organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2H-Tetra­zol-5-yl)pyridinium nitrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 10 April 2009; accepted 13 May 2009; online 20 May 2009)

In the cation of the title compound, C6H6N5+·NO3, the dihedral angle between the pyridinium and tetra­zole rings is 8.2 (2)°. The constituent ions of the compound are linked via N—H⋯O hydrogen bonds, forming helical chains running along the b axis. C—H⋯N and C—H⋯O hydrogen bonds are also observed.

Related literature

For the use of tetra­zole derivatives in coordination chemistry, see: Xiong et al. (2002[Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800-3803.]); Fu et al. (2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.]); Wang et al. (2005[Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278-5285.]). For the crystal structures of related compounds, see: Dai & Fu (2008[Dai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1444.]); Wen (2008[Wen, X.-C. (2008). Acta Cryst. E64, m768.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6N5+·NO3

  • Mr = 210.17

  • Monoclinic, C 2/c

  • a = 20.400 (4) Å

  • b = 4.8981 (10) Å

  • c = 19.135 (4) Å

  • β = 114.77 (3)°

  • V = 1736.1 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 298 K

  • 0.20 × 0.15 × 0.15 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear, Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.976, Tmax = 0.980

  • 8427 measured reflections

  • 1999 independent reflections

  • 1033 reflections with I > 2σ(I)

  • Rint = 0.123

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.209

  • S = 1.04

  • 1999 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 1.92 2.772 (4) 172
N4—H4A⋯O3 0.86 1.87 2.717 (4) 170
C2—H2⋯N2ii 0.93 2.58 3.507 (5) 173
C3—H3⋯O1iii 0.93 2.52 3.435 (5) 171
C5—H5⋯O2i 0.93 2.54 3.218 (5) 130
C5—H5⋯O2iv 0.93 2.36 3.223 (5) 155
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past few years, more and more people have focused on the chemistry of tetrazole derivatives because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Fu et al., 2008; Wang, et al. 2005; Xiong, et al. 2002; Wen 2008). We report here the crystal structure of the title compound, 2-(2H-tetrazol-5-yl)pyridinium nitrate.

In the title compound (Fig.1), the N atom (N1) of the pyridine ring is protonated. The pyridine and tetrazole rings are nearly coplanar and are twisted from each other by a dihedral angle of 8.2 (2)°. The geometric parameters of the tetrazole ring are comparable to those observed in related structures (Wang et al. 2005; Dai & Fu 2008).

The crystal packing is stabilized by N—H···O hydrogen bonds which link the molecules into a helical chain running along the b axis (Table 1 and Fig.2). In addition, C—H···N and C—H···O hydrogen bonds are observed.

Related literature top

For the use of tetrazole derivatives in coordination chemistry, see: Xiong et al. (2002); Fu et al. (2008); Wang et al. (2005). For the crystal structures of related compounds, see: Dai & Fu (2008); Wen (2008).

Experimental top

Picolinonitrile (30 mmol), NaN3 (45 mmol), NH4Cl (33 mmol) and DMF (50 ml) were added in a flask under nitrogen atmosphere. The mixture stirred at 110°C for 20 h. The resulting solution was then poured into ice-water (100 ml), and a white solid was obtained after adding HCl (6 M) at pH = 6. The precipitate was filtered and washed with distilled water. Colourless block-shaped crystals suitable for X-ray analysis were obtained from the crude product by slow evaporation of an ethanol-HNO3 (50:1 v/v) solution.

Refinement top

All H atoms attached to C and N atoms were fixed geometrically and treated as riding, with C–H = 0.93 Å, N–H = 0.86 Å and Uiso(H) =1.2Ueq(C or N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Partial packing view of the title compound showing the formation of chains along the b axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
2-(2H-Tetrazol-5-yl)pyridinium nitrate top
Crystal data top
C6H6N5+·NO3F(000) = 864
Mr = 210.17Dx = 1.608 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1999 reflections
a = 20.400 (4) Åθ = 3.8–27.5°
b = 4.8981 (10) ŵ = 0.13 mm1
c = 19.135 (4) ÅT = 298 K
β = 114.77 (3)°Block, colourless
V = 1736.1 (7) Å30.20 × 0.15 × 0.15 mm
Z = 8
Data collection top
Rigaku Mercury2
diffractometer
1999 independent reflections
Radiation source: fine-focus sealed tube1033 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.123
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.8°
ω scansh = 2626
Absorption correction: multi-scan
(CrystalClear, Rigaku, 2005)
k = 66
Tmin = 0.976, Tmax = 0.980l = 2424
8427 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.209H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0838P)2]
where P = (Fo2 + 2Fc2)/3
1999 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C6H6N5+·NO3V = 1736.1 (7) Å3
Mr = 210.17Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.400 (4) ŵ = 0.13 mm1
b = 4.8981 (10) ÅT = 298 K
c = 19.135 (4) Å0.20 × 0.15 × 0.15 mm
β = 114.77 (3)°
Data collection top
Rigaku Mercury2
diffractometer
1999 independent reflections
Absorption correction: multi-scan
(CrystalClear, Rigaku, 2005)
1033 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.980Rint = 0.123
8427 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0810 restraints
wR(F2) = 0.209H-atom parameters constrained
S = 1.04Δρmax = 0.34 e Å3
1999 reflectionsΔρmin = 0.36 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.11658 (15)0.9420 (6)0.51774 (16)0.0383 (7)
H10.12391.00550.56230.046*
C60.21176 (18)0.6182 (7)0.58420 (19)0.0362 (8)
N20.24979 (17)0.3908 (6)0.58539 (17)0.0485 (8)
C10.15732 (18)0.7297 (7)0.51387 (19)0.0364 (8)
N50.23230 (16)0.7307 (6)0.65302 (17)0.0447 (8)
C30.0917 (2)0.7442 (8)0.3768 (2)0.0506 (10)
H30.08310.67710.32830.061*
N40.28398 (16)0.5624 (6)0.69580 (17)0.0463 (8)
H4A0.30820.58460.74450.056*
N30.29538 (17)0.3572 (7)0.65769 (18)0.0518 (9)
C40.0518 (2)0.9615 (9)0.3841 (2)0.0520 (11)
H40.01611.04110.34080.062*
C20.14442 (19)0.6270 (8)0.4418 (2)0.0436 (9)
H20.17110.47980.43710.052*
C50.0657 (2)1.0571 (8)0.4558 (2)0.0446 (9)
H50.03951.20390.46150.053*
N60.41263 (16)0.8821 (6)0.85439 (18)0.0434 (8)
O30.37035 (14)0.6773 (5)0.84530 (13)0.0533 (8)
O20.44457 (14)0.9758 (6)0.91958 (15)0.0570 (8)
O10.41958 (16)0.9759 (6)0.79835 (16)0.0672 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0387 (17)0.0438 (18)0.0341 (16)0.0043 (14)0.0169 (14)0.0018 (14)
C60.0362 (19)0.037 (2)0.038 (2)0.0036 (17)0.0179 (16)0.0003 (16)
N20.0487 (19)0.054 (2)0.0364 (18)0.0079 (16)0.0115 (15)0.0008 (15)
C10.0372 (19)0.039 (2)0.036 (2)0.0052 (16)0.0181 (17)0.0005 (16)
N50.0421 (18)0.0480 (19)0.0379 (18)0.0021 (15)0.0108 (14)0.0026 (15)
C30.057 (3)0.058 (3)0.038 (2)0.015 (2)0.020 (2)0.0046 (19)
N40.0434 (18)0.0510 (19)0.0352 (17)0.0010 (16)0.0073 (14)0.0014 (16)
N30.047 (2)0.055 (2)0.049 (2)0.0072 (17)0.0154 (17)0.0032 (16)
C40.041 (2)0.068 (3)0.038 (2)0.009 (2)0.0078 (18)0.009 (2)
C20.042 (2)0.049 (2)0.043 (2)0.0064 (18)0.0212 (18)0.0027 (18)
C50.040 (2)0.046 (2)0.045 (2)0.0021 (17)0.0155 (19)0.0074 (18)
N60.0382 (18)0.049 (2)0.0414 (19)0.0006 (15)0.0156 (15)0.0023 (16)
O30.0543 (17)0.0578 (17)0.0413 (16)0.0174 (14)0.0136 (13)0.0034 (13)
O20.0527 (18)0.070 (2)0.0460 (17)0.0192 (14)0.0180 (14)0.0189 (14)
O10.077 (2)0.080 (2)0.0499 (17)0.0107 (17)0.0314 (16)0.0090 (16)
Geometric parameters (Å, º) top
N1—C51.329 (4)C3—H30.93
N1—C11.352 (4)N4—N31.318 (4)
N1—H10.86N4—H4A0.86
C6—N51.323 (4)C4—C51.363 (5)
C6—N21.352 (4)C4—H40.93
C6—C11.446 (5)C2—H20.93
N2—N31.314 (4)C5—H50.93
C1—C21.386 (5)N6—O11.228 (3)
N5—N41.318 (4)N6—O21.229 (4)
C3—C41.382 (5)N6—O31.286 (4)
C3—C21.383 (5)
C5—N1—C1123.0 (3)N5—N4—H4A122.8
C5—N1—H1118.5N3—N4—H4A122.8
C1—N1—H1118.5N2—N3—N4106.0 (3)
N5—C6—N2112.7 (3)C5—C4—C3118.9 (4)
N5—C6—C1124.7 (3)C5—C4—H4120.5
N2—C6—C1122.6 (3)C3—C4—H4120.5
N3—N2—C6105.6 (3)C3—C2—C1119.8 (4)
N1—C1—C2117.9 (3)C3—C2—H2120.1
N1—C1—C6119.3 (3)C1—C2—H2120.1
C2—C1—C6122.8 (3)N1—C5—C4120.5 (4)
N4—N5—C6101.3 (3)N1—C5—H5119.8
C4—C3—C2119.8 (4)C4—C5—H5119.8
C4—C3—H3120.1O1—N6—O2122.7 (3)
C2—C3—H3120.1O1—N6—O3119.3 (3)
N5—N4—N3114.4 (3)O2—N6—O3118.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.861.922.772 (4)172
N4—H4A···O30.861.872.717 (4)170
C2—H2···N2ii0.932.583.507 (5)173
C3—H3···O1iii0.932.523.435 (5)171
C5—H5···O2i0.932.543.218 (5)130
C5—H5···O2iv0.932.363.223 (5)155
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+3/2, z+1; (iv) x1/2, y+5/2, z1/2.

Experimental details

Crystal data
Chemical formulaC6H6N5+·NO3
Mr210.17
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)20.400 (4), 4.8981 (10), 19.135 (4)
β (°) 114.77 (3)
V3)1736.1 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.20 × 0.15 × 0.15
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear, Rigaku, 2005)
Tmin, Tmax0.976, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
8427, 1999, 1033
Rint0.123
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.209, 1.04
No. of reflections1999
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.36

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.861.922.772 (4)172
N4—H4A···O30.861.872.717 (4)170
C2—H2···N2ii0.932.583.507 (5)173
C3—H3···O1iii0.932.523.435 (5)171
C5—H5···O2i0.932.543.218 (5)130
C5—H5···O2iv0.932.363.223 (5)155
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+3/2, z+1; (iv) x1/2, y+5/2, z1/2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationDai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1444.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278–5285.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWen, X.-C. (2008). Acta Cryst. E64, m768.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800–3803.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds