organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1325-o1326
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

Capecitabine from X-ray powder synchrotron data

aDepartment of Solid State Chemistry, ICT Prague, Technicka 5, Prague, Czech Republic, bIVAX Pharmaceuticals s.r.o., R&D, Opava, Czech Republic, cPharmaceuticals Research and Development, Branisovska 31, Ceske Budejovice, Czech Republic, and dID31 Beamline, ESRF, 6 rue Jules Horowitz, BP 220, F-38043 Grenoble Cedex, France
*Correspondence e-mail: rohlicej@vscht.cz

(Received 3 April 2009; accepted 12 May 2009; online 20 May 2009)

In the title compound [systematic name 5-de­oxy-5-fluoro-N-(pent­yloxycarbon­yl)cytidine], C15H22FN3O6, the pentyl chain is disordered over two positions with refined occupancies of 0.53 (5) and 0.47 (5). The furan ring assumes an envelope conformation. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains propagating along the b axis. The crystal packing exhibits electrostatic inter­actions between the 5-fluoro­pyrimidin-2(1H)-one fragments of neighbouring mol­ecules as indicated by short O⋯C [2.875 (3) and 2.961 (3) Å] and F⋯C [2.886 (3) Å] contacts.

Related literature

Capecitabine is the first FDA-approved oral chemotherapy for the treatment for some types of cancer, including advanced bowel cancer or breast cancer, see: Wagstaff et al. (2003[Wagstaff, A. J., Ibbotson, T. & Goa, K. L. (2003). Drugs, 63, 217-236.]); Jones et al. (2004[Jones, L., Hawkins, N., Westwood, M., Wright, K., Richardson, G. & Riemsma, R. (2004). Health Technol. Assess. 8, 1-156.]).

[Scheme 1]

Experimental

Crystal data
  • C15H22FN3O6

  • Mr = 359.35

  • Orthorhombic, P 21 21 21

  • a = 5.20527 (2) Å

  • b = 9.52235 (4) Å

  • c = 34.77985 (13) Å

  • V = 1723.91 (1) Å3

  • Z = 4

  • Synchrotron radiation

  • λ = 0.79483 (4) Å

  • μ = 0.15 mm−1

  • T = 293 K

  • Specimen shape: cylinder

  • 40 × 1 × 1 mm

  • Specimen prepared at 101 kPa

  • Specimen prepared at 293 K

  • Particle morphology: no specific habit, white

Data collection
  • ID31 ESRF Grenoble diffractometer

  • Specimen mounting: 1.0 mm borosilicate glass capillary

  • Specimen mounted in transmission mode

  • Scan method: step

  • Absorption correction: none

  • 2θmin = 1.0, 2θmax = 35.0°

  • Increment in 2θ = 0.003°

Refinement
  • Rp = 0.055

  • Rwp = 0.074

  • Rexp = 0.036

  • RB = 0.102

  • S = 2.11

  • Wavelength of incident radiation: 0.79483(4) Å

  • Excluded region(s): no

  • Profile function: Pseudo-Voigt profile coefficients as parameterized in Thompson et al. (1987[Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79-83.]), asymmetry correction according to Finger et al. (1994[Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892-900.])

  • 499 reflections

  • 91 parameters

  • 77 restraints

  • H-atom parameters not refined

  • Preferred orientation correction: March–Dollase (Dollase, 1986[Dollase, W. A. (1986). J. Appl. Cryst. 19, 267-272.]); direction of preferred orientation 001, texture parameter r = 1.03 (1)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N17—H171⋯O8i 0.860 1.956 2.797 (5) 170
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: ESRF SPEC package; cell refinement: GSAS (Larson & Von Dreele, 1994[Larson, A. C. & Von Dreele, R. B. (1994). GSAS. Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA.]); data reduction: CRYSFIRE2004 (Shirley, 2000[Shirley, R. (2000). CRYSFIRE User's Manual. Guildford, England: The Lattice Press.]) and MOPAC (Dewar et al., 1985[Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. & Stewart, J. J. P. (1985). J. Am. Chem. Soc. 107, 3902-3909.]); program(s) used to solve structure: FOX (Favre-Nicolin & Černý, 2002[Favre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734-743.]); program(s) used to refine structure: GSAS; molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Capecitabine is the first FDA-approved oral chemotherapy for the treatment for some types of cancer, including advanced bowel cancer or breast cancer (Wagstaff et al., 2003; Jones et al., 2004). Capecitabine is 5-deoxy-5-fluoro-N-[(pentyloxy)carbonyl]-cytidine and in vivo is enzymatically converted to the active drug 5-fluorouracil. Crystal structure determination of capecitabine was not reported yet. In this paper we report crystal structure determination of the title compound from the powder diffraction data by using synchrotron radiation.

The asymmetric unit consists of one molecule of capecitabine (Fig 1). The crystal packing is stabilized by intermolecular interactions - electrostatic interactions proved by short O···C and F···C contacts (Table 1) and N—H···O hydrogen bonds (Table 2).

Related literature top

Capecitabine is the first FDA-approved oral chemotherapy for the treatment for some types of cancer, including advanced bowel cancer or breast cancer, see: Wagstaff et al. (2003); Jones et al. (2004).

Experimental top

Samples of crystalline capecitabine were prepared by two methods, a and b, respectively. Method a: capecitabine (10 g) was dissolved in EtOH (80 g). The solution was concentrated under reduced pressure to a residual volume of 25 ml and kept under stirring overnight. The solid was filtered off and dried at room temperature furnishing capecitabine (6 g). Method b: capecitabine (18 g) was dissolved in DCM (200 g) and the solution was evaporated to dryness under reduced pressure. The residue was taken up with toluene (400 g) and about 150 g of solvent were distilled off. The solution was heated up to 50°C and then allowed to 3 spontaneously cool to 25°C. After cooling to 0°C, the solid was filtered off, washed with toluene and dried at 60°C under vacuum to constant weight furnishing capecitabine (16.5 g).

Refinement top

Both crystallization procedures lead to one polycrystalline form of capecitabine. It was confirmed by measuring on X-Ray powder diffractometer PANalytical Xpert Pro, Cu Kα radiation (λ = 1.541874 Å). Attempts to determine the structure from these data were unsuccessful probably due to flexible molecule of capecitabine and low resolution of these data. The powder obtained by the first "a" procedure was used for structure determination. X-Ray diffraction data were collected on the high resolution diffractometer ID31 of the European Synchrotron Radiation Facility. The monochromatic wavelength was fixed at 0.79483 (4) Å. Si (111) crystal multi-analyser combined with Si (111) monochromator was used (beam offset angle α = 2°). A rotating 1-mm-diameter borosilicate glass capillary with capecitabine powder was used for the experiment. Data were measured from 1.002°2θ to 34.998°2θ at the room temperature, steps scans was set to 0.003°2θ.

First 20 peaks were used by CRYSFIRE 2004 package (Shirley, 2000) to get a list of possible lattice parameters. The most probable result was selected (a = 5.21 Å, b = 9.52 Å, c = 34.79 Å, V = 1724 Å3, FOM (20) = 330). If 15 Å3 are used as an atomic volume for C, N, O and F and 5 Å3 as a volume for hydrogen atom, the approximate molecular volume is 485 Å3. The found volume of 1724 Å3 suggests that there are four molecules in the unit cell (Z = 4). P212121 space group was selected on the basic of peaks extinction and on the basic of agreement of the Le-bail fit. The structure was solved in program FOX (Favre-Nicolin & Černý, 2002) using parallel tempering algorithm. The initial model was generated by AM1 computing method implemented in program MOPAC (Dewar et al., 1985). For the solution process hydrogen atoms were removed. This model was restrained with bonds and angles restraints, automatically generated by program FOX. The refinement was carried out in GSAS (Larson & Von Dreele, 1994). Hydrogen atoms were added in positions based on geometry and structure was restrained by bonds and angles restraints. Five planar restraints for sp2 hybridization were used (O20/C18/O19/N17, N17/C13/N14/C12, C13/C12/F16/C11, N14/C10/O15/N9 and C4/N9/C10/C11). Due to relatively high Uiso thermal parameters of alkyl chain (C21—C25) the structure was refined with two disordered chains (C21—C25 and C21a—C25a) with occupancy factors 0.53 (5) and 0.47 (5). Uiso thermal parameters were constrained just for atoms in disordered chains by this way (C21/C21a, C22/C22a, C23/C23a, C24/C24a, C25/C25a). At the final stage atomic coordinates of non-hydrogen atoms were refined to the final agreement factors: Rp=0.055 and Rwp=0.0743. The diffraction profiles and the differences between the measured and calculated profiles are shown in Fig. 2.

Computing details top

Data collection: ESRF SPEC package; cell refinement: GSAS (Larson & Von Dreele, 1994); data reduction: CRYSFIRE2004 (Shirley, 2000) and MOPAC (Dewar et al., 1985); program(s) used to solve structure: FOX (Favre-Nicolin & Černý, 2002); program(s) used to refine structure: GSAS (Larson & Von Dreele, 1994); molecular graphics: Mercury (Macrae et al., 2006) and PLATON (Spek, 2009); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of capecitabine showing the atomic numbering. Displacement spheres are drawn at the 20% probability level. Only major part of the disordered pentyl chain is shown.
[Figure 2] Fig. 2. The final Rietveld plot showing the measured data (black thin-plus), calculated data (red line) and difference curve (blue line). Calculated positions of the reflections are shown by verical bars.
5-deoxy-5-fluoro-N-(pentyloxycarbonyl)cytidine top
Crystal data top
C15H22FN3O6Dx = 1.385 Mg m3
Mr = 359.35Synchrotron radiation, λ = 0.79483(4) Å
Orthorhombic, P212121µ = 0.15 mm1
a = 5.20527 (2) ÅT = 293 K
b = 9.52235 (4) ÅParticle morphology: no specific habit
c = 34.77985 (13) Åwhite
V = 1723.91 (1) Å3cylinder, 40 × 1 mm
Z = 4Specimen preparation: Prepared at 293 K and 101 kPa
F(000) = 760
Data collection top
ID31 ESRF Grenoble
diffractometer
Data collection mode: transmission
Radiation source: X-RayScan method: step
Si(111) monochromator2θmin = 1.000°, 2θmax = 34.996°, 2θstep = 0.003°
Specimen mounting: 1.0 mm borosilicate glass capillary
Refinement top
Least-squares matrix: full91 parameters
Rp = 0.05577 restraints
Rwp = 0.0746 constraints
Rexp = 0.036H-atom parameters not refined
RBragg = 0.102Weighting scheme based on measured s.u.'s w = 1/σ(Yobs)2
χ2 = 4.452(Δ/σ)max = 0.05
11333 data pointsBackground function: Shifted Chebyschev
Excluded region(s): noPreferred orientation correction: March–Dollase (Dollase, 1986); direction of preferred orientation 001, texture parameter r = 1.03(1)
Profile function: Pseudo-Voigt profile coefficients as parameterized in Thompson et al. (1987), asymmetry correction according to Finger et al. (1994)
Crystal data top
C15H22FN3O6V = 1723.91 (1) Å3
Mr = 359.35Z = 4
Orthorhombic, P212121Synchrotron radiation, λ = 0.79483(4) Å
a = 5.20527 (2) ŵ = 0.15 mm1
b = 9.52235 (4) ÅT = 293 K
c = 34.77985 (13) Åcylinder, 40 × 1 mm
Data collection top
ID31 ESRF Grenoble
diffractometer
Scan method: step
Specimen mounting: 1.0 mm borosilicate glass capillary2θmin = 1.000°, 2θmax = 34.996°, 2θstep = 0.003°
Data collection mode: transmission
Refinement top
Rp = 0.05511333 data points
Rwp = 0.07491 parameters
Rexp = 0.03677 restraints
RBragg = 0.102H-atom parameters not refined
χ2 = 4.452
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0205 (8)0.8964 (3)0.86415 (10)0.087 (5)*
C20.0063 (7)0.7423 (4)0.87424 (8)0.048 (5)*
C30.0924 (6)0.6753 (3)0.83655 (8)0.049 (4)*
C40.0166 (5)0.7766 (2)0.80775 (7)0.081 (5)*
O50.0717 (9)0.9090 (3)0.82416 (10)0.093 (3)*
C60.2118 (13)0.9888 (6)0.87530 (18)0.079 (4)*
O70.2355 (9)0.6775 (5)0.88107 (14)0.088 (3)*
O80.0594 (11)0.5279 (3)0.83793 (13)0.109 (3)*
N90.1175 (4)0.79531 (18)0.77283 (7)0.036 (4)*
C100.0276 (4)0.73076 (17)0.73805 (7)0.030 (4)*
C110.3307 (5)0.87392 (18)0.77201 (7)0.023 (4)*
C120.4772 (3)0.90315 (14)0.73950 (6)0.031 (4)*
C130.3691 (3)0.83732 (13)0.70512 (6)0.010 (4)*
N140.1675 (4)0.75150 (16)0.70410 (6)0.028 (4)*
O150.1690 (5)0.6596 (2)0.73930 (11)0.046 (3)*
F160.6861 (5)0.98180 (17)0.74183 (10)0.072 (2)*
N170.4922 (3)0.86898 (14)0.67035 (6)0.030 (3)*
C180.4009 (4)0.8094 (2)0.63692 (7)0.063 (5)*
O190.2448 (4)0.7158 (3)0.63482 (12)0.108 (3)*
O200.5359 (5)0.8859 (3)0.60977 (10)0.087 (4)*
C210.491 (4)0.8346 (15)0.57240 (14)0.146 (6)*0.53 (5)
C220.524 (3)0.957 (2)0.5449 (2)0.169 (8)*0.53 (5)
C230.801 (3)0.9940 (19)0.5361 (5)0.174 (9)*0.53 (5)
C240.817 (4)1.1183 (13)0.5087 (4)0.174 (10)*0.53 (5)
C250.700 (5)1.082 (2)0.4695 (5)0.143 (9)*0.53 (5)
C21a0.518 (5)0.8251 (19)0.57299 (18)0.146 (6)*0.47 (5)
C22a0.680 (3)0.9142 (19)0.54603 (17)0.169 (8)*0.47 (5)
C23a0.560 (3)0.939 (2)0.5068 (4)0.174 (9)*0.47 (5)
C24a0.764 (5)0.9452 (15)0.4756 (2)0.174 (10)*0.47 (5)
C25a0.925 (4)1.079 (2)0.4786 (7)0.143 (9)*0.47 (5)
H2510.71231.16170.4530.25*0.53 (5)
H2520.52451.05760.47270.25*0.53 (5)
H2530.79061.00570.45850.25*0.53 (5)
H2410.72611.19530.51950.25*0.53 (5)
H2420.99211.14350.50530.25*0.53 (5)
H2310.88661.01730.55940.25*0.53 (5)
H2320.88310.91520.52460.25*0.53 (5)
H2210.44331.03710.55590.25*0.53 (5)
H2220.44060.93380.52140.25*0.53 (5)
H2110.32160.79810.57060.25*0.53 (5)
H2120.61110.76270.56640.25*0.53 (5)
H610.17941.08330.8680.1*
H620.23780.98420.90230.1*
H630.3610.95570.86240.1*
H210.12490.72670.89460.075*
H310.2730.68940.83560.075*
H110.1660.93150.87750.12*
H410.17860.73860.80070.12*
H1110.38690.91320.79570.03*
H1710.62240.92460.66990.04*
H820.07530.50660.82720.1*
H720.2160.5920.8830.12*
H25111.05051.08020.45880.25*0.47 (5)
H25121.0081.0820.50290.25*0.47 (5)
H25130.81641.15890.4760.25*0.47 (5)
H24110.8740.86610.4780.25*0.47 (5)
H24120.68240.9430.45110.25*0.47 (5)
H23110.46821.02520.50720.25*0.47 (5)
H23120.44420.86430.50130.25*0.47 (5)
H22110.70751.00290.55780.25*0.47 (5)
H22120.84020.86840.54240.25*0.47 (5)
H21110.58170.73160.57360.25*0.47 (5)
H21120.34420.82450.56470.25*0.47 (5)
Geometric parameters (Å, º) top
C1—C21.515 (5)O20—C211.408 (2)
C1—O51.421 (5)O20—C21a1.407 (2)
C1—C61.545 (7)C21—C221.518 (2)
C1—H110.950C21—H2110.949 (16)
C2—C31.525 (4)C21—H2120.95 (2)
C2—O71.422 (6)C22—C231.520 (2)
C2—H210.950C22—H2210.95 (2)
C3—C41.502 (4)C22—H2220.950 (9)
C3—O81.413 (4)C23—C241.522 (2)
C3—H310.950C23—H2310.950 (19)
C4—O51.413 (4)C23—H2320.95 (2)
C4—N91.4123 (19)C24—H2410.949 (19)
C4—H410.950C24—H2420.95 (2)
C6—H610.950C25—C241.530 (2)
C6—H620.950C25—H2510.951 (19)
C6—H630.950C25—H2520.95 (3)
O7—H720.820C25—H2530.95 (2)
O8—H820.820C21a—C22a1.519 (2)
N9—C101.4352 (18)C21a—H21110.95 (3)
N9—C111.3389 (19)C21a—H21120.95 (3)
C10—N141.4015 (19)C22a—C23a1.520 (2)
C10—O151.2282 (19)C22a—H22110.950 (15)
C11—C121.3919 (19)C22a—H22120.95 (2)
C11—H1110.950C23a—C24a1.523 (2)
C12—C131.4625 (19)C23a—H23110.95 (2)
C12—F161.3228 (19)C23a—H23120.950 (18)
C13—N141.3305 (18)C24a—C25a1.530 (2)
C13—N171.4013 (19)C24a—H24110.95 (2)
N17—C181.3783 (19)C24a—H24120.952 (18)
N17—H1710.860C25a—H25110.950 (19)
C18—O191.208 (2)C25a—H25120.95 (3)
C18—O201.384 (2)C25a—H25130.95 (3)
O15···C12i2.961 (3)O15···C11iii2.875 (3)
F16···C10ii2.886 (3)
C2—C1—O5109.0 (3)O20—C21—H212110.1 (17)
C2—C1—C6114.9 (2)C22—C21—H211110.1 (16)
C2—C1—H11107.52C22—C21—H212109.9 (6)
O5—C1—C6110.2 (2)H211—C21—H212109.4 (9)
O5—C1—H11107.4C21—C22—C23114.3 (2)
C6—C1—H11107.5C21—C22—H221108.2 (6)
C1—C2—C3103.46 (14)C21—C22—H222108.2 (14)
C1—C2—O7112.16 (19)C23—C22—H221108.3 (14)
C1—C2—H21112.53C23—C22—H222108.3 (12)
C3—C2—O7102.85 (18)H221—C22—H222109.5 (16)
C3—C2—H21112.59C22—C23—C24110.9 (2)
O7—C2—H21112.5C22—C23—H231109.1 (13)
C2—C3—C4101.19 (13)C22—C23—H232109.1 (15)
C2—C3—O8110.48 (18)C24—C23—H231109.1 (15)
C2—C3—H31105.17C24—C23—H232109.1 (12)
C4—C3—O8127.86 (19)H231—C23—H232109.5 (16)
C4—C3—H31105.07C23—C24—C25111.3 (2)
O8—C3—H31105.13C23—C24—H241109.1 (12)
C3—C4—O5112.34 (14)C23—C24—H242109.0 (16)
C3—C4—N9117.90 (12)C25—C24—H241109 (2)
C3—C4—H41105.26C25—C24—H242109.0 (17)
O5—C4—N9109.57 (17)H241—C24—H242109.4 (11)
O5—C4—H41105.29C24—C25—H251110 (2)
N9—C4—H41105.37C24—C25—H252110 (2)
C1—O5—C4106.4 (3)C24—C25—H253109.6 (17)
C1—C6—H61109.5H251—C25—H252109.3 (19)
C1—C6—H62109.5H251—C25—H253110 (2)
C1—C6—H63109.4H252—C25—H253109 (2)
H61—C6—H62109.4O20—C21a—C22a107.2 (2)
H61—C6—H63109.4O20—C21a—H2111110.1 (16)
H62—C6—H63109.6O20—C21a—H2112109.9 (18)
C2—O7—H72109.5C22a—C21a—H2111110.2 (17)
C3—O8—H82109.47C22a—C21a—H2112110.1 (13)
C4—N9—C10120.62 (14)H2111—C21a—H2112109.4 (6)
C4—N9—C11119.91 (14)C21a—C22a—C23a114.4 (2)
C10—N9—C11119.47 (12)C21a—C22a—H2211108.3 (6)
N9—C10—N14118.71 (13)C21a—C22a—H2212108.2 (15)
N9—C10—O15118.59 (15)C23a—C22a—H2211108.2 (19)
N14—C10—O15122.71 (15)C23a—C22a—H2212108.3 (10)
N9—C11—C12125.65 (14)H2211—C22a—H2212109.4 (10)
N9—C11—H111117.16C22a—C23a—C24a111.0 (2)
C12—C11—H111117.19C22a—C23a—H2311109 (2)
C11—C12—C13111.59 (12)C22a—C23a—H2312109.0 (11)
C11—C12—F16120.89 (15)C24a—C23a—H2311109.1 (12)
C13—C12—F16127.52 (14)C24a—C23a—H2312109.2 (19)
C12—C13—N14126.04 (12)H2311—C23a—H2312109.5 (16)
C12—C13—N17115.94 (14)C23a—C24a—C25a111.4 (2)
N14—C13—N17118.02 (18)C23a—C24a—H2411109.0 (10)
C10—N14—C13118.29 (13)C23a—C24a—H2412109 (2)
C13—N17—C18118.81 (13)C25a—C24a—H2411109 (3)
C13—N17—H171120.56C25a—C24a—H2412109.0 (16)
C18—N17—H171120.63H2411—C24a—H2412109.4 (11)
N17—C18—O19125.88 (16)C24a—C25a—H2511110 (2)
N17—C18—O20100.60 (15)C24a—C25a—H2512110 (2)
O19—C18—O20133.52 (16)C24a—C25a—H2513109.6 (17)
C18—O20—C21111.3 (2)H2511—C25a—H2512109 (2)
C18—O20—C21a111.7 (2)H2511—C25a—H2513109 (2)
O20—C21—C22107.3 (2)H2512—C25a—H2513110 (2)
O20—C21—H211110.0 (9)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+3/2; (iii) x, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H171···O8ii0.8601.9562.797 (5)170
Symmetry code: (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H22FN3O6
Mr359.35
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.20527 (2), 9.52235 (4), 34.77985 (13)
V3)1723.91 (1)
Z4
Radiation typeSynchrotron, λ = 0.79483(4) Å
µ (mm1)0.15
Specimen shape, size (mm)Cylinder, 40 × 1
Data collection
DiffractometerID31 ESRF Grenoble
diffractometer
Specimen mounting1.0 mm borosilicate glass capillary
Data collection modeTransmission
Scan methodStep
2θ values (°)2θmin = 1.000 2θmax = 34.996 2θstep = 0.003
Refinement
R factors and goodness of fitRp = 0.055, Rwp = 0.074, Rexp = 0.036, RBragg = 0.102, χ2 = 4.452
No. of data points11333
No. of parameters91
No. of restraints77
H-atom treatmentH-atom parameters not refined

Computer programs: ESRF SPEC package, GSAS (Larson & Von Dreele, 1994), CRYSFIRE2004 (Shirley, 2000) and MOPAC (Dewar et al., 1985), FOX (Favre-Nicolin & Černý, 2002), Mercury (Macrae et al., 2006) and PLATON (Spek, 2009), enCIFer (Allen et al., 2004).

Selected interatomic distances (Å) top
O15···C12i2.961 (3)O15···C11iii2.875 (3)
F16···C10ii2.886 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+3/2; (iii) x, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H171···O8ii0.8601.9562.797 (5)170
Symmetry code: (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

This study was supported by the Czech Grant Agency (grant No. GAČR 203/07/0040), the Institute of Chemical Technology in Prague (grant No. 108–08–0017) and the research program MSM 2B08021 of the Ministry of Education, Youth and Sports of the Czech Republic.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDewar, M. J. S., Zoebisch, E. G., Healy, E. F. & Stewart, J. J. P. (1985). J. Am. Chem. Soc. 107, 3902–3909.  Web of Science CrossRef CAS Google Scholar
First citationDollase, W. A. (1986). J. Appl. Cryst. 19, 267–272.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFavre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734–743.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFinger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJones, L., Hawkins, N., Westwood, M., Wright, K., Richardson, G. & Riemsma, R. (2004). Health Technol. Assess. 8, 1–156.  Google Scholar
First citationLarson, A. C. & Von Dreele, R. B. (1994). GSAS. Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShirley, R. (2000). CRYSFIRE User's Manual. Guildford, England: The Lattice Press.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWagstaff, A. J., Ibbotson, T. & Goa, K. L. (2003). Drugs, 63, 217–236.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1325-o1326
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds