organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1393-o1394

α-D-Tagato­pyran­ose

aLAMSUN and CSGI at Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy, bUniversity of Oxford, Department of Chemical Crystallography, Chemistry Research Laboratory, Oxford OX1 3TA, England, and cUniversity of Oxford, Department of Organic Chemistry, Chemistry Research Laboratory, Oxford OX1 3TA, England
*Correspondence e-mail: fpunzo@unict.it

(Received 7 April 2009; accepted 11 May 2009; online 23 May 2009)

The title compound, C6H12O6, also known as D-Tagatose, occurs in its furanose and pyranose forms in solution, but only the α-pyran­ose form crystallizes out. In the crystal, the molecules form hydrogen bonded chains propagating in [100] linked by O—H⋯O interactions. Further O—H⋯O bonds cross-link the chains.

Related literature

For the D-tagatose market price, syntheses and applications, see: Angyal (1991[Angyal, S. J. (1991). Adv. Carbohydr. Chem. Biochem. 49, 19-35.]); Beadle et al. (1992[Beadle, J. R., Saunders, J. P. & Wajda, T. J. (1992). Process for Manufacturing tagatose, US Patent 5 078 796, January 7, 1992.]); Granstrom et al. (2004[Granstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89-94.]); Izumori (2002[Izumori, K. (2002). Naturwissennshaften, 89, 120-124.]); Skytte (2002[Skytte, U. P. (2002). Cereal Foods World, 47, 224-227.]); Porwell (2007[Porwell, J. (2007). Aldrich Handbook of Fine Chemicals p. 2253. Milwaukee, WI, USA: Aldrich.]). For the potential of the title compound as a chiral building block, see: Soengas et al. (2005[Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755-5759.]); Jones et al. (2007[Jones, N. A., Jenkinson, S. F., Soengas, R., Fanefjord, M., Wormald, M. R., Dwek, R. A., Kiran, G. P., Devendar, R., Takata, G., Morimoto, K., Izumori, K. & Fleet, G. W. J. (2007). Tetrahedron Asymmetry, 18, 774-786.], 2008[Jones, N. A., Rao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., Hunter, S. J., Wormald, M. R., Dwek, R. A., Izumori, K. & Fleet, G. W. J. (2008). Tetrahedron Asymmetry, 19, 1904-1918.]); Yoshihara et al. (2008[Yoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N. A., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 739-745.]). For related crystallographic literature, see: Takagi et al. (1969[Takagi, S. & Rosenstein, R. D. (1969). Carbohydrate Res. 11, 156-158.]); Görbitz (1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.]); Watkin et al. (2005[Watkin, D. J., Glawar, A. F. G., Soengas, R., Skytte, U. P., Wormald, M. R., Dwek, R. A. & Fleet, G. W. J. (2005). Acta Cryst. E61, o2891-o2893.]); Kwiecien et al. (2008[Kwiecien, A., Slepokura, K. & Lis, T. (2008). Carbohydrate Res. 343, 2336-2339.]); Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.]).

[Scheme 1]

Experimental

Crystal data
  • C6H12O6

  • Mr = 180.16

  • Orthorhombic, P 21 21 21

  • a = 6.2201 (1) Å

  • b = 6.5022 (1) Å

  • c = 17.6629 (4) Å

  • V = 714.36 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 190 K

  • 0.50 × 0.30 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.96, Tmax = 0.97

  • 2343 measured reflections

  • 1378 independent reflections

  • 1351 reflections with I > 2.0σ(I)

