organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(10-Chloro-9-anthr­yl)-5-[3-(prop-2-yn­yl­oxy)phen­oxy­meth­yl]isoxazole

aKey Laboratory of Pesticide and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, and b6th Department, Research Institute of Chemical Defence, Beijing 102205, People's Republic of China
*Correspondence e-mail: bluemzj@163.com

(Received 23 April 2009; accepted 21 May 2009; online 29 May 2009)

In the title mol­ecule, C27H18ClNO3, the anthracene mean plane forms dihedral angles of 67.43 (2) and 15.75 (3)° with the isoxazole and benzene rings, respectively. In the crystal structure, C—H⋯π inter­actions link mol­ecules into centrosymmetric dimers, which are further linked by weak inter­molecular C—H⋯N hydrogen bonds into ribbons propagating in the [110] direction.

Related literature

For the preparation of the title compound, see Han et al. (2003[Han, X., Twamley, B. & Natale, N. R. (2003). J. Heterocycl. Chem. 40, 539-545.]). For pharmaceutical applications of isoxazole and its derivatives, see: De Luca et al. (2001[De Luca, L., Giacomelli, G. & Riu, A. (2001). J. Org. Chem. 66, 6823-6825.]); Yamamoto et al. (2007[Yamamoto, T., Fujita, K., Asari, S., Chiba, A., Kataba, Y., Ohsumi, K., Hmuta, N., Iida, Y., Ijichi, C., Iwayama, S., Fukuchi, N. & Shoji, M. (2007). Bioorg. Med. Chem. Lett. 17, 3736-3740.]); Reuman et al. (2008[Reuman, M., Beish, S., Davis, J., Batchelor, M. J., Hutchings, M. C., Moffat, D. F. C., Connolly, P. J. & Russell, R. K. (2008). J. Org. Chem. 73, 1121-1123.]).

[Scheme 1]

Experimental

Crystal data
  • C27H18ClNO3

  • Mr = 439.87

  • Triclinic, [P \overline 1]

  • a = 8.4816 (3) Å

  • b = 8.6450 (3) Å

  • c = 16.8606 (6) Å

  • α = 100.364 (1)°

  • β = 103.596 (1)°

  • γ = 94.965 (1)°

  • V = 1171.25 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 292 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART 4K CCD area-detector diffractometer

  • Absorption correction: none

  • 4812 measured reflections

  • 4812 independent reflections

  • 4227 reflections with I > 2σ(I)

  • Rint = 0.0000

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.163

  • S = 1.06

  • 4812 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C19–C24 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27⋯N1i 0.93 2.57 3.465 (3) 163
C16—H16⋯Cgii 0.93 2.67 3.431 (2) 140
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Isoxazole and isoxazole derivatives are important pharmaceutical agents (De Luca et al., 2001), so they are widely investigated (Yamamoto et al., 2007; Reuman et al., 2008). As a part of our investigation into isoxazole derivatives, we report here the structure of the title compound (I).

In (I) (Fig. 1), the anthracene mean plane forms the dihedral angles of 67.43 (2)° and 15.75 (3)° with the isoxazole and benzene rings, respectively. In the crystal, C—H···π interactions (Table 1) link the molecules into centrosymmetric dimers, which are further linked by the weak intermolecular C—H···N hydrogen bonds (Table 1) into ribbons propagated in direction [110]. The porous crystal packing contains voids of 171 Å3.

Related literature top

For the preparation of the title compound, see Han et al. (2003). For general background, see: De Luca et al. (2001); Yamamoto et al. (2007); Reuman et al. (2008).

Experimental top

The title compound was synthesized according to the procedure of Han et al. (2003) in 32% isolated yield. Crystals of (I) suitable for X-ray data collection were obtained by slow evaporation of a methaoland DMF solution in ratio of 50:1 at 298 K.

Refinement top

All H atoms bonded to C atoms were initially located in difference Fourier maps and then constrained to their ideal geometry positions (CH = 0.93-0.97 Å), and refined as riding with Uĩso~(H) = 1.2U~eq~(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius.
3-(10-Chloro-9-anthryl)-5-[3-(prop-2-ynyloxy)phenoxymethyl]isoxazole top
Crystal data top
C27H18ClNO3Z = 2
Mr = 439.87F(000) = 456
Triclinic, P1Dx = 1.247 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4816 (3) ÅCell parameters from 6384 reflections
b = 8.6450 (3) Åθ = 2.5–28.2°
c = 16.8606 (6) ŵ = 0.19 mm1
α = 100.364 (1)°T = 292 K
β = 103.596 (1)°Block, colourless
γ = 94.965 (1)°0.30 × 0.20 × 0.10 mm
V = 1171.25 (7) Å3
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
4227 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 26.5°, θmin = 2.4°
ϕ and ω scansh = 1010
4812 measured reflectionsk = 1010
4812 independent reflectionsl = 021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0786P)2 + 0.2928P]
where P = (Fo2 + 2Fc2)/3
4812 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C27H18ClNO3γ = 94.965 (1)°
Mr = 439.87V = 1171.25 (7) Å3
Triclinic, P1Z = 2
a = 8.4816 (3) ÅMo Kα radiation
b = 8.6450 (3) ŵ = 0.19 mm1
c = 16.8606 (6) ÅT = 292 K
α = 100.364 (1)°0.30 × 0.20 × 0.10 mm
β = 103.596 (1)°
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
4227 reflections with I > 2σ(I)
4812 measured reflectionsRint = 0.000
4812 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.06Δρmax = 0.32 e Å3
4812 reflectionsΔρmin = 0.39 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2863 (2)0.3620 (2)0.91382 (11)0.0372 (4)
C20.1335 (3)0.4195 (2)0.91474 (14)0.0487 (5)
H20.09160.41840.96090.058*
C30.0490 (3)0.4751 (3)0.85017 (16)0.0566 (5)
H30.04950.51280.85260.068*
C40.1087 (3)0.4767 (3)0.77859 (15)0.0534 (5)
H40.04870.51450.73410.064*
C50.2529 (2)0.4234 (2)0.77469 (12)0.0426 (4)
H50.28990.42440.72700.051*
C60.3493 (2)0.36581 (19)0.84180 (10)0.0338 (4)
C70.4989 (2)0.30988 (19)0.83910 (10)0.0318 (3)
C80.5881 (2)0.2499 (2)0.90563 (10)0.0335 (4)
C90.7423 (2)0.1965 (2)0.90562 (12)0.0430 (4)
H90.78560.20030.86010.052*
C100.8275 (3)0.1400 (3)0.97066 (14)0.0543 (5)
H100.92820.10630.96930.065*
C110.7643 (3)0.1322 (3)1.04012 (13)0.0580 (6)
H110.82290.09201.08400.070*
C120.6195 (3)0.1825 (3)1.04358 (11)0.0504 (5)
H120.58010.17671.09010.060*
C130.5254 (2)0.2444 (2)0.97749 (10)0.0369 (4)
C140.3769 (2)0.3003 (2)0.97840 (11)0.0393 (4)
C150.56449 (19)0.3098 (2)0.76469 (10)0.0313 (3)
C160.5831 (2)0.1769 (2)0.70657 (11)0.0372 (4)
H160.55630.07020.70630.045*
C170.6479 (2)0.2387 (2)0.65203 (10)0.0369 (4)
C180.7037 (2)0.1683 (3)0.57805 (11)0.0447 (4)
H18A0.81810.20710.58540.054*
H18B0.69180.05360.57050.054*
C190.6541 (2)0.1848 (2)0.43448 (11)0.0379 (4)
C200.7742 (2)0.0930 (2)0.42197 (11)0.0378 (4)
H200.82850.04570.46400.045*
C210.8133 (2)0.0720 (2)0.34504 (11)0.0356 (4)
C220.7331 (2)0.1422 (2)0.28241 (12)0.0428 (4)
H220.76010.12890.23150.051*
C230.6120 (2)0.2329 (2)0.29685 (12)0.0444 (4)
H230.55710.27990.25490.053*
C240.5710 (2)0.2549 (2)0.37219 (12)0.0429 (4)
H240.48910.31560.38100.051*
C250.9797 (3)0.0505 (2)0.26169 (12)0.0444 (4)
H25A0.88110.07840.21630.053*
H25B1.04080.14030.25970.053*
C261.0785 (2)0.0859 (2)0.24940 (12)0.0447 (4)
C271.1606 (3)0.1948 (3)0.24028 (15)0.0581 (6)
H271.22550.28090.23310.070*
Cl10.29951 (8)0.29325 (7)1.06495 (3)0.0617 (2)
N10.6140 (2)0.44298 (18)0.74604 (9)0.0423 (4)
O10.66859 (17)0.39855 (16)0.67356 (8)0.0448 (3)
O20.60568 (17)0.2133 (2)0.50758 (8)0.0520 (4)
O30.93481 (17)0.02142 (17)0.33887 (8)0.0473 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0398 (9)0.0328 (8)0.0409 (9)0.0008 (7)0.0202 (7)0.0011 (7)
C20.0488 (11)0.0461 (11)0.0581 (12)0.0079 (8)0.0309 (9)0.0046 (9)
C30.0447 (11)0.0537 (12)0.0799 (15)0.0180 (9)0.0302 (11)0.0117 (11)
C40.0455 (11)0.0538 (12)0.0653 (13)0.0155 (9)0.0136 (10)0.0202 (10)
C50.0425 (10)0.0460 (10)0.0436 (10)0.0086 (8)0.0149 (8)0.0140 (8)
C60.0373 (8)0.0313 (8)0.0342 (8)0.0027 (6)0.0143 (7)0.0045 (6)
C70.0358 (8)0.0333 (8)0.0279 (8)0.0031 (6)0.0137 (6)0.0039 (6)
C80.0394 (8)0.0344 (8)0.0279 (8)0.0032 (7)0.0118 (7)0.0060 (6)
C90.0427 (10)0.0528 (11)0.0389 (9)0.0120 (8)0.0144 (8)0.0155 (8)
C100.0475 (11)0.0664 (13)0.0528 (12)0.0179 (10)0.0087 (9)0.0231 (10)
C110.0634 (13)0.0702 (14)0.0412 (11)0.0117 (11)0.0027 (10)0.0265 (10)
C120.0624 (13)0.0605 (12)0.0280 (9)0.0016 (10)0.0099 (8)0.0139 (8)
C130.0448 (9)0.0374 (9)0.0270 (8)0.0022 (7)0.0111 (7)0.0044 (6)
C140.0503 (10)0.0390 (9)0.0302 (8)0.0030 (7)0.0218 (7)0.0007 (7)
C150.0296 (7)0.0390 (9)0.0278 (8)0.0065 (6)0.0101 (6)0.0093 (6)
C160.0433 (9)0.0375 (9)0.0343 (9)0.0070 (7)0.0165 (7)0.0070 (7)
C170.0393 (9)0.0444 (10)0.0300 (8)0.0106 (7)0.0117 (7)0.0089 (7)
C180.0493 (10)0.0601 (12)0.0309 (9)0.0190 (9)0.0174 (8)0.0106 (8)
C190.0392 (9)0.0472 (10)0.0286 (8)0.0072 (7)0.0124 (7)0.0051 (7)
C200.0406 (9)0.0464 (10)0.0302 (8)0.0099 (7)0.0109 (7)0.0131 (7)
C210.0376 (9)0.0397 (9)0.0333 (8)0.0067 (7)0.0143 (7)0.0097 (7)
C220.0448 (10)0.0568 (11)0.0339 (9)0.0111 (8)0.0163 (7)0.0175 (8)
C230.0453 (10)0.0555 (11)0.0389 (9)0.0154 (8)0.0110 (8)0.0217 (8)
C240.0405 (9)0.0523 (11)0.0391 (9)0.0161 (8)0.0117 (8)0.0110 (8)
C250.0513 (10)0.0448 (10)0.0430 (10)0.0123 (8)0.0252 (8)0.0039 (8)
C260.0413 (9)0.0553 (11)0.0408 (10)0.0135 (8)0.0154 (8)0.0089 (8)
C270.0500 (11)0.0662 (14)0.0636 (14)0.0066 (10)0.0203 (10)0.0206 (11)
Cl10.0751 (4)0.0780 (4)0.0412 (3)0.0068 (3)0.0364 (3)0.0093 (2)
N10.0581 (9)0.0403 (8)0.0368 (8)0.0081 (7)0.0263 (7)0.0101 (6)
O10.0603 (8)0.0456 (7)0.0381 (7)0.0079 (6)0.0277 (6)0.0131 (5)
O20.0505 (8)0.0849 (10)0.0285 (6)0.0301 (7)0.0174 (6)0.0122 (6)
O30.0562 (8)0.0576 (8)0.0425 (7)0.0274 (6)0.0266 (6)0.0192 (6)
Geometric parameters (Å, º) top
C1—C141.395 (3)C15—C161.416 (2)
C1—C21.430 (3)C16—C171.340 (2)
C1—C61.441 (2)C16—H160.9300
C2—C31.345 (3)C17—O11.349 (2)
C2—H20.9300C17—C181.485 (2)
C3—C41.416 (3)C18—O21.418 (2)
C3—H30.9300C18—H18A0.9700
C4—C51.355 (3)C18—H18B0.9700
C4—H40.9300C19—C201.376 (3)
C5—C61.427 (2)C19—O21.377 (2)
C5—H50.9300C19—C241.386 (3)
C6—C71.404 (2)C20—C211.398 (2)
C7—C81.406 (2)C20—H200.9300
C7—C151.487 (2)C21—O31.374 (2)
C8—C91.424 (3)C21—C221.382 (2)
C8—C131.440 (2)C22—C231.385 (3)
C9—C101.358 (3)C22—H220.9300
C9—H90.9300C23—C241.379 (3)
C10—C111.407 (3)C23—H230.9300
C10—H100.9300C24—H240.9300
C11—C121.348 (3)C25—O31.426 (2)
C11—H110.9300C25—C261.461 (3)
C12—C131.427 (3)C25—H25A0.9700
C12—H120.9300C25—H25B0.9700
C13—C141.390 (3)C26—C271.176 (3)
C14—Cl11.7434 (17)C27—H270.9300
C15—N11.308 (2)N1—O11.4082 (19)
C14—C1—C2123.58 (17)C16—C15—C7127.76 (15)
C14—C1—C6118.09 (16)C17—C16—C15104.87 (16)
C2—C1—C6118.33 (17)C17—C16—H16127.6
C3—C2—C1121.36 (19)C15—C16—H16127.6
C3—C2—H2119.3C16—C17—O1109.76 (16)
C1—C2—H2119.3C16—C17—C18133.60 (18)
C2—C3—C4120.68 (19)O1—C17—C18116.60 (16)
C2—C3—H3119.7O2—C18—C17107.63 (15)
C4—C3—H3119.7O2—C18—H18A110.2
C5—C4—C3120.19 (19)C17—C18—H18A110.2
C5—C4—H4119.9O2—C18—H18B110.2
C3—C4—H4119.9C17—C18—H18B110.2
C4—C5—C6121.70 (18)H18A—C18—H18B108.5
C4—C5—H5119.1C20—C19—O2123.81 (16)
C6—C5—H5119.1C20—C19—C24121.26 (16)
C7—C6—C5122.69 (16)O2—C19—C24114.93 (16)
C7—C6—C1119.58 (15)C19—C20—C21118.90 (16)
C5—C6—C1117.71 (16)C19—C20—H20120.6
C6—C7—C8120.95 (15)C21—C20—H20120.6
C6—C7—C15120.45 (14)O3—C21—C22124.87 (16)
C8—C7—C15118.59 (15)O3—C21—C20114.38 (15)
C7—C8—C9122.18 (15)C22—C21—C20120.76 (17)
C7—C8—C13119.87 (16)C21—C22—C23118.85 (17)
C9—C8—C13117.94 (15)C21—C22—H22120.6
C10—C9—C8121.44 (18)C23—C22—H22120.6
C10—C9—H9119.3C24—C23—C22121.41 (16)
C8—C9—H9119.3C24—C23—H23119.3
C9—C10—C11120.4 (2)C22—C23—H23119.3
C9—C10—H10119.8C23—C24—C19118.82 (17)
C11—C10—H10119.8C23—C24—H24120.6
C12—C11—C10120.54 (18)C19—C24—H24120.6
C12—C11—H11119.7O3—C25—C26112.99 (15)
C10—C11—H11119.7O3—C25—H25A109.0
C11—C12—C13121.53 (18)C26—C25—H25A109.0
C11—C12—H12119.2O3—C25—H25B109.0
C13—C12—H12119.2C26—C25—H25B109.0
C14—C13—C12123.94 (17)H25A—C25—H25B107.8
C14—C13—C8117.93 (16)C27—C26—C25178.8 (2)
C12—C13—C8118.13 (18)C26—C27—H27180.0
C13—C14—C1123.58 (16)C15—N1—O1105.45 (14)
C13—C14—Cl1118.27 (14)C17—O1—N1108.51 (13)
C1—C14—Cl1118.15 (15)C19—O2—C18117.55 (14)
N1—C15—C16111.40 (15)C21—O3—C25117.66 (14)
N1—C15—C7120.84 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27···N1i0.932.573.465 (3)163
C16—H16···Cgii0.932.673.431 (2)140
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC27H18ClNO3
Mr439.87
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)8.4816 (3), 8.6450 (3), 16.8606 (6)
α, β, γ (°)100.364 (1), 103.596 (1), 94.965 (1)
V3)1171.25 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART 4K CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4812, 4812, 4227
Rint0.000
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.163, 1.06
No. of reflections4812
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.39

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27···N1i0.932.573.465 (3)162.8
C16—H16···Cgii0.932.673.431 (2)139.7
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

The authors thank Dr Xiang-Gao Meng for the X-ray data collection.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Luca, L., Giacomelli, G. & Riu, A. (2001). J. Org. Chem. 66, 6823–6825.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHan, X., Twamley, B. & Natale, N. R. (2003). J. Heterocycl. Chem. 40, 539–545.  CrossRef CAS Google Scholar
First citationReuman, M., Beish, S., Davis, J., Batchelor, M. J., Hutchings, M. C., Moffat, D. F. C., Connolly, P. J. & Russell, R. K. (2008). J. Org. Chem. 73, 1121–1123.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamamoto, T., Fujita, K., Asari, S., Chiba, A., Kataba, Y., Ohsumi, K., Hmuta, N., Iida, Y., Ijichi, C., Iwayama, S., Fukuchi, N. & Shoji, M. (2007). Bioorg. Med. Chem. Lett. 17, 3736–3740.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds