H7D0.9900
O6—C71.424 (3)C6'—H6'1.0000
O6—C81.424 (3)C9—H9A0.9800
C6—C71.537 (3)C9—H9B0.9800
C7—C6'1.629 (17)C9—H9C0.9800
C8—C91.505 (3)C10—H10A0.9800
C8—C101.505 (3)C10—H10B0.9800
O1—H010.80 (3)C10—H10C0.9800
O2—C1—O1123.58 (17)C6'—C5—H5B122.2
O2—C1—C2122.95 (17)O4—C5—H5B110.3
O1—C1—C2113.42 (16)C6—C5—H5B110.3
C1—C2—C3113.37 (16)H5A—C5—H5B108.5
C4—C3—C2112.54 (16)C6'—C5—H5C106.1
O3—C4—O4123.59 (18)O4—C5—H5C106.1
O3—C4—C3125.36 (18)H5A—C5—H5C137.6
O4—C4—C3111.05 (16)C6'—C5—H5D106.1
C4—O4—C5117.01 (16)O4—C5—H5D106.1
C6'—C5—O4124.8 (7)H5C—C5—H5D106.3
O4—C5—C6107.25 (17)O5—C6—H6110.3
C6'—O5—C8102.9 (7)C5—C6—H6110.3
C8—O5—C6106.90 (17)C7—C6—H6110.3
C7—O6—C8106.95 (17)O6—C7—H7A110.9
O5—C6—C5109.58 (19)C6—C7—H7A110.9
O5—C6—C7104.30 (18)O6—C7—H7B110.9
C5—C6—C7112.0 (2)C6—C7—H7B110.9
O6—C7—C6104.48 (19)H7A—C7—H7B108.9
O6—C7—C6'86.3 (7)O6—C7—H7C114.3
C5—C6'—O5115.5 (14)C6—C7—H7C77.1
C5—C6'—C7111.3 (13)C6'—C7—H7C114.3
O5—C6'—C7100.5 (11)O6—C7—H7D114.3
O6—C8—O5104.06 (17)C6—C7—H7D130.1
O6—C8—C9111.3 (2)C6'—C7—H7D114.3
O5—C8—C9110.8 (2)H7C—C7—H7D111.4
O6—C8—C10109.0 (2)C5—C6'—H6'109.7
O5—C8—C10108.9 (2)O5—C6'—H6'109.7
C9—C8—C10112.4 (2)C7—C6'—H6'109.7
C1—O1—H01109 (2)C8—C9—H9A109.5
C1—C2—H2A108.9C8—C9—H9B109.5
C3—C2—H2A108.9H9A—C9—H9B109.5
C1—C2—H2B108.9C8—C9—H9C109.5
C3—C2—H2B108.9H9A—C9—H9C109.5
H2A—C2—H2B107.7H9B—C9—H9C109.5
C4—C3—H3A109.1C8—C10—H10A109.5
C2—C3—H3A109.1C8—C10—H10B109.5
C4—C3—H3B109.1H10A—C10—H10B109.5
C2—C3—H3B109.1C8—C10—H10C109.5
H3A—C3—H3B107.8H10A—C10—H10C109.5
O4—C5—H5A110.3H10B—C10—H10C109.5
C6—C5—H5A110.3
O2—C1—C2—C330.0 (3)C5—C6—C7—C6'55.6 (9)
O1—C1—C2—C3152.49 (16)O4—C5—C6'—O518 (2)
C1—C2—C3—C467.0 (2)C6—C5—C6'—O557.7 (14)
C2—C3—C4—O312.7 (3)O4—C5—C6'—C7131.5 (8)
C2—C3—C4—O4167.00 (15)C6—C5—C6'—C756.1 (12)
O3—C4—O4—C58.3 (3)C8—O5—C6'—C5160.9 (13)
C3—C4—O4—C5172.00 (16)C6—O5—C6'—C559.9 (15)
C4—O4—C5—C6'116.4 (12)C8—O5—C6'—C741.0 (13)
C4—O4—C5—C6157.92 (17)C6—O5—C6'—C760.0 (10)
C6'—O5—C6—C551.5 (9)O6—C7—C6'—C5179.6 (14)
C8—O5—C6—C5142.17 (19)C6—C7—C6'—C560.5 (13)
C6'—O5—C6—C768.5 (9)O6—C7—C6'—O557.5 (11)
C8—O5—C6—C722.1 (2)C6—C7—C6'—O562.4 (11)
C6'—C5—C6—O553.2 (10)C7—O6—C8—O535.5 (2)
O4—C5—C6—O570.5 (2)C7—O6—C8—C983.9 (2)
C6'—C5—C6—C762.0 (10)C7—O6—C8—C10151.6 (2)
O4—C5—C6—C7174.27 (18)C6'—O5—C8—O67.5 (11)
C8—O6—C7—C621.4 (3)C6—O5—C8—O635.9 (2)
C8—O6—C7—C6'54.2 (8)C6'—O5—C8—C9127.2 (11)
O5—C6—C7—O60.5 (3)C6—O5—C8—C983.9 (2)
C5—C6—C7—O6118.9 (2)C6'—O5—C8—C10108.6 (11)
O5—C6—C7—C6'62.8 (9)C6—O5—C8—C10152.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H01···O2i0.80 (3)1.86 (3)2.6582 (19)175 (3)
C3—H3A···O3ii0.992.363.211 (2)144
C2—H2B···O4iii0.992.573.489 (2)155
C7—H7B···O5iv0.992.603.506 (3)152
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y1, z; (iv) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H16O6
Mr232.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)20.7650 (12), 5.7007 (3), 9.6964 (7)
β (°) 98.658 (5)
V3)1134.73 (12)
Z4
Radiation typeCu Kα
µ (mm1)0.96
Crystal size (mm)0.2 × 0.1 × 0.1
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with an Atlas (Nova) detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.880, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10581, 2304, 2170
Rint0.028
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.125, 1.14
No. of reflections2304
No. of parameters156
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.25

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H01···O2i0.80 (3)1.86 (3)2.6582 (19)175 (3)
C3—H3A···O3ii0.992.363.211 (2)143.8
C2—H2B···O4iii0.992.573.489 (2)154.9
C7—H7B···O5iv0.992.603.506 (3)152.1
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y1, z; (iv) x, y+3/2, z1/2.
 

Acknowledgements

Financial support by the Polish State Committee for Scientific Research (grant No. R0504303) is gratefully acknowledged.

References

First citationKuś, P., Rojkiewicz, M., Zięba, G., Witoszek, M. & Jones, P. G. (2009). Acta Cryst. E65, o1191  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOsanai, S., Higami, M., Ono, Y. & Ohta, E. (1997). J. Mater. Chem. 7, 1405–1408.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.  Google Scholar
First citationScriba, G. K. E. (1993). Arch. Pharm. (Weinheim), 326, 477–481.  CrossRef CAS PubMed Web of Science Google Scholar
First citationScriba, G. K. E. (1995). Arch. Pharm. (Weinheim), 328, 271–276.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds