organic compounds
A correction has been published for this article. To view the correction, click here.
Capecitabine from X-ray powder synchrotron data
aDepartment of Solid State Chemistry, ICT Prague, Technicka 5, Prague, Czech Republic, bIVAX Pharmaceuticals s.r.o., R&D, Opava, Czech Republic, cPharmaceuticals Research and Development, Branisovska 31, Ceske Budejovice, Czech Republic, and dID31 Beamline, ESRF, 6 rue Jules Horowitz, BP 220, F-38043 Grenoble Cedex, France
*Correspondence e-mail: rohlicej@vscht.cz
In the title compound [systematic name 5-deoxy-5-fluoro-N-(pentyloxycarbonyl)cytidine], C15H22FN3O6, the pentyl chain is disordered over two positions with refined occupancies of 0.53 (5) and 0.47 (5). The furan ring assumes an In the crystal, intermolecular N—H⋯O hydrogen bonds link the molecules into chains propagating along the b axis. The crystal packing exhibits electrostatic interactions between the 5-fluoropyrimidin-2(1H)-one fragments of neighbouring molecules as indicated by short O⋯C [2.875 (3) and 2.961 (3) Å] and F⋯C [2.886 (3) Å] contacts.
Related literature
Capecitabine is the first FDA-approved oral chemotherapy for the treatment for some types of cancer, including advanced bowel cancer or breast cancer, see: Wagstaff et al. (2003); Jones et al. (2004).
Experimental
Crystal data
|
Data collection
|
Refinement
Data collection: ESRF SPEC package; cell GSAS (Larson & Von Dreele, 1994); data reduction: CRYSFIRE2004 (Shirley, 2000) and MOPAC (Dewar et al., 1985); program(s) used to solve structure: FOX (Favre-Nicolin & Černý, 2002); program(s) used to refine structure: GSAS; molecular graphics: Mercury (Macrae et al., 2006) and PLATON (Spek, 2009); software used to prepare material for publication: enCIFer (Allen et al., 2004).
Supporting information
10.1107/S1600536809017905/cv2544sup1.cif
contains datablocks global, I. DOI:Rietveld powder data: contains datablock I. DOI: 10.1107/S1600536809017905/cv2544Isup2.rtv
Samples of crystalline capecitabine were prepared by two methods, a and b, respectively. Method a: capecitabine (10 g) was dissolved in EtOH (80 g). The solution was concentrated under reduced pressure to a residual volume of 25 ml and kept under stirring overnight. The solid was filtered off and dried at room temperature furnishing capecitabine (6 g). Method b: capecitabine (18 g) was dissolved in DCM (200 g) and the solution was evaporated to dryness under reduced pressure. The residue was taken up with toluene (400 g) and about 150 g of solvent were distilled off. The solution was heated up to 50°C and then allowed to 3 spontaneously cool to 25°C. After cooling to 0°C, the solid was filtered off, washed with toluene and dried at 60°C under vacuum to constant weight furnishing capecitabine (16.5 g).
Both crystallization procedures lead to one polycrystalline form of capecitabine. It was confirmed by measuring on X-Ray powder diffractometer PANalytical Xpert Pro, Cu Kα radiation (λ = 1.541874 Å). Attempts to determine the structure from these data were unsuccessful probably due to flexible molecule of capecitabine and low resolution of these data. The powder obtained by the first "a" procedure was used for X-Ray diffraction data were collected on the high resolution diffractometer ID31 of the European Synchrotron Radiation Facility. The monochromatic wavelength was fixed at 0.79483 (4) Å. Si (111) crystal multi-analyser combined with Si (111) monochromator was used (beam offset angle α = 2°). A rotating 1-mm-diameter borosilicate glass capillary with capecitabine powder was used for the experiment. Data were measured from 1.002°2θ to 34.998°2θ at the room temperature, steps scans was set to 0.003°2θ.
First 20 peaks were used by CRYSFIRE 2004 package (Shirley, 2000) to get a list of possible lattice parameters. The most probable result was selected (a = 5.21 Å, b = 9.52 Å, c = 34.79 Å, V = 1724 Å3, FOM (20) = 330). If 15 Å3 are used as an atomic volume for C, N, O and F and 5 Å3 as a volume for hydrogen atom, the approximate molecular volume is 485 Å3. The found volume of 1724 Å3 suggests that there are four molecules in the
(Z = 4). P212121 was selected on the basic of peaks extinction and on the basic of agreement of the Le-bail fit. The structure was solved in program FOX (Favre-Nicolin & Černý, 2002) using parallel tempering algorithm. The initial model was generated by AM1 computing method implemented in program MOPAC (Dewar et al., 1985). For the solution process hydrogen atoms were removed. This model was restrained with bonds and angles restraints, automatically generated by program FOX. The was carried out in GSAS (Larson & Von Dreele, 1994). Hydrogen atoms were added in positions based on geometry and structure was restrained by bonds and angles restraints. Five planar restraints for sp2 were used (O20/C18/O19/N17, N17/C13/N14/C12, C13/C12/F16/C11, N14/C10/O15/N9 and C4/N9/C10/C11). Due to relatively high Uiso thermal parameters of alkyl chain (C21—C25) the structure was refined with two disordered chains (C21—C25 and C21a—C25a) with occupancy factors 0.53 (5) and 0.47 (5). Uiso thermal parameters were constrained just for atoms in disordered chains by this way (C21/C21a, C22/C22a, C23/C23a, C24/C24a, C25/C25a). At the final stage atomic coordinates of non-hydrogen atoms were refined to the final agreement factors: Rp=0.055 and Rwp=0.0743. The diffraction profiles and the differences between the measured and calculated profiles are shown in Fig. 2.Data collection: ESRF SPEC package; cell
GSAS (Larson & Von Dreele, 1994); data reduction: CRYSFIRE2004 (Shirley, 2000) and MOPAC (Dewar et al., 1985); program(s) used to solve structure: FOX (Favre-Nicolin & Černý, 2002); program(s) used to refine structure: GSAS (Larson & Von Dreele, 1994); molecular graphics: Mercury (Macrae et al., 2006) and PLATON (Spek, 2009); software used to prepare material for publication: enCIFer (Allen et al., 2004).C15H22FN3O6 | Dx = 1.385 Mg m−3 |
Mr = 359.35 | Synchrotron radiation, λ = 0.79483(4) Å |
Orthorhombic, P212121 | µ = 0.15 mm−1 |
a = 5.20527 (2) Å | T = 293 K |
b = 9.52235 (4) Å | Particle morphology: no specific habit |
c = 34.77985 (13) Å | white |
V = 1723.91 (1) Å3 | cylinder, 40 × 1 mm |
Z = 4 | Specimen preparation: Prepared at 293 K and 101 kPa |
F(000) = 760 |
ID31 ESRF Grenoble diffractometer | Data collection mode: transmission |
Radiation source: X-Ray | Scan method: step |
Si(111) monochromator | 2θmin = 1.000°, 2θmax = 34.996°, 2θstep = 0.003° |
Specimen mounting: 1.0 mm borosilicate glass capillary |
Least-squares matrix: full | 91 parameters |
Rp = 0.055 | 77 restraints |
Rwp = 0.074 | 6 constraints |
Rexp = 0.036 | H-atom parameters not refined |
RBragg = 0.102 | Weighting scheme based on measured s.u.'s w = 1/σ(Yobs)2 |
χ2 = 4.452 | (Δ/σ)max = 0.05 |
11333 data points | Background function: Shifted Chebyschev |
Excluded region(s): no | Preferred orientation correction: March–Dollase (Dollase, 1986); direction of preferred orientation 001, texture parameter r = 1.03(1) |
Profile function: Pseudo-Voigt profile coefficients as parameterized in Thompson et al. (1987), asymmetry correction according to Finger et al. (1994) |
C15H22FN3O6 | V = 1723.91 (1) Å3 |
Mr = 359.35 | Z = 4 |
Orthorhombic, P212121 | Synchrotron radiation, λ = 0.79483(4) Å |
a = 5.20527 (2) Å | µ = 0.15 mm−1 |
b = 9.52235 (4) Å | T = 293 K |
c = 34.77985 (13) Å | cylinder, 40 × 1 mm |
ID31 ESRF Grenoble diffractometer | Scan method: step |
Specimen mounting: 1.0 mm borosilicate glass capillary | 2θmin = 1.000°, 2θmax = 34.996°, 2θstep = 0.003° |
Data collection mode: transmission |
Rp = 0.055 | 11333 data points |
Rwp = 0.074 | 91 parameters |
Rexp = 0.036 | 77 restraints |
RBragg = 0.102 | H-atom parameters not refined |
χ2 = 4.452 |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | −0.0205 (8) | 0.8964 (3) | 0.86415 (10) | 0.087 (5)* | |
C2 | 0.0063 (7) | 0.7423 (4) | 0.87424 (8) | 0.048 (5)* | |
C3 | 0.0924 (6) | 0.6753 (3) | 0.83655 (8) | 0.049 (4)* | |
C4 | −0.0166 (5) | 0.7766 (2) | 0.80775 (7) | 0.081 (5)* | |
O5 | −0.0717 (9) | 0.9090 (3) | 0.82416 (10) | 0.093 (3)* | |
C6 | 0.2118 (13) | 0.9888 (6) | 0.87530 (18) | 0.079 (4)* | |
O7 | −0.2355 (9) | 0.6775 (5) | 0.88107 (14) | 0.088 (3)* | |
O8 | 0.0594 (11) | 0.5279 (3) | 0.83793 (13) | 0.109 (3)* | |
N9 | 0.1175 (4) | 0.79531 (18) | 0.77283 (7) | 0.036 (4)* | |
C10 | 0.0276 (4) | 0.73076 (17) | 0.73805 (7) | 0.030 (4)* | |
C11 | 0.3307 (5) | 0.87392 (18) | 0.77201 (7) | 0.023 (4)* | |
C12 | 0.4772 (3) | 0.90315 (14) | 0.73950 (6) | 0.031 (4)* | |
C13 | 0.3691 (3) | 0.83732 (13) | 0.70512 (6) | 0.010 (4)* | |
N14 | 0.1675 (4) | 0.75150 (16) | 0.70410 (6) | 0.028 (4)* | |
O15 | −0.1690 (5) | 0.6596 (2) | 0.73930 (11) | 0.046 (3)* | |
F16 | 0.6861 (5) | 0.98180 (17) | 0.74183 (10) | 0.072 (2)* | |
N17 | 0.4922 (3) | 0.86898 (14) | 0.67035 (6) | 0.030 (3)* | |
C18 | 0.4009 (4) | 0.8094 (2) | 0.63692 (7) | 0.063 (5)* | |
O19 | 0.2448 (4) | 0.7158 (3) | 0.63482 (12) | 0.108 (3)* | |
O20 | 0.5359 (5) | 0.8859 (3) | 0.60977 (10) | 0.087 (4)* | |
C21 | 0.491 (4) | 0.8346 (15) | 0.57240 (14) | 0.146 (6)* | 0.53 (5) |
C22 | 0.524 (3) | 0.957 (2) | 0.5449 (2) | 0.169 (8)* | 0.53 (5) |
C23 | 0.801 (3) | 0.9940 (19) | 0.5361 (5) | 0.174 (9)* | 0.53 (5) |
C24 | 0.817 (4) | 1.1183 (13) | 0.5087 (4) | 0.174 (10)* | 0.53 (5) |
C25 | 0.700 (5) | 1.082 (2) | 0.4695 (5) | 0.143 (9)* | 0.53 (5) |
C21a | 0.518 (5) | 0.8251 (19) | 0.57299 (18) | 0.146 (6)* | 0.47 (5) |
C22a | 0.680 (3) | 0.9142 (19) | 0.54603 (17) | 0.169 (8)* | 0.47 (5) |
C23a | 0.560 (3) | 0.939 (2) | 0.5068 (4) | 0.174 (9)* | 0.47 (5) |
C24a | 0.764 (5) | 0.9452 (15) | 0.4756 (2) | 0.174 (10)* | 0.47 (5) |
C25a | 0.925 (4) | 1.079 (2) | 0.4786 (7) | 0.143 (9)* | 0.47 (5) |
H251 | 0.7123 | 1.1617 | 0.453 | 0.25* | 0.53 (5) |
H252 | 0.5245 | 1.0576 | 0.4727 | 0.25* | 0.53 (5) |
H253 | 0.7906 | 1.0057 | 0.4585 | 0.25* | 0.53 (5) |
H241 | 0.7261 | 1.1953 | 0.5195 | 0.25* | 0.53 (5) |
H242 | 0.9921 | 1.1435 | 0.5053 | 0.25* | 0.53 (5) |
H231 | 0.8866 | 1.0173 | 0.5594 | 0.25* | 0.53 (5) |
H232 | 0.8831 | 0.9152 | 0.5246 | 0.25* | 0.53 (5) |
H221 | 0.4433 | 1.0371 | 0.5559 | 0.25* | 0.53 (5) |
H222 | 0.4406 | 0.9338 | 0.5214 | 0.25* | 0.53 (5) |
H211 | 0.3216 | 0.7981 | 0.5706 | 0.25* | 0.53 (5) |
H212 | 0.6111 | 0.7627 | 0.5664 | 0.25* | 0.53 (5) |
H61 | 0.1794 | 1.0833 | 0.868 | 0.1* | |
H62 | 0.2378 | 0.9842 | 0.9023 | 0.1* | |
H63 | 0.361 | 0.9557 | 0.8624 | 0.1* | |
H21 | 0.1249 | 0.7267 | 0.8946 | 0.075* | |
H31 | 0.273 | 0.6894 | 0.8356 | 0.075* | |
H11 | −0.166 | 0.9315 | 0.8775 | 0.12* | |
H41 | −0.1786 | 0.7386 | 0.8007 | 0.12* | |
H111 | 0.3869 | 0.9132 | 0.7957 | 0.03* | |
H171 | 0.6224 | 0.9246 | 0.6699 | 0.04* | |
H82 | −0.0753 | 0.5066 | 0.8272 | 0.1* | |
H72 | −0.216 | 0.592 | 0.883 | 0.12* | |
H2511 | 1.0505 | 1.0802 | 0.4588 | 0.25* | 0.47 (5) |
H2512 | 1.008 | 1.082 | 0.5029 | 0.25* | 0.47 (5) |
H2513 | 0.8164 | 1.1589 | 0.476 | 0.25* | 0.47 (5) |
H2411 | 0.874 | 0.8661 | 0.478 | 0.25* | 0.47 (5) |
H2412 | 0.6824 | 0.943 | 0.4511 | 0.25* | 0.47 (5) |
H2311 | 0.4682 | 1.0252 | 0.5072 | 0.25* | 0.47 (5) |
H2312 | 0.4442 | 0.8643 | 0.5013 | 0.25* | 0.47 (5) |
H2211 | 0.7075 | 1.0029 | 0.5578 | 0.25* | 0.47 (5) |
H2212 | 0.8402 | 0.8684 | 0.5424 | 0.25* | 0.47 (5) |
H2111 | 0.5817 | 0.7316 | 0.5736 | 0.25* | 0.47 (5) |
H2112 | 0.3442 | 0.8245 | 0.5647 | 0.25* | 0.47 (5) |
C1—C2 | 1.515 (5) | O20—C21 | 1.408 (2) |
C1—O5 | 1.421 (5) | O20—C21a | 1.407 (2) |
C1—C6 | 1.545 (7) | C21—C22 | 1.518 (2) |
C1—H11 | 0.950 | C21—H211 | 0.949 (16) |
C2—C3 | 1.525 (4) | C21—H212 | 0.95 (2) |
C2—O7 | 1.422 (6) | C22—C23 | 1.520 (2) |
C2—H21 | 0.950 | C22—H221 | 0.95 (2) |
C3—C4 | 1.502 (4) | C22—H222 | 0.950 (9) |
C3—O8 | 1.413 (4) | C23—C24 | 1.522 (2) |
C3—H31 | 0.950 | C23—H231 | 0.950 (19) |
C4—O5 | 1.413 (4) | C23—H232 | 0.95 (2) |
C4—N9 | 1.4123 (19) | C24—H241 | 0.949 (19) |
C4—H41 | 0.950 | C24—H242 | 0.95 (2) |
C6—H61 | 0.950 | C25—C24 | 1.530 (2) |
C6—H62 | 0.950 | C25—H251 | 0.951 (19) |
C6—H63 | 0.950 | C25—H252 | 0.95 (3) |
O7—H72 | 0.820 | C25—H253 | 0.95 (2) |
O8—H82 | 0.820 | C21a—C22a | 1.519 (2) |
N9—C10 | 1.4352 (18) | C21a—H2111 | 0.95 (3) |
N9—C11 | 1.3389 (19) | C21a—H2112 | 0.95 (3) |
C10—N14 | 1.4015 (19) | C22a—C23a | 1.520 (2) |
C10—O15 | 1.2282 (19) | C22a—H2211 | 0.950 (15) |
C11—C12 | 1.3919 (19) | C22a—H2212 | 0.95 (2) |
C11—H111 | 0.950 | C23a—C24a | 1.523 (2) |
C12—C13 | 1.4625 (19) | C23a—H2311 | 0.95 (2) |
C12—F16 | 1.3228 (19) | C23a—H2312 | 0.950 (18) |
C13—N14 | 1.3305 (18) | C24a—C25a | 1.530 (2) |
C13—N17 | 1.4013 (19) | C24a—H2411 | 0.95 (2) |
N17—C18 | 1.3783 (19) | C24a—H2412 | 0.952 (18) |
N17—H171 | 0.860 | C25a—H2511 | 0.950 (19) |
C18—O19 | 1.208 (2) | C25a—H2512 | 0.95 (3) |
C18—O20 | 1.384 (2) | C25a—H2513 | 0.95 (3) |
O15···C12i | 2.961 (3) | O15···C11iii | 2.875 (3) |
F16···C10ii | 2.886 (3) | ||
C2—C1—O5 | 109.0 (3) | O20—C21—H212 | 110.1 (17) |
C2—C1—C6 | 114.9 (2) | C22—C21—H211 | 110.1 (16) |
C2—C1—H11 | 107.52 | C22—C21—H212 | 109.9 (6) |
O5—C1—C6 | 110.2 (2) | H211—C21—H212 | 109.4 (9) |
O5—C1—H11 | 107.4 | C21—C22—C23 | 114.3 (2) |
C6—C1—H11 | 107.5 | C21—C22—H221 | 108.2 (6) |
C1—C2—C3 | 103.46 (14) | C21—C22—H222 | 108.2 (14) |
C1—C2—O7 | 112.16 (19) | C23—C22—H221 | 108.3 (14) |
C1—C2—H21 | 112.53 | C23—C22—H222 | 108.3 (12) |
C3—C2—O7 | 102.85 (18) | H221—C22—H222 | 109.5 (16) |
C3—C2—H21 | 112.59 | C22—C23—C24 | 110.9 (2) |
O7—C2—H21 | 112.5 | C22—C23—H231 | 109.1 (13) |
C2—C3—C4 | 101.19 (13) | C22—C23—H232 | 109.1 (15) |
C2—C3—O8 | 110.48 (18) | C24—C23—H231 | 109.1 (15) |
C2—C3—H31 | 105.17 | C24—C23—H232 | 109.1 (12) |
C4—C3—O8 | 127.86 (19) | H231—C23—H232 | 109.5 (16) |
C4—C3—H31 | 105.07 | C23—C24—C25 | 111.3 (2) |
O8—C3—H31 | 105.13 | C23—C24—H241 | 109.1 (12) |
C3—C4—O5 | 112.34 (14) | C23—C24—H242 | 109.0 (16) |
C3—C4—N9 | 117.90 (12) | C25—C24—H241 | 109 (2) |
C3—C4—H41 | 105.26 | C25—C24—H242 | 109.0 (17) |
O5—C4—N9 | 109.57 (17) | H241—C24—H242 | 109.4 (11) |
O5—C4—H41 | 105.29 | C24—C25—H251 | 110 (2) |
N9—C4—H41 | 105.37 | C24—C25—H252 | 110 (2) |
C1—O5—C4 | 106.4 (3) | C24—C25—H253 | 109.6 (17) |
C1—C6—H61 | 109.5 | H251—C25—H252 | 109.3 (19) |
C1—C6—H62 | 109.5 | H251—C25—H253 | 110 (2) |
C1—C6—H63 | 109.4 | H252—C25—H253 | 109 (2) |
H61—C6—H62 | 109.4 | O20—C21a—C22a | 107.2 (2) |
H61—C6—H63 | 109.4 | O20—C21a—H2111 | 110.1 (16) |
H62—C6—H63 | 109.6 | O20—C21a—H2112 | 109.9 (18) |
C2—O7—H72 | 109.5 | C22a—C21a—H2111 | 110.2 (17) |
C3—O8—H82 | 109.47 | C22a—C21a—H2112 | 110.1 (13) |
C4—N9—C10 | 120.62 (14) | H2111—C21a—H2112 | 109.4 (6) |
C4—N9—C11 | 119.91 (14) | C21a—C22a—C23a | 114.4 (2) |
C10—N9—C11 | 119.47 (12) | C21a—C22a—H2211 | 108.3 (6) |
N9—C10—N14 | 118.71 (13) | C21a—C22a—H2212 | 108.2 (15) |
N9—C10—O15 | 118.59 (15) | C23a—C22a—H2211 | 108.2 (19) |
N14—C10—O15 | 122.71 (15) | C23a—C22a—H2212 | 108.3 (10) |
N9—C11—C12 | 125.65 (14) | H2211—C22a—H2212 | 109.4 (10) |
N9—C11—H111 | 117.16 | C22a—C23a—C24a | 111.0 (2) |
C12—C11—H111 | 117.19 | C22a—C23a—H2311 | 109 (2) |
C11—C12—C13 | 111.59 (12) | C22a—C23a—H2312 | 109.0 (11) |
C11—C12—F16 | 120.89 (15) | C24a—C23a—H2311 | 109.1 (12) |
C13—C12—F16 | 127.52 (14) | C24a—C23a—H2312 | 109.2 (19) |
C12—C13—N14 | 126.04 (12) | H2311—C23a—H2312 | 109.5 (16) |
C12—C13—N17 | 115.94 (14) | C23a—C24a—C25a | 111.4 (2) |
N14—C13—N17 | 118.02 (18) | C23a—C24a—H2411 | 109.0 (10) |
C10—N14—C13 | 118.29 (13) | C23a—C24a—H2412 | 109 (2) |
C13—N17—C18 | 118.81 (13) | C25a—C24a—H2411 | 109 (3) |
C13—N17—H171 | 120.56 | C25a—C24a—H2412 | 109.0 (16) |
C18—N17—H171 | 120.63 | H2411—C24a—H2412 | 109.4 (11) |
N17—C18—O19 | 125.88 (16) | C24a—C25a—H2511 | 110 (2) |
N17—C18—O20 | 100.60 (15) | C24a—C25a—H2512 | 110 (2) |
O19—C18—O20 | 133.52 (16) | C24a—C25a—H2513 | 109.6 (17) |
C18—O20—C21 | 111.3 (2) | H2511—C25a—H2512 | 109 (2) |
C18—O20—C21a | 111.7 (2) | H2511—C25a—H2513 | 109 (2) |
O20—C21—C22 | 107.3 (2) | H2512—C25a—H2513 | 110 (2) |
O20—C21—H211 | 110.0 (9) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+3/2; (iii) −x, y−1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N17—H171···O8ii | 0.860 | 1.956 | 2.797 (5) | 170 |
Symmetry code: (ii) −x+1, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C15H22FN3O6 |
Mr | 359.35 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 5.20527 (2), 9.52235 (4), 34.77985 (13) |
V (Å3) | 1723.91 (1) |
Z | 4 |
Radiation type | Synchrotron, λ = 0.79483(4) Å |
µ (mm−1) | 0.15 |
Specimen shape, size (mm) | Cylinder, 40 × 1 |
Data collection | |
Diffractometer | ID31 ESRF Grenoble diffractometer |
Specimen mounting | 1.0 mm borosilicate glass capillary |
Data collection mode | Transmission |
Scan method | Step |
2θ values (°) | 2θmin = 1.000 2θmax = 34.996 2θstep = 0.003 |
Refinement | |
R factors and goodness of fit | Rp = 0.055, Rwp = 0.074, Rexp = 0.036, RBragg = 0.102, χ2 = 4.452 |
No. of data points | 11333 |
No. of parameters | 91 |
No. of restraints | 77 |
H-atom treatment | H-atom parameters not refined |
Computer programs: ESRF SPEC package, GSAS (Larson & Von Dreele, 1994), CRYSFIRE2004 (Shirley, 2000) and MOPAC (Dewar et al., 1985), FOX (Favre-Nicolin & Černý, 2002), Mercury (Macrae et al., 2006) and PLATON (Spek, 2009), enCIFer (Allen et al., 2004).
O15···C12i | 2.961 (3) | O15···C11iii | 2.875 (3) |
F16···C10ii | 2.886 (3) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+3/2; (iii) −x, y−1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N17—H171···O8ii | 0.860 | 1.956 | 2.797 (5) | 170 |
Symmetry code: (ii) −x+1, y+1/2, −z+3/2. |
Acknowledgements
This study was supported by the Czech Grant Agency (grant No. GAČR 203/07/0040), the Institute of Chemical Technology in Prague (grant No. 108–08–0017) and the research program MSM 2B08021 of the Ministry of Education, Youth and Sports of the Czech Republic.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. & Stewart, J. J. P. (1985). J. Am. Chem. Soc. 107, 3902–3909. Web of Science CrossRef CAS Google Scholar
Dollase, W. A. (1986). J. Appl. Cryst. 19, 267–272. CrossRef CAS Web of Science IUCr Journals Google Scholar
Favre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734–743. Web of Science CrossRef CAS IUCr Journals Google Scholar
Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900. CrossRef CAS Web of Science IUCr Journals Google Scholar
Jones, L., Hawkins, N., Westwood, M., Wright, K., Richardson, G. & Riemsma, R. (2004). Health Technol. Assess. 8, 1–156. Google Scholar
Larson, A. C. & Von Dreele, R. B. (1994). GSAS. Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shirley, R. (2000). CRYSFIRE User's Manual. Guildford, England: The Lattice Press. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83. CrossRef CAS Web of Science IUCr Journals Google Scholar
Wagstaff, A. J., Ibbotson, T. & Goa, K. L. (2003). Drugs, 63, 217–236. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Capecitabine is the first FDA-approved oral chemotherapy for the treatment for some types of cancer, including advanced bowel cancer or breast cancer (Wagstaff et al., 2003; Jones et al., 2004). Capecitabine is 5-deoxy-5-fluoro-N-[(pentyloxy)carbonyl]-cytidine and in vivo is enzymatically converted to the active drug 5-fluorouracil. Crystal structure determination of capecitabine was not reported yet. In this paper we report crystal structure determination of the title compound from the powder diffraction data by using synchrotron radiation.
The asymmetric unit consists of one molecule of capecitabine (Fig 1). The crystal packing is stabilized by intermolecular interactions - electrostatic interactions proved by short O···C and F···C contacts (Table 1) and N—H···O hydrogen bonds (Table 2).