organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1421-o1422

(5S,6R)-5-Methyl-6-phenyl-4-propyl-1,3,4-oxadiazinane-2-thione

aCB 4160, Department of Chemistry, Illinois State University, Normal, IL 61790, USA
*Correspondence e-mail: ferrence@illinoisstate.edu

(Received 2 May 2009; accepted 21 May 2009; online 29 May 2009)

The title mol­ecule, C13H18N2OS, is an oxadiazinanthione derived from (1R,2S)-norephedrine. There are two molecules in the asymmetric. Both adopt roughly half-chair conformations; however, the 5-position carbon orients out of opposite faces of the oxadiazinanthiones plane in the two molecules. In the crystal structure, they are oriented as a dimer linked by a pair of N—H⋯S hydrogen bonds. The absolute configuration has been established from anomalous dispersion and confirms the known stereochemistry based on the synthetic procedure.

Related literature

For background, see: Hitchcock et al. (2002[Hitchcock, S. R., Nora, G. P., Casper, D. M., Wiman, J. D., Bentley, J. T., Stafford, C. & Squire, M. D. (2002). J. Heterocycl. Chem. 39, 1113-1115.], 2008[Hitchcock, S. R., Davis, R. A., Richmond, D. M., Dore, D. D., Kuschel, S. L., Vaughn, J. F., Wolfe, J. A., Hamaker, C. G., Casper, D. M. & Dingle, J. (2008). J. Heterocycl. Chem. 45, 1265-1275.]); Trepanier et al. (1968[Trepanier, D. L., Elbe, J. N. & Harris, G. H. (1968). J. Med. Chem. 11, 357-361.]). For related compounds, see: Burgeson et al. (2004[Burgeson, J. R., Renner, M. K., Hardt, I., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2004). J. Org. Chem. 69, 727-734.]); Casper, Blackburn et al. (2002[Casper, D. M., Blackburn, J. R., Maroules, C. D., Brady, T., Esken, J. M., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2002). J. Org. Chem. 67, 8871-8876.]); Casper, Burgeson et al. (2002[Casper, D. M., Burgeson, J. R., Esken, J. M., Ferrence, G. M. & Hitchcock, S. R. (2002). Org. Lett. 4, 3739-3742.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Ferrence et al. (2003[Ferrence, G. M., Esken, J. M., Blackburn, J. R. & Hitchcock, S. R. (2003). Acta Cryst. E59, o212-o214.]); Hitchcock et al. (2001[Hitchcock, S. R., Nora, G. P., Casper, D. M., Squire, D. M., Maroules, C. D., Ferrence, G. M., Szczepura, L. P. & Standard, J. M. (2001). Tetrahedron, 57, 9789-9798.], 2004[Hitchcock, S. R., Casper, D. M., Vaughn, J. F., Finefield, J. M., Ferrence, G. M., Szczepura, L. P. & Esken, J. M. (2004). J. Org. Chem. 69, 714-718.]); Rodrigues et al. (2005[Rodrigues, A., Olivato, P. R. & Rittner, R. (2005). Synthesis, pp. 2578-2582.], 2006[Rodrigues, A., Olivato, P. R., Zukerman-Schpector, J. & Rittner, R. (2006). Z. Kristallogr. 221, 226-230.]); Squire et al. (2005[Squire, M. D., Davis, R. A., Chianakas, K. A., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2005). Tetrahedron Asymmetry, 16, 1047-1053.]); Szczepura et al. (2004[Szczepura, L. F., Hitchcock, S. R. & Nora, G. P. (2004). Acta Cryst. E60, o1467-o1469.]). For structural analysis, see: Boeyens (1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]); Bruno et al. (2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C13H18N2OS

  • Mr = 250.36

  • Monoclinic, P 21

  • a = 12.5888 (6) Å

  • b = 8.0648 (4) Å

  • c = 14.2862 (7) Å

  • β = 112.4488 (7)°

  • V = 1340.51 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 193 K

  • 0.45 × 0.3 × 0.26 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS in SAINT-Plus; Bruker, 1999[Bruker (1999). SAINT, SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.812, Tmax = 0.943

  • 10254 measured reflections

  • 5344 independent reflections

  • 5154 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.076

  • S = 1.03

  • 5344 reflections

  • 315 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter: 0.03 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯S67 0.86 (2) 2.48 (2) 3.3257 (14) 167 (2)
N53—H53⋯S17 0.82 (2) 2.56 (2) 3.3711 (15) 167 (2)

Data collection: SMART (Bruker, 1999[Bruker (1999). SAINT, SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT, SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (McMahon & Westrip, 2008[McMahon, B. & Westrip, S. P. (2008). Acta Cryst. A64, C161.]).

Supporting information


Comment top

The heterocyclic structure of 1,3,4-oxadiazinan-2-one compounds have been known for nearly forty years, however the related compound 3,4,5,6-tetrahydro-2H-1,3,4-oxadiazinan-2-thione has just within the last 10 years been synthesized and studied (Trepanier et al., 1968; Hitchcock et al., 2002). Other oxadiazinanones, but no oxadiazinanthiones, have been reported and studied. The oxadiazinanone structures previously reported by Hitchcock and co-workers all contain a carbonyl group attached at the N3 position, which is believed to have an impact on the ring conformation (Burgeson et al., 2004; Casper, Blackburn et al., 2002; Casper, Burgeson et al., 2002; Ferrence et al., 2003; Hitchcock et al., 2001, 2004, 2008; Squire et al., 2005; Szczepura et al., 2004).

The title compound, I, whose molecular structure is shown in Fig. 1, crystallizes with two independent molecules in the asymmetric unit with the two residues forming N–H···S intermolecularly H-bonded dimers with N3—H3···S67 = 2.48 (2) Å and N53—H53···S17 = 2.56 (2) Å. This H-bonding motif is similar to the N–H···O H-bonded dimers observed in the analogous oxadiazinaneone (Szczepura et al., 2004). A Mogul (Bruno et al. 2004) geometry check showed all non-H bond angles and distances to be normal. X-ray crystal structural data obtained for the oxadiazinan-2-thione proved to be interesting in the context of comparing it to related oxadiazinanone structures (Casper, Burgeson et al., 2002).

In fact, the two independent molecules in the asymmetric unit possess the two most common conformations for oxadiazine rings. Both molecules adopt roughly half-chair conformations with the most dramatic difference being whether the C5 (or C55) carbon resides above or below the respective mean O1—C2—N3—N4—C6 (or O51—C52—N53—N54—C56) plane. Ring puckering analysis using PLATON (Spek, 2009; Cremer & Pople, 1975; Boeyens, 1978) indicates θ = 129.9 (2)° and Φ = 55.1 (2)° for the O1—C2—N3—N4—C5—C6 ring. This is consistent with a formal conformational assignment close to an idealized envelope. Such a conformation possesses a pseudo-axial C5-methyl group, a typical pseudo-equatorial C6-phenyl ring, and a typical pseudo-axial N4-methyl group. Analysis of the O51—C52—N53—N54—C55—C56 ring indicates θ = 58.4 (2)° and Φ = 255.8 (2)°. This is consistent with a formal conformational assignment halfway between envelope (5E) and half-chair (5H6). In contrast, this conformation includes a pseudo-equatorial C55-methyl, the typical pseudo-axial C56-phenyl ring, and interestingly, a pseudo-equatorial N54-methyl group. This conformation represents a departure from the previously obtained X-ray crystal structures for the related ephedrine based oxadiazinanone wherein the N4-methyl group has always been observed in a pseudo-axial position (Szczepura et al., 2004). The differences in conformation are more clearly illustrated in Fig. 2 which depicts a variety of overlays of the crystallographically independent molecules in the title compound and those found in the closely related oxadiazinanone, molecule II, 3,4,5,6-tetrahydro-2H-1,3,4-oxadiazinan-2-one. Fig. 2A shows the overlay of both independent molecules found in I and clearly shows their differing conformations. Fig. 2B shows the overlay of both independent molecules found in II and clearly shows the ring conformations to be essentially equivalent with the difference between the molecules being only the orientation of the terminal methyl group of the N4 propyl group. Figs. 2C and 2D show the nearly identical ring conformations of one of the independent molecules of I and either of the independent molecules of II. Figs. 2E and 2F clearly show the distinct conformation of the other independent molecule of I when compared with either independent molecule of II. All of these overlays were prepared in Mercury using a three point least-squares fit of the O(1), C(2), and N(3) atoms only. The existence of multiple conformers for oxadiazinanones has been observed before by Rodrigues and coworkers (Rodrigues et al., 2005; 2006). The conformational flexibility of these systems is believed to be due to the nature of the substituents on the ring system. In the case of the oxadiazinan-2-thione, the source of the conformational flexibility is not clear and remains to be determined by further experimentation.

A Jmol enhanced figure (Fig. 3) accompanies this article. This enhanced figure is designed to illustrate the 21 screw axis present in the monoclinic space group P21. Selecting appropriate radio buttons will highlight crystallographically identical molecules which are related by propagation along the 21 screw axis parallel to the b axis.

Related literature top

For related literature, see: Boeyens (1978); Bruno et al. (2004); Burgeson et al. (2004); Casper, Blackburn et al. (2002); Casper, Burgeson et al. (2002); Cremer & Pople (1975); Ferrence et al. (2003); Hitchcock et al. (2001, 2002, 2004, 2008); Rodrigues et al. (2005, 2006); Squire et al. (2005); Spek (2009); Szczepura et al. (2004); Trepanier et al. (1968).

Experimental top

The title compound was synthesized by Hitchcock et al. (Hitchcock et al., 2002).

Refinement top

All non-H atoms were refined anisotropically without disorder. All H atoms were initially identified through difference Fourier syntheses then removed and included in the refinement in the riding-model approximation except the amine H atom which was freely refined (C–H = 0.95, 0.98, 0.99 and 1.00 Å for Ar–H, CH3, CH2, and CH; Uiso(H) = 1.2Ueq(C) except for methyl groups, where Uiso(H) = 1.5Ueq(C)).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (McMahon & Westrip, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of C11H18N2OS showing the atomic numbering scheme and the two molecules in the asymmetric unit. Ellipsoids shown at 50% probability displacement.
[Figure 2] Fig. 2. Mercury overlays of (A) molecules 1 and 2 of the title compound I; (B) molecules 1 and 2 of compound II (C11H18N2O2); (C—F) the four other possible permutations. Molecule 1 of the title compound is shown in green; molecule 2 of the title compound is shown in black; molecule 1 of compound II is shown in yellow; molecule 2 of compound II is shown in purple. For all overlays, hydrogen atoms are included.
[Figure 3] Fig. 3. Jmol enhanced figure of (5S,6R)-5-Methyl-6-phenyl-4-propyl-1,3,4-oxadiazinane-2-thione.
(5S,6R)-5-Methyl-6-phenyl-4-propyl-1,3,4-oxadiazinane-2-thione top
Crystal data top
C13H18N2OSF(000) = 536
Mr = 250.36Dx = 1.24 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4757 reflections
a = 12.5888 (6) Åθ = 2.7–26.4°
b = 8.0648 (4) ŵ = 0.23 mm1
c = 14.2862 (7) ÅT = 193 K
β = 112.4488 (7)°Prism, colourless
V = 1340.51 (11) Å30.45 × 0.3 × 0.26 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
5154 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 26.4°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS in SAINT-Plus; Bruker, 1999)
h = 1515
Tmin = 0.812, Tmax = 0.943k = 910
10254 measured reflectionsl = 1717
5344 independent reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0464P)2 + 0.1813P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.028(Δ/σ)max = 0.001
wR(F2) = 0.076Δρmax = 0.23 e Å3
S = 1.03Δρmin = 0.19 e Å3
5344 reflectionsAbsolute structure: Flack (1983)
315 parametersAbsolute structure parameter: 0.03 (4)
1 restraint
Crystal data top
C13H18N2OSV = 1340.51 (11) Å3
Mr = 250.36Z = 4
Monoclinic, P21Mo Kα radiation
a = 12.5888 (6) ŵ = 0.23 mm1
b = 8.0648 (4) ÅT = 193 K
c = 14.2862 (7) Å0.45 × 0.3 × 0.26 mm
β = 112.4488 (7)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
5344 independent reflections
Absorption correction: multi-scan
(SADABS in SAINT-Plus; Bruker, 1999)
5154 reflections with I > 2σ(I)
Tmin = 0.812, Tmax = 0.943Rint = 0.016
10254 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076Δρmax = 0.23 e Å3
S = 1.03Δρmin = 0.19 e Å3
5344 reflectionsAbsolute structure: Flack (1983)
315 parametersAbsolute structure parameter: 0.03 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H30.5801 (17)0.487 (3)0.3637 (14)0.037 (5)*
H530.4291 (18)0.298 (3)0.1944 (15)0.044 (6)*
O10.82647 (9)0.40738 (15)0.38779 (8)0.0317 (2)
C20.71123 (12)0.3987 (2)0.35160 (11)0.0266 (3)
N30.65394 (10)0.49797 (16)0.38728 (9)0.0277 (3)
N40.70414 (10)0.60668 (16)0.47180 (9)0.0260 (3)
C50.81231 (12)0.67014 (19)0.46870 (12)0.0284 (3)
H50.79560.73340.40440.034*
C60.88793 (11)0.5206 (2)0.47089 (11)0.0281 (3)
H60.95560.56350.4580.034*
C70.93458 (12)0.4261 (2)0.56893 (12)0.0292 (3)
C80.86992 (13)0.3065 (2)0.59413 (12)0.0337 (3)
H80.79350.28370.54870.04*
C90.91621 (16)0.2203 (2)0.68504 (13)0.0402 (4)
H90.87180.13860.70150.048*
C101.02754 (15)0.2541 (3)0.75165 (13)0.0427 (4)
H101.05990.19420.81340.051*
C111.09113 (15)0.3742 (3)0.72841 (13)0.0432 (4)
H111.16660.39880.77510.052*
C121.04608 (13)0.4594 (2)0.63761 (12)0.0365 (4)
H121.09120.54090.62190.044*
C130.87021 (14)0.7838 (2)0.55843 (13)0.0384 (4)
H13A0.81990.87840.55480.058*
H13B0.94310.82390.5570.058*
H13C0.88510.72270.62140.058*
C140.61975 (13)0.7372 (2)0.46634 (11)0.0301 (3)
H14A0.65080.80310.52950.036*
H14B0.54880.68240.4650.036*
C150.58656 (15)0.8565 (2)0.37746 (13)0.0386 (4)
H15A0.55360.7940.31310.046*
H15B0.65570.9160.37820.046*
C160.4989 (2)0.9805 (3)0.38432 (19)0.0642 (6)
H16A0.47721.05650.32650.096*
H16B0.53251.04380.44740.096*
H16C0.43060.92120.38350.096*
S170.64745 (3)0.25776 (5)0.25998 (3)0.03521 (10)
O510.18836 (8)0.39587 (13)0.16424 (8)0.0282 (2)
C520.30313 (12)0.39369 (19)0.20313 (11)0.0261 (3)
N530.35868 (11)0.29154 (17)0.16570 (9)0.0277 (3)
N540.30882 (10)0.15932 (16)0.09668 (9)0.0273 (3)
C550.19357 (12)0.12386 (19)0.09575 (12)0.0270 (3)
H550.15280.05020.03660.032*
C560.12635 (11)0.28685 (18)0.07989 (11)0.0252 (3)
H560.12370.33950.01560.03*
C570.00531 (11)0.27209 (18)0.07641 (10)0.0252 (3)
C580.02242 (13)0.3144 (2)0.15848 (11)0.0331 (3)
H580.03580.35530.21860.04*
C590.13361 (14)0.2977 (2)0.15410 (13)0.0371 (4)
H590.15130.32640.2110.045*
C600.21914 (13)0.2390 (2)0.06632 (13)0.0355 (3)
H600.29560.22710.0630.043*
C610.19292 (13)0.1979 (2)0.01602 (13)0.0334 (3)
H610.25170.15840.07620.04*
C620.08151 (13)0.21385 (19)0.01173 (12)0.0289 (3)
H620.06420.18510.06880.035*
C630.20153 (14)0.0328 (2)0.19114 (12)0.0351 (3)
H63A0.24540.06980.19750.053*
H63B0.1240.00610.18730.053*
H63C0.24030.10340.25030.053*
C640.31096 (13)0.1969 (2)0.00361 (11)0.0323 (3)
H64A0.27330.30530.02710.039*
H64B0.26630.11140.05250.039*
C650.43186 (14)0.2023 (3)0.00219 (13)0.0449 (5)
H65A0.47250.09830.02770.054*
H65B0.47430.29570.04080.054*
C660.43043 (18)0.2236 (4)0.10884 (15)0.0600 (6)
H66A0.50950.2260.10580.09*
H66B0.39180.32770.13790.09*
H66C0.38910.13060.15130.09*
S670.36887 (3)0.52486 (5)0.29914 (3)0.03515 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0211 (5)0.0432 (7)0.0292 (5)0.0010 (4)0.0078 (4)0.0076 (5)
C20.0228 (7)0.0307 (8)0.0260 (7)0.0016 (6)0.0090 (6)0.0002 (6)
N30.0196 (6)0.0315 (7)0.0300 (6)0.0015 (5)0.0072 (5)0.0047 (5)
N40.0235 (6)0.0285 (7)0.0252 (6)0.0016 (5)0.0083 (5)0.0027 (5)
C50.0240 (7)0.0301 (8)0.0301 (7)0.0016 (6)0.0093 (6)0.0020 (6)
C60.0196 (6)0.0349 (8)0.0288 (7)0.0049 (6)0.0081 (5)0.0034 (7)
C70.0230 (7)0.0330 (8)0.0310 (8)0.0022 (6)0.0096 (6)0.0041 (6)
C80.0276 (7)0.0352 (8)0.0355 (8)0.0006 (6)0.0089 (6)0.0010 (7)
C90.0446 (10)0.0385 (10)0.0410 (9)0.0034 (7)0.0201 (8)0.0034 (8)
C100.0461 (9)0.0476 (10)0.0314 (8)0.0139 (9)0.0112 (7)0.0050 (8)
C110.0313 (8)0.0539 (11)0.0350 (9)0.0074 (8)0.0021 (7)0.0035 (8)
C120.0255 (8)0.0433 (9)0.0364 (8)0.0012 (7)0.0070 (6)0.0025 (7)
C130.0339 (8)0.0358 (9)0.0408 (9)0.0067 (7)0.0089 (7)0.0054 (7)
C140.0286 (7)0.0344 (8)0.0282 (7)0.0022 (6)0.0119 (6)0.0039 (6)
C150.0381 (9)0.0367 (9)0.0407 (9)0.0073 (7)0.0146 (7)0.0047 (7)
C160.0586 (13)0.0610 (15)0.0805 (15)0.0297 (11)0.0349 (12)0.0218 (12)
S170.02566 (18)0.0418 (2)0.0374 (2)0.00325 (16)0.01108 (15)0.01413 (17)
O510.0194 (5)0.0265 (5)0.0336 (6)0.0015 (4)0.0045 (4)0.0038 (4)
C520.0217 (7)0.0280 (8)0.0261 (7)0.0011 (6)0.0063 (6)0.0034 (6)
N530.0190 (6)0.0345 (7)0.0256 (6)0.0024 (5)0.0040 (5)0.0028 (5)
N540.0221 (6)0.0291 (7)0.0279 (6)0.0005 (5)0.0063 (5)0.0024 (5)
C550.0228 (7)0.0250 (7)0.0307 (8)0.0020 (6)0.0073 (6)0.0007 (6)
C560.0222 (7)0.0258 (7)0.0250 (6)0.0022 (6)0.0062 (5)0.0001 (6)
C570.0209 (6)0.0241 (7)0.0272 (7)0.0002 (5)0.0053 (5)0.0020 (6)
C580.0273 (7)0.0420 (9)0.0256 (7)0.0035 (6)0.0052 (6)0.0004 (6)
C590.0327 (8)0.0471 (10)0.0348 (8)0.0014 (7)0.0164 (7)0.0006 (7)
C600.0234 (7)0.0362 (9)0.0473 (9)0.0019 (6)0.0139 (7)0.0004 (8)
C610.0229 (7)0.0315 (8)0.0388 (8)0.0038 (6)0.0039 (6)0.0063 (7)
C620.0262 (7)0.0282 (8)0.0303 (7)0.0003 (6)0.0086 (6)0.0045 (6)
C630.0316 (7)0.0327 (8)0.0397 (8)0.0012 (7)0.0123 (6)0.0072 (7)
C640.0262 (7)0.0392 (9)0.0285 (7)0.0016 (6)0.0072 (6)0.0055 (7)
C650.0295 (8)0.0701 (13)0.0359 (9)0.0009 (8)0.0135 (7)0.0035 (9)
C660.0442 (10)0.1014 (18)0.0394 (10)0.0052 (11)0.0218 (8)0.0079 (12)
S670.02293 (17)0.0437 (2)0.03399 (19)0.00201 (16)0.00548 (14)0.01305 (17)
Geometric parameters (Å, º) top
O1—C21.3432 (17)O51—C521.3355 (17)
O1—C61.4627 (18)O51—C561.4548 (16)
C2—N31.305 (2)C52—N531.319 (2)
C2—S171.6873 (15)C52—S671.6788 (15)
N3—N41.4294 (17)N53—N541.4250 (18)
N3—H30.86 (2)N53—H530.82 (2)
N4—C51.4711 (18)N54—C551.4739 (18)
N4—C141.476 (2)N54—C641.475 (2)
C5—C131.517 (2)C55—C631.517 (2)
C5—C61.530 (2)C55—C561.533 (2)
C5—H51C55—H551
C6—C71.503 (2)C56—C571.5101 (18)
C6—H61C56—H561
C7—C81.396 (2)C57—C581.388 (2)
C7—C121.397 (2)C57—C621.3963 (19)
C8—C91.390 (2)C58—C591.384 (2)
C8—H80.95C58—H580.95
C9—C101.388 (3)C59—C601.388 (2)
C9—H90.95C59—H590.95
C10—C111.375 (3)C60—C611.378 (2)
C10—H100.95C60—H600.95
C11—C121.384 (2)C61—C621.386 (2)
C11—H110.95C61—H610.95
C12—H120.95C62—H620.95
C13—H13A0.98C63—H63A0.98
C13—H13B0.98C63—H63B0.98
C13—H13C0.98C63—H63C0.98
C14—C151.519 (2)C64—C651.515 (2)
C14—H14A0.99C64—H64A0.99
C14—H14B0.99C64—H64B0.99
C15—C161.520 (3)C65—C661.527 (3)
C15—H15A0.99C65—H65A0.99
C15—H15B0.99C65—H65B0.99
C16—H16A0.98C66—H66A0.98
C16—H16B0.98C66—H66B0.98
C16—H16C0.98C66—H66C0.98
C2—O1—C6120.25 (12)C52—O51—C56119.32 (11)
N3—C2—O1119.64 (13)N53—C52—O51119.77 (13)
N3—C2—S17123.11 (11)N53—C52—S67123.55 (11)
O1—C2—S17117.25 (11)O51—C52—S67116.68 (11)
C2—N3—N4125.07 (12)C52—N53—N54125.90 (12)
C2—N3—H3117.2 (13)C52—N53—H53113.1 (15)
N4—N3—H3117.1 (13)N54—N53—H53120.0 (15)
N3—N4—C5107.68 (11)N53—N54—C55108.87 (11)
N3—N4—C14108.40 (11)N53—N54—C64110.61 (12)
C5—N4—C14113.96 (12)C55—N54—C64114.47 (11)
N4—C5—C13109.66 (13)N54—C55—C63111.02 (12)
N4—C5—C6107.52 (12)N54—C55—C56108.73 (12)
C13—C5—C6111.41 (12)C63—C55—C56113.03 (13)
N4—C5—H5109.4N54—C55—H55108
C13—C5—H5109.4C63—C55—H55108
C6—C5—H5109.4C56—C55—H55108
O1—C6—C7109.73 (13)O51—C56—C57106.89 (11)
O1—C6—C5110.08 (11)O51—C56—C55107.73 (11)
C7—C6—C5115.94 (12)C57—C56—C55115.50 (12)
O1—C6—H6106.9O51—C56—H56108.9
C7—C6—H6106.9C57—C56—H56108.9
C5—C6—H6106.9C55—C56—H56108.9
C8—C7—C12118.68 (15)C58—C57—C62118.80 (13)
C8—C7—C6122.14 (13)C58—C57—C56121.94 (12)
C12—C7—C6119.17 (14)C62—C57—C56119.26 (13)
C9—C8—C7120.61 (15)C59—C58—C57120.97 (14)
C9—C8—H8119.7C59—C58—H58119.5
C7—C8—H8119.7C57—C58—H58119.5
C10—C9—C8119.73 (17)C58—C59—C60119.77 (15)
C10—C9—H9120.1C58—C59—H59120.1
C8—C9—H9120.1C60—C59—H59120.1
C11—C10—C9120.09 (16)C61—C60—C59119.83 (14)
C11—C10—H10120C61—C60—H60120.1
C9—C10—H10120C59—C60—H60120.1
C10—C11—C12120.52 (16)C60—C61—C62120.54 (14)
C10—C11—H11119.7C60—C61—H61119.7
C12—C11—H11119.7C62—C61—H61119.7
C11—C12—C7120.34 (17)C61—C62—C57120.09 (14)
C11—C12—H12119.8C61—C62—H62120
C7—C12—H12119.8C57—C62—H62120
C5—C13—H13A109.5C55—C63—H63A109.5
C5—C13—H13B109.5C55—C63—H63B109.5
H13A—C13—H13B109.5H63A—C63—H63B109.5
C5—C13—H13C109.5C55—C63—H63C109.5
H13A—C13—H13C109.5H63A—C63—H63C109.5
H13B—C13—H13C109.5H63B—C63—H63C109.5
N4—C14—C15117.29 (12)N54—C64—C65112.58 (13)
N4—C14—H14A108N54—C64—H64A109.1
C15—C14—H14A108C65—C64—H64A109.1
N4—C14—H14B108N54—C64—H64B109.1
C15—C14—H14B108C65—C64—H64B109.1
H14A—C14—H14B107.2H64A—C64—H64B107.8
C14—C15—C16109.73 (16)C64—C65—C66111.17 (15)
C14—C15—H15A109.7C64—C65—H65A109.4
C16—C15—H15A109.7C66—C65—H65A109.4
C14—C15—H15B109.7C64—C65—H65B109.4
C16—C15—H15B109.7C66—C65—H65B109.4
H15A—C15—H15B108.2H65A—C65—H65B108
C15—C16—H16A109.5C65—C66—H66A109.5
C15—C16—H16B109.5C65—C66—H66B109.5
H16A—C16—H16B109.5H66A—C66—H66B109.5
C15—C16—H16C109.5C65—C66—H66C109.5
H16A—C16—H16C109.5H66A—C66—H66C109.5
H16B—C16—H16C109.5H66B—C66—H66C109.5
C6—O1—C2—N33.6 (2)C56—O51—C52—N530.9 (2)
C6—O1—C2—S17176.82 (11)C56—O51—C52—S67179.09 (10)
O1—C2—N3—N47.4 (2)O51—C52—N53—N5411.2 (2)
S17—C2—N3—N4173.03 (11)S67—C52—N53—N54168.81 (11)
C2—N3—N4—C536.25 (18)C52—N53—N54—C5515.85 (19)
C2—N3—N4—C14159.97 (14)C52—N53—N54—C64110.75 (16)
N3—N4—C5—C13178.87 (12)N53—N54—C55—C6374.51 (15)
C14—N4—C5—C1360.85 (16)C64—N54—C55—C63161.14 (14)
N3—N4—C5—C657.59 (14)N53—N54—C55—C5650.43 (15)
C14—N4—C5—C6177.87 (11)C64—N54—C55—C5673.92 (16)
C2—O1—C6—C7100.10 (15)C52—O51—C56—C57160.86 (12)
C2—O1—C6—C528.65 (18)C52—O51—C56—C5536.15 (16)
N4—C5—C6—O155.69 (15)N54—C55—C56—O5160.99 (14)
C13—C5—C6—O1175.87 (12)C63—C55—C56—O5162.77 (15)
N4—C5—C6—C769.59 (16)N54—C55—C56—C57179.65 (11)
C13—C5—C6—C750.59 (17)C63—C55—C56—C5756.60 (17)
O1—C6—C7—C843.15 (19)O51—C56—C57—C5817.70 (19)
C5—C6—C7—C882.32 (19)C55—C56—C57—C58102.13 (17)
O1—C6—C7—C12137.21 (14)O51—C56—C57—C62162.47 (13)
C5—C6—C7—C1297.32 (17)C55—C56—C57—C6277.70 (17)
C12—C7—C8—C91.0 (2)C62—C57—C58—C590.7 (2)
C6—C7—C8—C9179.35 (15)C56—C57—C58—C59179.12 (15)
C7—C8—C9—C100.3 (3)C57—C58—C59—C600.4 (3)
C8—C9—C10—C111.0 (3)C58—C59—C60—C610.2 (3)
C9—C10—C11—C121.6 (3)C59—C60—C61—C620.4 (3)
C10—C11—C12—C70.9 (3)C60—C61—C62—C570.1 (2)
C8—C7—C12—C110.4 (2)C58—C57—C62—C610.5 (2)
C6—C7—C12—C11179.97 (16)C56—C57—C62—C61179.38 (14)
N3—N4—C14—C1565.19 (17)N53—N54—C64—C6566.76 (17)
C5—N4—C14—C1554.69 (18)C55—N54—C64—C65169.82 (14)
N4—C14—C15—C16179.66 (16)N54—C64—C65—C66174.12 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S670.86 (2)2.48 (2)3.3257 (14)167 (2)
N53—H53···S170.82 (2)2.56 (2)3.3711 (15)167 (2)

Experimental details

Crystal data
Chemical formulaC13H18N2OS
Mr250.36
Crystal system, space groupMonoclinic, P21
Temperature (K)193
a, b, c (Å)12.5888 (6), 8.0648 (4), 14.2862 (7)
β (°) 112.4488 (7)
V3)1340.51 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.45 × 0.3 × 0.26
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS in SAINT-Plus; Bruker, 1999)
Tmin, Tmax0.812, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
10254, 5344, 5154
Rint0.016
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.076, 1.03
No. of reflections5344
No. of parameters315
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.19
Absolute structureFlack (1983)
Absolute structure parameter0.03 (4)

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999) and publCIF (McMahon & Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S670.86 (2)2.48 (2)3.3257 (14)167 (2)
N53—H53···S170.82 (2)2.56 (2)3.3711 (15)167 (2)
 

Acknowledgements

This material is based upon work supported by the US National Science Foundation (CHE-0348158) (to GMF) and the American Chemical Society Petroleum Research Fund (grant No. 407771B) (to SRH). GMF thanks Dr Robert McDonald and the University of Alberta X-ray Crystallography Laboratory for the collection of low-temperature CCD X-ray data.

References

First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBruker (1999). SAINT, SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurgeson, J. R., Renner, M. K., Hardt, I., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2004). J. Org. Chem. 69, 727–734.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCasper, D. M., Blackburn, J. R., Maroules, C. D., Brady, T., Esken, J. M., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2002). J. Org. Chem. 67, 8871–8876.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCasper, D. M., Burgeson, J. R., Esken, J. M., Ferrence, G. M. & Hitchcock, S. R. (2002). Org. Lett. 4, 3739–3742.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerrence, G. M., Esken, J. M., Blackburn, J. R. & Hitchcock, S. R. (2003). Acta Cryst. E59, o212–o214.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHitchcock, S. R., Casper, D. M., Vaughn, J. F., Finefield, J. M., Ferrence, G. M., Szczepura, L. P. & Esken, J. M. (2004). J. Org. Chem. 69, 714–718.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHitchcock, S. R., Davis, R. A., Richmond, D. M., Dore, D. D., Kuschel, S. L., Vaughn, J. F., Wolfe, J. A., Hamaker, C. G., Casper, D. M. & Dingle, J. (2008). J. Heterocycl. Chem. 45, 1265–1275.  CSD CrossRef CAS Google Scholar
First citationHitchcock, S. R., Nora, G. P., Casper, D. M., Squire, D. M., Maroules, C. D., Ferrence, G. M., Szczepura, L. P. & Standard, J. M. (2001). Tetrahedron, 57, 9789–9798.  Web of Science CSD CrossRef CAS Google Scholar
First citationHitchcock, S. R., Nora, G. P., Casper, D. M., Wiman, J. D., Bentley, J. T., Stafford, C. & Squire, M. D. (2002). J. Heterocycl. Chem. 39, 1113–1115.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcMahon, B. & Westrip, S. P. (2008). Acta Cryst. A64, C161.  CrossRef IUCr Journals Google Scholar
First citationRodrigues, A., Olivato, P. R. & Rittner, R. (2005). Synthesis, pp. 2578–2582.  Web of Science CrossRef Google Scholar
First citationRodrigues, A., Olivato, P. R., Zukerman-Schpector, J. & Rittner, R. (2006). Z. Kristallogr. 221, 226–230.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSquire, M. D., Davis, R. A., Chianakas, K. A., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2005). Tetrahedron Asymmetry, 16, 1047–1053.  Web of Science CSD CrossRef CAS Google Scholar
First citationSzczepura, L. F., Hitchcock, S. R. & Nora, G. P. (2004). Acta Cryst. E60, o1467–o1469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTrepanier, D. L., Elbe, J. N. & Harris, G. H. (1968). J. Med. Chem. 11, 357–361.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1421-o1422
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds