organic compounds
1,3-Bis{(+)-(S)-[1-(1-naphthyl)ethyl]iminomethyl}benzene dichloromethane solvate
aFacultad de Ciencias Químicas, UANL, Licenciatura en Química Industrial, Ciudad Universitaria, Monterrey, NL, Mexico, bLaboratorio de Síntesis de Complejos, Facultad de Ciencias Químicas, BUAP, AP 1067, 72001 Puebla, Pue., Mexico, and cDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, NL, Mexico
*Correspondence e-mail: sylvain_bernes@Hotmail.com
In the title compound, C32H28N2·CH2Cl2, the complete Schiff base and solvent molecules are both generated by crystallographic twofold axes, with the two C atoms of the former and the C atom of the latter lying on the rotation axis. The central benzene ring is substituted with two chiral groups including imine functionalities, with the common E configuration. The dihedral angle between the central benzene ring and the terminal naphthalene ring is 45.42 (9)° and that between the two naphthalene rings is 89.16 (8)°. The conformation of the Schiff base allows solvent molecules to fill the voids in the crystal, affording a stable 1:1 solvate, but the solvent interacts poorly with the Schiff base, as reflected by its rather high displacement parameters.
Related literature
For solvent-free synthesis in organic chemistry, see: Jeon et al. (2005); Noyori (2005); Tanaka & Toda (2000). For related chiral synthesized using similar routes, see: Tovar et al. (2007).
Experimental
Crystal data
|
Data collection: XSCANS (Siemens, 1996); cell XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809017528/fj2198sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809017528/fj2198Isup2.hkl
Under solvent-free conditions, a mixture of benzene-1,3-dicarboxaldehyde (0.12 g, 0.9 mmol) and (S)-(-)-1-naphthylethylamine (0.32 g, 1.8 mmol) were mixed at 298 K, giving a white solid. The crude material was recrystallized from CH2Cl2, affording colorless crystals of the title solvate (Yield: 98%; m.p. 343–345 K. [α]25D=+253.7 (c=1, CHCl3). IR and NMR data are consistent with the X-ray structure (see archived CIF).
All H atoms were placed in idealized positions and refined as riding to their carrier C atoms, with bond lengths fixed to 0.93 (aromatic CH), 0.96 (methyl CH3), 0.97 (methylene CH2) and 0.98 Å (methine CH). isotropic displacement parameters were calculated as Uiso(H) = 1.5Ueq(carrier atom) for the methyl group and Uiso(H) = 1.2Ueq(carrier atom) otherwise.
Data collection: XSCANS (Siemens, 1996); cell
XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C32H28N2·CH2Cl2 | Dx = 1.237 Mg m−3 |
Mr = 525.49 | Melting point: 343 K |
Orthorhombic, P21212 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2 2ab | Cell parameters from 51 reflections |
a = 8.550 (2) Å | θ = 4.0–11.9° |
b = 20.706 (6) Å | µ = 0.25 mm−1 |
c = 7.972 (3) Å | T = 298 K |
V = 1411.3 (7) Å3 | Prism, yellow |
Z = 2 | 0.40 × 0.24 × 0.20 mm |
F(000) = 552 |
Siemens P4 diffractometer | 1428 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.060 |
Graphite monochromator | θmax = 25.0°, θmin = 2.0° |
2θ/ω scans | h = −10→10 |
Absorption correction: gaussian (XSCANS; Siemens, 1996) | k = −24→24 |
Tmin = 0.933, Tmax = 0.954 | l = −9→9 |
6308 measured reflections | 3 standard reflections every 97 reflections |
2497 independent reflections | intensity decay: 2.3% |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.060 | w = 1/[σ2(Fo2) + (0.0833P)2 + 0.2257P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.186 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.19 e Å−3 |
2497 reflections | Δρmin = −0.16 e Å−3 |
172 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.036 (6) |
0 constraints | Absolute structure: Flack (1983), 1028 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.0 (2) |
Secondary atom site location: difference Fourier map |
C32H28N2·CH2Cl2 | V = 1411.3 (7) Å3 |
Mr = 525.49 | Z = 2 |
Orthorhombic, P21212 | Mo Kα radiation |
a = 8.550 (2) Å | µ = 0.25 mm−1 |
b = 20.706 (6) Å | T = 298 K |
c = 7.972 (3) Å | 0.40 × 0.24 × 0.20 mm |
Siemens P4 diffractometer | 1428 reflections with I > 2σ(I) |
Absorption correction: gaussian (XSCANS; Siemens, 1996) | Rint = 0.060 |
Tmin = 0.933, Tmax = 0.954 | 3 standard reflections every 97 reflections |
6308 measured reflections | intensity decay: 2.3% |
2497 independent reflections |
R[F2 > 2σ(F2)] = 0.060 | H-atom parameters constrained |
wR(F2) = 0.186 | Δρmax = 0.19 e Å−3 |
S = 1.06 | Δρmin = −0.16 e Å−3 |
2497 reflections | Absolute structure: Flack (1983), 1028 Friedel pairs |
172 parameters | Absolute structure parameter: 0.0 (2) |
0 restraints |
x | y | z | Uiso*/Ueq | ||
N1 | 0.8943 (5) | 0.38124 (15) | 1.0214 (4) | 0.0789 (10) | |
C1 | 1.0000 | 0.5000 | 1.5231 (7) | 0.0904 (19) | |
H1A | 1.0000 | 0.5000 | 1.6398 | 0.108* | |
C2 | 0.9506 (5) | 0.4463 (2) | 1.4376 (5) | 0.0800 (12) | |
H2A | 0.9166 | 0.4102 | 1.4968 | 0.096* | |
C3 | 0.9508 (4) | 0.44531 (18) | 1.2633 (5) | 0.0660 (10) | |
C4 | 1.0000 | 0.5000 | 1.1777 (7) | 0.0682 (14) | |
H4A | 1.0000 | 0.5000 | 1.0611 | 0.082* | |
C5 | 0.9004 (5) | 0.38667 (18) | 1.1771 (5) | 0.0711 (10) | |
H5A | 0.8711 | 0.3514 | 1.2420 | 0.085* | |
C6 | 0.8370 (5) | 0.32020 (18) | 0.9537 (5) | 0.0747 (11) | |
H6A | 0.8222 | 0.2897 | 1.0464 | 0.090* | |
C7 | 0.6791 (5) | 0.3332 (2) | 0.8717 (6) | 0.0947 (14) | |
H7A | 0.6077 | 0.3499 | 0.9539 | 0.142* | |
H7B | 0.6383 | 0.2937 | 0.8262 | 0.142* | |
H7C | 0.6918 | 0.3642 | 0.7832 | 0.142* | |
C8 | 0.9507 (5) | 0.29178 (16) | 0.8309 (5) | 0.0646 (9) | |
C9 | 1.0643 (5) | 0.32880 (18) | 0.7563 (5) | 0.0760 (11) | |
H9A | 1.0740 | 0.3720 | 0.7868 | 0.091* | |
C10 | 1.1656 (6) | 0.3034 (2) | 0.6361 (6) | 0.0924 (14) | |
H10A | 1.2430 | 0.3295 | 0.5899 | 0.111* | |
C11 | 1.1527 (6) | 0.2419 (2) | 0.5865 (5) | 0.0851 (12) | |
H11A | 1.2184 | 0.2263 | 0.5028 | 0.102* | |
C12 | 1.0413 (5) | 0.20049 (19) | 0.6592 (5) | 0.0751 (11) | |
C13 | 1.0297 (6) | 0.1351 (2) | 0.6116 (6) | 0.0911 (13) | |
H13A | 1.0960 | 0.1188 | 0.5293 | 0.109* | |
C14 | 0.9225 (6) | 0.0957 (2) | 0.6848 (7) | 0.0973 (15) | |
H14A | 0.9158 | 0.0527 | 0.6524 | 0.117* | |
C15 | 0.8233 (5) | 0.1194 (2) | 0.8073 (7) | 0.0909 (14) | |
H15A | 0.7514 | 0.0919 | 0.8578 | 0.109* | |
C16 | 0.8295 (5) | 0.18255 (17) | 0.8549 (6) | 0.0749 (11) | |
H16A | 0.7615 | 0.1975 | 0.9371 | 0.090* | |
C17 | 0.9380 (4) | 0.22579 (17) | 0.7812 (5) | 0.0652 (9) | |
C18 | 0.5000 | 0.5000 | 0.8916 (9) | 0.123 (3) | |
H18A | 0.4641 | 0.5349 | 0.9629 | 0.148* | |
Cl1 | 0.6505 (3) | 0.52641 (11) | 0.7706 (3) | 0.1852 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.102 (3) | 0.0685 (19) | 0.067 (2) | −0.0018 (18) | 0.003 (2) | 0.0003 (16) |
C1 | 0.099 (5) | 0.115 (5) | 0.057 (3) | 0.000 (4) | 0.000 | 0.000 |
C2 | 0.084 (3) | 0.090 (3) | 0.066 (2) | 0.004 (3) | 0.008 (2) | 0.008 (2) |
C3 | 0.062 (2) | 0.076 (2) | 0.060 (2) | 0.0110 (19) | 0.0047 (19) | 0.0017 (19) |
C4 | 0.073 (3) | 0.075 (3) | 0.056 (3) | 0.015 (3) | 0.000 | 0.000 |
C5 | 0.073 (2) | 0.070 (2) | 0.070 (3) | 0.008 (2) | 0.007 (2) | 0.008 (2) |
C6 | 0.085 (3) | 0.070 (2) | 0.069 (2) | −0.001 (2) | 0.003 (2) | 0.0066 (19) |
C7 | 0.080 (3) | 0.099 (3) | 0.105 (3) | 0.016 (3) | 0.008 (3) | 0.000 (3) |
C8 | 0.069 (2) | 0.064 (2) | 0.060 (2) | 0.0002 (18) | 0.003 (2) | 0.0087 (17) |
C9 | 0.085 (3) | 0.072 (2) | 0.071 (2) | −0.006 (2) | 0.005 (2) | 0.009 (2) |
C10 | 0.091 (3) | 0.100 (3) | 0.086 (3) | −0.005 (3) | 0.026 (3) | 0.022 (3) |
C11 | 0.082 (3) | 0.102 (3) | 0.072 (3) | 0.013 (3) | 0.011 (2) | 0.003 (2) |
C12 | 0.071 (2) | 0.081 (2) | 0.073 (2) | 0.010 (2) | −0.014 (2) | −0.004 (2) |
C13 | 0.089 (3) | 0.090 (3) | 0.095 (3) | 0.020 (3) | −0.019 (3) | −0.019 (3) |
C14 | 0.097 (3) | 0.076 (3) | 0.120 (4) | 0.012 (3) | −0.030 (4) | −0.010 (3) |
C15 | 0.078 (3) | 0.075 (3) | 0.120 (4) | −0.005 (2) | −0.024 (3) | 0.007 (3) |
C16 | 0.066 (2) | 0.072 (2) | 0.087 (3) | −0.004 (2) | −0.004 (2) | 0.002 (2) |
C17 | 0.059 (2) | 0.069 (2) | 0.068 (2) | 0.0022 (18) | −0.007 (2) | 0.0072 (18) |
C18 | 0.192 (10) | 0.094 (5) | 0.084 (4) | −0.003 (5) | 0.000 | 0.000 |
Cl1 | 0.1454 (16) | 0.208 (2) | 0.202 (2) | −0.0442 (14) | 0.0100 (17) | 0.0547 (16) |
N1—C5 | 1.248 (5) | C9—C10 | 1.395 (6) |
N1—C6 | 1.459 (5) | C9—H9A | 0.9300 |
C1—C2 | 1.371 (5) | C10—C11 | 1.338 (6) |
C1—C2i | 1.371 (5) | C10—H10A | 0.9300 |
C1—H1A | 0.9300 | C11—C12 | 1.407 (6) |
C2—C3 | 1.390 (5) | C11—H11A | 0.9300 |
C2—H2A | 0.9300 | C12—C13 | 1.410 (6) |
C3—C4 | 1.387 (4) | C12—C17 | 1.414 (5) |
C3—C5 | 1.460 (5) | C13—C14 | 1.359 (7) |
C4—C3i | 1.387 (4) | C13—H13A | 0.9300 |
C4—H4A | 0.9300 | C14—C15 | 1.384 (7) |
C5—H5A | 0.9300 | C14—H14A | 0.9300 |
C6—C8 | 1.500 (5) | C15—C16 | 1.363 (5) |
C6—C7 | 1.524 (6) | C15—H15A | 0.9300 |
C6—H6A | 0.9800 | C16—C17 | 1.416 (5) |
C7—H7A | 0.9600 | C16—H16A | 0.9300 |
C7—H7B | 0.9600 | C18—Cl1ii | 1.699 (5) |
C7—H7C | 0.9600 | C18—Cl1 | 1.699 (5) |
C8—C9 | 1.373 (5) | C18—H18A | 0.9698 |
C8—C17 | 1.427 (5) | ||
C5—N1—C6 | 117.4 (3) | C8—C9—C10 | 121.8 (4) |
C2—C1—C2i | 120.4 (6) | C8—C9—H9A | 119.1 |
C2—C1—H1A | 119.8 | C10—C9—H9A | 119.1 |
C2i—C1—H1A | 119.8 | C11—C10—C9 | 120.7 (4) |
C1—C2—C3 | 120.6 (4) | C11—C10—H10A | 119.7 |
C1—C2—H2A | 119.7 | C9—C10—H10A | 119.7 |
C3—C2—H2A | 119.7 | C10—C11—C12 | 121.0 (4) |
C4—C3—C2 | 118.7 (4) | C10—C11—H11A | 119.5 |
C4—C3—C5 | 122.5 (4) | C12—C11—H11A | 119.5 |
C2—C3—C5 | 118.8 (4) | C11—C12—C13 | 121.5 (4) |
C3—C4—C3i | 121.1 (5) | C11—C12—C17 | 118.7 (4) |
C3—C4—H4A | 119.4 | C13—C12—C17 | 119.8 (4) |
C3i—C4—H4A | 119.4 | C14—C13—C12 | 120.5 (5) |
N1—C5—C3 | 123.7 (4) | C14—C13—H13A | 119.7 |
N1—C5—H5A | 118.1 | C12—C13—H13A | 119.7 |
C3—C5—H5A | 118.1 | C13—C14—C15 | 120.3 (4) |
N1—C6—C8 | 111.3 (3) | C13—C14—H14A | 119.9 |
N1—C6—C7 | 107.6 (3) | C15—C14—H14A | 119.9 |
C8—C6—C7 | 111.3 (3) | C16—C15—C14 | 120.8 (5) |
N1—C6—H6A | 108.8 | C16—C15—H15A | 119.6 |
C8—C6—H6A | 108.8 | C14—C15—H15A | 119.6 |
C7—C6—H6A | 108.8 | C15—C16—C17 | 121.1 (4) |
C6—C7—H7A | 109.5 | C15—C16—H16A | 119.4 |
C6—C7—H7B | 109.5 | C17—C16—H16A | 119.4 |
H7A—C7—H7B | 109.5 | C12—C17—C16 | 117.4 (4) |
C6—C7—H7C | 109.5 | C12—C17—C8 | 119.9 (3) |
H7A—C7—H7C | 109.5 | C16—C17—C8 | 122.7 (4) |
H7B—C7—H7C | 109.5 | Cl1ii—C18—Cl1 | 110.8 (4) |
C9—C8—C17 | 117.9 (4) | Cl1ii—C18—H18A | 109.4 |
C9—C8—C6 | 121.5 (3) | Cl1—C18—H18A | 109.4 |
C17—C8—C6 | 120.5 (3) | ||
C2i—C1—C2—C3 | 0.4 (3) | C10—C11—C12—C13 | −178.1 (4) |
C1—C2—C3—C4 | −0.9 (6) | C10—C11—C12—C17 | 2.7 (6) |
C1—C2—C3—C5 | 178.7 (3) | C11—C12—C13—C14 | 179.2 (4) |
C2—C3—C4—C3i | 0.4 (3) | C17—C12—C13—C14 | −1.6 (6) |
C5—C3—C4—C3i | −179.1 (4) | C12—C13—C14—C15 | 0.0 (7) |
C6—N1—C5—C3 | −178.2 (4) | C13—C14—C15—C16 | 1.0 (7) |
C4—C3—C5—N1 | −1.5 (6) | C14—C15—C16—C17 | −0.3 (6) |
C2—C3—C5—N1 | 179.0 (4) | C11—C12—C17—C16 | −178.6 (4) |
C5—N1—C6—C8 | −126.4 (4) | C13—C12—C17—C16 | 2.2 (5) |
C5—N1—C6—C7 | 111.4 (4) | C11—C12—C17—C8 | −1.5 (5) |
N1—C6—C8—C9 | −19.0 (5) | C13—C12—C17—C8 | 179.3 (4) |
C7—C6—C8—C9 | 101.1 (4) | C15—C16—C17—C12 | −1.3 (6) |
N1—C6—C8—C17 | 164.5 (3) | C15—C16—C17—C8 | −178.3 (4) |
C7—C6—C8—C17 | −75.4 (4) | C9—C8—C17—C12 | 0.3 (5) |
C17—C8—C9—C10 | −0.3 (6) | C6—C8—C17—C12 | 177.0 (3) |
C6—C8—C9—C10 | −176.9 (4) | C9—C8—C17—C16 | 177.2 (3) |
C8—C9—C10—C11 | 1.5 (7) | C6—C8—C17—C16 | −6.1 (5) |
C9—C10—C11—C12 | −2.7 (7) |
Symmetry codes: (i) −x+2, −y+1, z; (ii) −x+1, −y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C32H28N2·CH2Cl2 |
Mr | 525.49 |
Crystal system, space group | Orthorhombic, P21212 |
Temperature (K) | 298 |
a, b, c (Å) | 8.550 (2), 20.706 (6), 7.972 (3) |
V (Å3) | 1411.3 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.25 |
Crystal size (mm) | 0.40 × 0.24 × 0.20 |
Data collection | |
Diffractometer | Siemens P4 diffractometer |
Absorption correction | Gaussian (XSCANS; Siemens, 1996) |
Tmin, Tmax | 0.933, 0.954 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6308, 2497, 1428 |
Rint | 0.060 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.060, 0.186, 1.06 |
No. of reflections | 2497 |
No. of parameters | 172 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.16 |
Absolute structure | Flack (1983), 1028 Friedel pairs |
Absolute structure parameter | 0.0 (2) |
Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).
Footnotes
‡Other affiliation: Depto. Ing. Química, Universidad Politécnica de Tlaxcala Calle 21, no. 611 Col. La Loma Xicohténcatl Tlaxcala, Tlax. Mexico.
Acknowledgements
Partial support from VIEP-UAP (GUPJ-NAT08-G) is acknowledged.
References
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Jeon, S.-J., Li, H. & Walsh, P. J. (2005). J. Am. Chem. Soc. 127, 16416–16425. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Noyori, R. (2005). Chem. Commun. pp. 1807–1811. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Tanaka, K. & Toda, F. (2000). Chem. Rev. 100, 1025–1074. Web of Science CrossRef PubMed CAS Google Scholar
Tovar, A., Peña, U., Hernández, G., Portillo, R. & Gutiérrez, R. (2007). Synthesis, pp. 22–24. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
During the last few decades, a central objective in synthetic organic chemistry has been to develop greener and more economically competitive processes for the efficient synthesis of compounds with potential applications in diverse fields. In this context, the solvent-free approach is simple with amazing versatility because it reduces the use of organic solvents and minimizes the formation of other waste. Likewise, the reactions occur under mild conditions and usually require easier workup procedures and simpler equipment. Moreover, it may allow access to compounds that require harsh reaction conditions under traditional approaches or when the yields are too low to be of practical convenience (Jeon et al., 2005; Noyori, 2005; Tanaka & Toda, 2000).
On the other hand, bisimines have lately attracted much attention, mostly due to their versatile coordination behavior and the interesting properties of their metal complexes. These compounds are particularly interesting since they can potentially act in a variety of coordination modes.
Continuing our work on the synthesis of chiral imines (Tovar et al., 2007), we synthesized the title Schiff base under solvent-free conditions and report here its X-ray structure. The asymmetric unit contains one half-molecule and one half dichloromethane molecule, both placed on binary axis (Fig. 1). This arrangement is probably favored by the presence of a chiral center, C6, allowing to orient the substituents of the imine functionality towards the opposite faces of the central benzene core. The crystal is further stabilized by the inclusion of lattice solvent, resulting in a 1:1 solvate. Indeed, the shape of the Schiff base is suitable for the formation of a guest-host complex (Fig. 2). However, as no efficient hydrogen bonds are formed, the solvent molecule presents high displacement parameters, compared to the host (See Fig. 1).