  • Rint = 0.010

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.065

  • S = 0.96

  • 1378 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41⋯O10i 0.81 2.02 2.8236 (14) 171
O9—H91⋯O1ii 0.83 1.90 2.7203 (14) 173
O12—H121⋯O4iii 0.83 2.09 2.7875 (14) 142
O10—H101⋯O4iv 0.81 2.10 2.8518 (14) 155
O1—H11⋯O6v 0.81 1.96 2.7661 (14) 175
Symmetry codes: (i) x, y+1, z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y-1, z; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (v) x-1, y, z.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON, Chemical Crystallography Laboratory, Oxford, UK.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Until recently D-tagatose was a rare and expensive hexose; the price in the 2007–2008 Aldrich catalogue was 331.00 pounds sterling for 5 g (Porwell, 2007). It is now available cheaply in large quantities [around 5 pounds sterling per kg] prepared by either chemical (Beadle et al., 1992) or biotechnological (Granstrom et al., 2004; Izumori, 2002) techniques, and it is widely investigated as a low calorie sweetener (Skytte, 2002); the potential of D-tagatose as a chiral building block is also beginning to be recognized (Soengas et al., 2005; Watkin et al., 2005; Jones et al., 2007; Jones et al., 2008; Yoshihara et al., 2008). The crystal structure of another hitherto rare diasteroisomeric ketohexose, D-psicose, has recently been published (Kwiecien et al., 2008). A previous α-D-tagatose structure solution (Takagi et al., 1969), did not report either three-dimensional coordinates or bond lengths and angles. Although in aqueous solution both furanose and pyranose forms are present, only the α-pyranose crystallizes out. The crystal structure of the title compound (Fig. 1) consists of a network of hydrogen-bonded chains running parallel to the a axis (Fig.2). Referring to Table 1, O4—H41···O10 is the only intramolecular hydrogen bond detected in the structure. O12—H121···O4 and O1—H11···O6 link the molecules into chains, and O9—H91···O1 and O10—H101···O4 stabilize the structure with inter-chain hydrogen bonds. O4 is involved as an acceptor in two hydrogen bonds and as a donor in an almost linear hydrogen bond - the latter by means of H41. The crystal structure shows three equatorial groups and two axial groups, one of which is an axial anomeric hydroxyl group; this would be expected to be the most thermodynamically stable pyranose anomer. The fairly high value of the anisotropic displacement of O12 - compared to the other C and O atoms - is probably due to thermal motion. It results also in a higher - compared to the other H atoms - isotropic displacement for H121 i.e. the hydrogen atom connected to the last atom of the flexible C7—C11—O12 chain.

Related literature top

For the D-tagatose market price, syntheses and applications, see: Angyal (1991); Beadle et al. (1992); Granstrom et al. (2004); Izumori (2002); Skytte (2002); Porwell (2007). For the potential of the title compound as a chiral building block, see: Soengas et al. (2005); Jones et al. (2007, 2008); Yoshihara et al. (2008). For related crystallographic literature, see: Takagi et al. (1969); Görbitz (1999); Watkin et al. (2005); Kwiecien et al. (2008); Larson (1970).

Experimental top

In aqueous solution the major form present is α-D-tagatopyranose (71%) (Fig.1) with 18% of the β-pyranose and small amount of the furanoses (Angyal, 1991). The title compound was recrystallized from a 1:10 mixture of water and acetone allowing the slow competetive evaporation of the solvents, after which, transparent prismatic crystals appeared.

Refinement top

The data were collected with molybdenum radiation and since there were no atoms heavier than Si present, there were no measurable anomalous differences and it was admissible to merge Friedel pairs of reflections. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997). The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 2] Fig. 2. Packing diagram of title compound viewed down the a axis. Hydrogen bonds are shown as dotted lines.
[Figure 3] Fig. 3. D-Tagatose and α-D-tagatopyranose.
α-D-Tagatopyranose top
Crystal data top
C6H12O6F(000) = 384
Mr = 180.16Dx = 1.675 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1344 reflections
a = 6.2201 (1) Åθ = 5–32°
b = 6.5022 (1) ŵ = 0.15 mm1
c = 17.6629 (4) ÅT = 190 K
V = 714.36 (2) Å3Prism, colourless
Z = 40.50 × 0.30 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
1351 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.010
ω scansθmax = 31.5°, θmin = 5.6°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 99
Tmin = 0.96, Tmax = 0.97k = 99
2343 measured reflectionsl = 2525
1378 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.04P)2 + 0.18P],
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max = 0.000109
S = 0.97Δρmax = 0.34 e Å3
1378 reflectionsΔρmin = 0.20 e Å3
110 parametersExtinction correction: Larson (1970), Equation 22
0 restraintsExtinction coefficient: 260 (40)
Primary atom site location: structure-invariant direct methods
Crystal data top
C6H12O6V = 714.36 (2) Å3
Mr = 180.16Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.2201 (1) ŵ = 0.15 mm1
b = 6.5022 (1) ÅT = 190 K
c = 17.6629 (4) Å0.50 × 0.30 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
1378 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
1351 reflections with I > 2.0σ(I)
Tmin = 0.96, Tmax = 0.97Rint = 0.010
2343 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 0.97Δρmax = 0.34 e Å3
1378 reflectionsΔρmin = 0.20 e Å3
110 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20580 (13)0.34108 (12)0.17994 (4)0.0157
C20.02883 (15)0.29006 (15)0.13171 (5)0.0113
C30.10689 (16)0.47890 (15)0.11569 (5)0.0118
O40.02429 (12)0.62640 (12)0.07662 (4)0.0150
C50.29501 (17)0.41697 (16)0.06531 (6)0.0143
O60.42202 (12)0.25811 (12)0.09985 (4)0.0139
C70.30499 (16)0.07510 (15)0.11774 (5)0.0118
C80.11083 (16)0.12491 (15)0.16890 (5)0.0118
O90.18387 (14)0.19838 (12)0.24031 (4)0.0171
O100.22054 (13)0.01458 (12)0.05105 (4)0.0142
C110.46654 (17)0.06848 (16)0.15537 (6)0.0155
O120.61351 (15)0.12797 (16)0.09805 (5)0.0271
H210.08510.23650.08490.0134*
H310.15850.53380.16290.0151*
H510.39430.53220.05790.0174*
H520.23640.36980.01730.0181*
H810.02630.00230.17240.0147*
H1120.53750.00210.19790.0193*
H1110.39290.18760.17380.0194*
H410.04630.72550.06420.0240*
H910.18600.09560.26780.0275*
H1210.70440.21200.11300.0413*
H1010.32250.04160.02480.0252*
H110.31630.32420.15650.0238*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0103 (3)0.0192 (4)0.0177 (3)0.0009 (3)0.0026 (3)0.0047 (3)
C20.0102 (4)0.0120 (4)0.0118 (4)0.0005 (4)0.0005 (3)0.0019 (3)
C30.0107 (4)0.0107 (4)0.0141 (4)0.0001 (3)0.0003 (3)0.0004 (3)
O40.0131 (3)0.0119 (3)0.0201 (3)0.0026 (3)0.0007 (3)0.0027 (3)
C50.0125 (4)0.0121 (4)0.0183 (4)0.0022 (4)0.0034 (4)0.0041 (3)
O60.0097 (3)0.0111 (3)0.0209 (3)0.0001 (3)0.0007 (3)0.0036 (3)
C70.0112 (4)0.0100 (4)0.0143 (4)0.0003 (4)0.0007 (3)0.0007 (3)
C80.0124 (4)0.0107 (4)0.0122 (4)0.0020 (4)0.0001 (3)0.0004 (3)
O90.0243 (4)0.0154 (3)0.0115 (3)0.0007 (3)0.0033 (3)0.0001 (3)
O100.0138 (3)0.0151 (3)0.0137 (3)0.0009 (3)0.0005 (3)0.0030 (3)
C110.0136 (4)0.0139 (4)0.0191 (4)0.0026 (4)0.0015 (4)0.0033 (4)
O120.0213 (4)0.0322 (5)0.0280 (4)0.0161 (4)0.0044 (4)0.0078 (4)
Geometric parameters (Å, º) top
O1—C21.4309 (12)O6—C71.4303 (12)
O1—H110.810C7—C81.5426 (14)
C2—C31.5167 (14)C7—O101.4155 (12)
C2—C81.5294 (14)C7—C111.5241 (14)
C2—H210.963C8—O91.4232 (11)
C3—O41.4359 (12)C8—H810.957
C3—C51.5241 (14)O9—H910.826
C3—H310.963O10—H1010.805
O4—H410.810C11—O121.4178 (14)
C5—O61.4364 (12)C11—H1120.973
C5—H510.980C11—H1110.957
C5—H520.972O12—H1210.829
C2—O1—H11108.5O6—C7—C8110.68 (8)
O1—C2—C3110.58 (8)O6—C7—O10110.35 (8)
O1—C2—C8110.13 (8)C8—C7—O10106.46 (8)
C3—C2—C8109.41 (8)O6—C7—C11105.69 (8)
O1—C2—H21108.4C8—C7—C11112.92 (8)
C3—C2—H21109.6O10—C7—C11110.81 (8)
C8—C2—H21108.7C7—C8—C2109.91 (8)
C2—C3—O4108.31 (8)C7—C8—O9109.85 (8)
C2—C3—C5108.81 (8)C2—C8—O9109.04 (8)
O4—C3—C5109.40 (8)C7—C8—H81107.0
C2—C3—H31108.9C2—C8—H81107.5
O4—C3—H31111.0O9—C8—H81113.5
C5—C3—H31110.3C8—O9—H91104.7
C3—O4—H41110.7C7—O10—H101106.1
C3—C5—O6111.36 (8)C7—C11—O12106.31 (8)
C3—C5—H51111.1C7—C11—H112111.4
O6—C5—H51105.1O12—C11—H112112.4
C3—C5—H52107.7C7—C11—H111109.2
O6—C5—H52110.4O12—C11—H111109.3
H51—C5—H52111.2H112—C11—H111108.3
C5—O6—C7114.34 (8)C11—O12—H121113.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O10i0.812.022.8236 (14)171
O9—H91···O1ii0.831.902.7203 (14)173
O12—H121···O4iii0.832.092.7875 (14)142
O10—H101···O4iv0.812.102.8518 (14)155
O1—H11···O6v0.811.962.7661 (14)175
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z+1/2; (iii) x+1, y1, z; (iv) x+1/2, y+1/2, z; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC6H12O6
Mr180.16
Crystal system, space groupOrthorhombic, P212121
Temperature (K)190
a, b, c (Å)6.2201 (1), 6.5022 (1), 17.6629 (4)
V3)714.36 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.50 × 0.30 × 0.20
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.96, 0.97
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
2343, 1378, 1351
Rint0.010
(sin θ/λ)max1)0.735
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.065, 0.97
No. of reflections1378
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.20

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O10i0.812.022.8236 (14)171
O9—H91···O1ii0.831.902.7203 (14)173
O12—H121···O4iii0.832.092.7875 (14)142
O10—H101···O4iv0.812.102.8518 (14)155
O1—H11···O6v0.811.962.7661 (14)175
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z+1/2; (iii) x+1, y1, z; (iv) x+1/2, y+1/2, z; (v) x1, y, z.
 

Footnotes

Visiting Scientist at the Department of Chemical Crystallography Chemical Research Laboratory Mansfield Road Oxford OX1 3TA England.

Acknowledgements

Arla Foods generously provided a sample of D-tagatose, obtained as described (Beadle et al., 1992[Beadle, J. R., Saunders, J. P. & Wajda, T. J. (1992). Process for Manufacturing tagatose, US Patent 5 078 796, January 7, 1992.]) from D-galactose, for crystallization.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAngyal, S. J. (1991). Adv. Carbohydr. Chem. Biochem. 49, 19–35.  CrossRef Web of Science Google Scholar
First citationBeadle, J. R., Saunders, J. P. & Wajda, T. J. (1992). Process for Manufacturing tagatose, US Patent 5 078 796, January 7, 1992.  Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGranstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89–94.  Web of Science CrossRef PubMed Google Scholar
First citationIzumori, K. (2002). Naturwissennshaften, 89, 120-124.  Web of Science CrossRef CAS Google Scholar
First citationJones, N. A., Jenkinson, S. F., Soengas, R., Fanefjord, M., Wormald, M. R., Dwek, R. A., Kiran, G. P., Devendar, R., Takata, G., Morimoto, K., Izumori, K. & Fleet, G. W. J. (2007). Tetrahedron Asymmetry, 18, 774–786.  Web of Science CrossRef CAS Google Scholar
First citationJones, N. A., Rao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., Hunter, S. J., Wormald, M. R., Dwek, R. A., Izumori, K. & Fleet, G. W. J. (2008). Tetrahedron Asymmetry, 19, 1904–1918.  Web of Science CrossRef CAS Google Scholar
First citationKwiecien, A., Slepokura, K. & Lis, T. (2008). Carbohydrate Res. 343, 2336–2339.  Web of Science CSD CrossRef CAS Google Scholar
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.  Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPorwell, J. (2007). Aldrich Handbook of Fine Chemicals p. 2253. Milwaukee, WI, USA: Aldrich.  Google Scholar
First citationSkytte, U. P. (2002). Cereal Foods World, 47, 224–227.  Google Scholar
First citationSoengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755–5759.  Web of Science CrossRef CAS Google Scholar
First citationTakagi, S. & Rosenstein, R. D. (1969). Carbohydrate Res. 11, 156–158.  CSD CrossRef CAS Web of Science Google Scholar
First citationWatkin, D. J., Glawar, A. F. G., Soengas, R., Skytte, U. P., Wormald, M. R., Dwek, R. A. & Fleet, G. W. J. (2005). Acta Cryst. E61, o2891–o2893.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON, Chemical Crystallography Laboratory, Oxford, UK.  Google Scholar
First citationYoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N. A., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 739–745.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1393-o1394
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds