organic compounds
α-D-Tagatopyranose
aLAMSUN and CSGI at Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy, bUniversity of Oxford, Department of Chemical Crystallography, Chemistry Research Laboratory, Oxford OX1 3TA, England, and cUniversity of Oxford, Department of Organic Chemistry, Chemistry Research Laboratory, Oxford OX1 3TA, England
*Correspondence e-mail: fpunzo@unict.it
The title compound, C6H12O6, also known as D-Tagatose, occurs in its furanose and pyranose forms in solution, but only the α-pyranose form crystallizes out. In the crystal, the molecules form hydrogen bonded chains propagating in [100] linked by O—H⋯O interactions. Further O—H⋯O bonds cross-link the chains.
Related literature
For the D-tagatose market price, syntheses and applications, see: Angyal (1991); Beadle et al. (1992); Granstrom et al. (2004); Izumori (2002); Skytte (2002); Porwell (2007). For the potential of the title compound as a chiral building block, see: Soengas et al. (2005); Jones et al. (2007, 2008); Yoshihara et al. (2008). For related crystallographic literature, see: Takagi et al. (1969); Görbitz (1999); Watkin et al. (2005); Kwiecien et al. (2008); Larson (1970).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 2001); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
10.1107/S1600536809017656/fl2248sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809017656/fl2248Isup2.hkl
In aqueous solution the major form present is α-D-tagatopyranose (71%) (Fig.1) with 18% of the β-pyranose and small amount of the (Angyal, 1991). The title compound was recrystallized from a 1:10 mixture of water and acetone allowing the slow competetive evaporation of the solvents, after which, transparent prismatic crystals appeared.
The data were collected with molybdenum radiation and since there were no atoms heavier than Si present, there were no measurable anomalous differences and it was admissible to merge Friedel pairs of reflections. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997). The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.
Data collection: COLLECT (Nonius, 2001); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).C6H12O6 | F(000) = 384 |
Mr = 180.16 | Dx = 1.675 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 1344 reflections |
a = 6.2201 (1) Å | θ = 5–32° |
b = 6.5022 (1) Å | µ = 0.15 mm−1 |
c = 17.6629 (4) Å | T = 190 K |
V = 714.36 (2) Å3 | Prism, colourless |
Z = 4 | 0.50 × 0.30 × 0.20 mm |
Nonius KappaCCD diffractometer | 1351 reflections with I > 2.0σ(I) |
Graphite monochromator | Rint = 0.010 |
ω scans | θmax = 31.5°, θmin = 5.6° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −9→9 |
Tmin = 0.96, Tmax = 0.97 | k = −9→9 |
2343 measured reflections | l = −25→25 |
1378 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.025 | Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.04P)2 + 0.18P], where P = (max(Fo2,0) + 2Fc2)/3 |
wR(F2) = 0.065 | (Δ/σ)max = 0.000109 |
S = 0.97 | Δρmax = 0.34 e Å−3 |
1378 reflections | Δρmin = −0.20 e Å−3 |
110 parameters | Extinction correction: Larson (1970), Equation 22 |
0 restraints | Extinction coefficient: 260 (40) |
Primary atom site location: structure-invariant direct methods |
C6H12O6 | V = 714.36 (2) Å3 |
Mr = 180.16 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 6.2201 (1) Å | µ = 0.15 mm−1 |
b = 6.5022 (1) Å | T = 190 K |
c = 17.6629 (4) Å | 0.50 × 0.30 × 0.20 mm |
Nonius KappaCCD diffractometer | 1378 independent reflections |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | 1351 reflections with I > 2.0σ(I) |
Tmin = 0.96, Tmax = 0.97 | Rint = 0.010 |
2343 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 0.97 | Δρmax = 0.34 e Å−3 |
1378 reflections | Δρmin = −0.20 e Å−3 |
110 parameters |
x | y | z | Uiso*/Ueq | ||
O1 | −0.20580 (13) | 0.34108 (12) | 0.17994 (4) | 0.0157 | |
C2 | −0.02883 (15) | 0.29006 (15) | 0.13171 (5) | 0.0113 | |
C3 | 0.10689 (16) | 0.47890 (15) | 0.11569 (5) | 0.0118 | |
O4 | −0.02429 (12) | 0.62640 (12) | 0.07662 (4) | 0.0150 | |
C5 | 0.29501 (17) | 0.41697 (16) | 0.06531 (6) | 0.0143 | |
O6 | 0.42202 (12) | 0.25811 (12) | 0.09985 (4) | 0.0139 | |
C7 | 0.30499 (16) | 0.07510 (15) | 0.11774 (5) | 0.0118 | |
C8 | 0.11083 (16) | 0.12491 (15) | 0.16890 (5) | 0.0118 | |
O9 | 0.18387 (14) | 0.19838 (12) | 0.24031 (4) | 0.0171 | |
O10 | 0.22054 (13) | −0.01458 (12) | 0.05105 (4) | 0.0142 | |
C11 | 0.46654 (17) | −0.06848 (16) | 0.15537 (6) | 0.0155 | |
O12 | 0.61351 (15) | −0.12797 (16) | 0.09805 (5) | 0.0271 | |
H21 | −0.0851 | 0.2365 | 0.0849 | 0.0134* | |
H31 | 0.1585 | 0.5338 | 0.1629 | 0.0151* | |
H51 | 0.3943 | 0.5322 | 0.0579 | 0.0174* | |
H52 | 0.2364 | 0.3698 | 0.0173 | 0.0181* | |
H81 | 0.0263 | 0.0023 | 0.1724 | 0.0147* | |
H112 | 0.5375 | −0.0021 | 0.1979 | 0.0193* | |
H111 | 0.3929 | −0.1876 | 0.1738 | 0.0194* | |
H41 | 0.0463 | 0.7255 | 0.0642 | 0.0240* | |
H91 | 0.1860 | 0.0956 | 0.2678 | 0.0275* | |
H121 | 0.7044 | −0.2120 | 0.1130 | 0.0413* | |
H101 | 0.3225 | −0.0416 | 0.0248 | 0.0252* | |
H11 | −0.3163 | 0.3242 | 0.1565 | 0.0238* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0103 (3) | 0.0192 (4) | 0.0177 (3) | −0.0009 (3) | 0.0026 (3) | −0.0047 (3) |
C2 | 0.0102 (4) | 0.0120 (4) | 0.0118 (4) | −0.0005 (4) | 0.0005 (3) | −0.0019 (3) |
C3 | 0.0107 (4) | 0.0107 (4) | 0.0141 (4) | 0.0001 (3) | −0.0003 (3) | 0.0004 (3) |
O4 | 0.0131 (3) | 0.0119 (3) | 0.0201 (3) | 0.0026 (3) | −0.0007 (3) | 0.0027 (3) |
C5 | 0.0125 (4) | 0.0121 (4) | 0.0183 (4) | 0.0022 (4) | 0.0034 (4) | 0.0041 (3) |
O6 | 0.0097 (3) | 0.0111 (3) | 0.0209 (3) | −0.0001 (3) | −0.0007 (3) | 0.0036 (3) |
C7 | 0.0112 (4) | 0.0100 (4) | 0.0143 (4) | −0.0003 (4) | −0.0007 (3) | 0.0007 (3) |
C8 | 0.0124 (4) | 0.0107 (4) | 0.0122 (4) | −0.0020 (4) | −0.0001 (3) | −0.0004 (3) |
O9 | 0.0243 (4) | 0.0154 (3) | 0.0115 (3) | −0.0007 (3) | −0.0033 (3) | 0.0001 (3) |
O10 | 0.0138 (3) | 0.0151 (3) | 0.0137 (3) | 0.0009 (3) | 0.0005 (3) | −0.0030 (3) |
C11 | 0.0136 (4) | 0.0139 (4) | 0.0191 (4) | 0.0026 (4) | −0.0015 (4) | 0.0033 (4) |
O12 | 0.0213 (4) | 0.0322 (5) | 0.0280 (4) | 0.0161 (4) | 0.0044 (4) | 0.0078 (4) |
O1—C2 | 1.4309 (12) | O6—C7 | 1.4303 (12) |
O1—H11 | 0.810 | C7—C8 | 1.5426 (14) |
C2—C3 | 1.5167 (14) | C7—O10 | 1.4155 (12) |
C2—C8 | 1.5294 (14) | C7—C11 | 1.5241 (14) |
C2—H21 | 0.963 | C8—O9 | 1.4232 (11) |
C3—O4 | 1.4359 (12) | C8—H81 | 0.957 |
C3—C5 | 1.5241 (14) | O9—H91 | 0.826 |
C3—H31 | 0.963 | O10—H101 | 0.805 |
O4—H41 | 0.810 | C11—O12 | 1.4178 (14) |
C5—O6 | 1.4364 (12) | C11—H112 | 0.973 |
C5—H51 | 0.980 | C11—H111 | 0.957 |
C5—H52 | 0.972 | O12—H121 | 0.829 |
C2—O1—H11 | 108.5 | O6—C7—C8 | 110.68 (8) |
O1—C2—C3 | 110.58 (8) | O6—C7—O10 | 110.35 (8) |
O1—C2—C8 | 110.13 (8) | C8—C7—O10 | 106.46 (8) |
C3—C2—C8 | 109.41 (8) | O6—C7—C11 | 105.69 (8) |
O1—C2—H21 | 108.4 | C8—C7—C11 | 112.92 (8) |
C3—C2—H21 | 109.6 | O10—C7—C11 | 110.81 (8) |
C8—C2—H21 | 108.7 | C7—C8—C2 | 109.91 (8) |
C2—C3—O4 | 108.31 (8) | C7—C8—O9 | 109.85 (8) |
C2—C3—C5 | 108.81 (8) | C2—C8—O9 | 109.04 (8) |
O4—C3—C5 | 109.40 (8) | C7—C8—H81 | 107.0 |
C2—C3—H31 | 108.9 | C2—C8—H81 | 107.5 |
O4—C3—H31 | 111.0 | O9—C8—H81 | 113.5 |
C5—C3—H31 | 110.3 | C8—O9—H91 | 104.7 |
C3—O4—H41 | 110.7 | C7—O10—H101 | 106.1 |
C3—C5—O6 | 111.36 (8) | C7—C11—O12 | 106.31 (8) |
C3—C5—H51 | 111.1 | C7—C11—H112 | 111.4 |
O6—C5—H51 | 105.1 | O12—C11—H112 | 112.4 |
C3—C5—H52 | 107.7 | C7—C11—H111 | 109.2 |
O6—C5—H52 | 110.4 | O12—C11—H111 | 109.3 |
H51—C5—H52 | 111.2 | H112—C11—H111 | 108.3 |
C5—O6—C7 | 114.34 (8) | C11—O12—H121 | 113.0 |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H41···O10i | 0.81 | 2.02 | 2.8236 (14) | 171 |
O9—H91···O1ii | 0.83 | 1.90 | 2.7203 (14) | 173 |
O12—H121···O4iii | 0.83 | 2.09 | 2.7875 (14) | 142 |
O10—H101···O4iv | 0.81 | 2.10 | 2.8518 (14) | 155 |
O1—H11···O6v | 0.81 | 1.96 | 2.7661 (14) | 175 |
Symmetry codes: (i) x, y+1, z; (ii) −x, y−1/2, −z+1/2; (iii) x+1, y−1, z; (iv) x+1/2, −y+1/2, −z; (v) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C6H12O6 |
Mr | 180.16 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 190 |
a, b, c (Å) | 6.2201 (1), 6.5022 (1), 17.6629 (4) |
V (Å3) | 714.36 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.15 |
Crystal size (mm) | 0.50 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.96, 0.97 |
No. of measured, independent and observed [I > 2.0σ(I)] reflections | 2343, 1378, 1351 |
Rint | 0.010 |
(sin θ/λ)max (Å−1) | 0.735 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.065, 0.97 |
No. of reflections | 1378 |
No. of parameters | 110 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.20 |
Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H41···O10i | 0.81 | 2.02 | 2.8236 (14) | 171 |
O9—H91···O1ii | 0.83 | 1.90 | 2.7203 (14) | 173 |
O12—H121···O4iii | 0.83 | 2.09 | 2.7875 (14) | 142 |
O10—H101···O4iv | 0.81 | 2.10 | 2.8518 (14) | 155 |
O1—H11···O6v | 0.81 | 1.96 | 2.7661 (14) | 175 |
Symmetry codes: (i) x, y+1, z; (ii) −x, y−1/2, −z+1/2; (iii) x+1, y−1, z; (iv) x+1/2, −y+1/2, −z; (v) x−1, y, z. |
Footnotes
‡Visiting Scientist at the Department of Chemical Crystallography Chemical Research Laboratory Mansfield Road Oxford OX1 3TA England.
Acknowledgements
Arla Foods generously provided a sample of D-tagatose, obtained as described (Beadle et al., 1992) from D-galactose, for crystallization.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Angyal, S. J. (1991). Adv. Carbohydr. Chem. Biochem. 49, 19–35. CrossRef Web of Science Google Scholar
Beadle, J. R., Saunders, J. P. & Wajda, T. J. (1992). Process for Manufacturing tagatose, US Patent 5 078 796, January 7, 1992. Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. Web of Science CSD CrossRef IUCr Journals Google Scholar
Granstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89–94. Web of Science CrossRef PubMed Google Scholar
Izumori, K. (2002). Naturwissennshaften, 89, 120-124. Web of Science CrossRef CAS Google Scholar
Jones, N. A., Jenkinson, S. F., Soengas, R., Fanefjord, M., Wormald, M. R., Dwek, R. A., Kiran, G. P., Devendar, R., Takata, G., Morimoto, K., Izumori, K. & Fleet, G. W. J. (2007). Tetrahedron Asymmetry, 18, 774–786. Web of Science CrossRef CAS Google Scholar
Jones, N. A., Rao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., Hunter, S. J., Wormald, M. R., Dwek, R. A., Izumori, K. & Fleet, G. W. J. (2008). Tetrahedron Asymmetry, 19, 1904–1918. Web of Science CrossRef CAS Google Scholar
Kwiecien, A., Slepokura, K. & Lis, T. (2008). Carbohydrate Res. 343, 2336–2339. Web of Science CSD CrossRef CAS Google Scholar
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard. Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Porwell, J. (2007). Aldrich Handbook of Fine Chemicals p. 2253. Milwaukee, WI, USA: Aldrich. Google Scholar
Skytte, U. P. (2002). Cereal Foods World, 47, 224–227. Google Scholar
Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755–5759. Web of Science CrossRef CAS Google Scholar
Takagi, S. & Rosenstein, R. D. (1969). Carbohydrate Res. 11, 156–158. CSD CrossRef CAS Web of Science Google Scholar
Watkin, D. J., Glawar, A. F. G., Soengas, R., Skytte, U. P., Wormald, M. R., Dwek, R. A. & Fleet, G. W. J. (2005). Acta Cryst. E61, o2891–o2893. Web of Science CSD CrossRef IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON, Chemical Crystallography Laboratory, Oxford, UK. Google Scholar
Yoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N. A., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 739–745. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Until recently D-tagatose was a rare and expensive hexose; the price in the 2007–2008 Aldrich catalogue was 331.00 pounds sterling for 5 g (Porwell, 2007). It is now available cheaply in large quantities [around 5 pounds sterling per kg] prepared by either chemical (Beadle et al., 1992) or biotechnological (Granstrom et al., 2004; Izumori, 2002) techniques, and it is widely investigated as a low calorie sweetener (Skytte, 2002); the potential of D-tagatose as a chiral building block is also beginning to be recognized (Soengas et al., 2005; Watkin et al., 2005; Jones et al., 2007; Jones et al., 2008; Yoshihara et al., 2008). The crystal structure of another hitherto rare diasteroisomeric ketohexose, D-psicose, has recently been published (Kwiecien et al., 2008). A previous α-D-tagatose structure solution (Takagi et al., 1969), did not report either three-dimensional coordinates or bond lengths and angles. Although in aqueous solution both furanose and pyranose forms are present, only the α-pyranose crystallizes out. The crystal structure of the title compound (Fig. 1) consists of a network of hydrogen-bonded chains running parallel to the a axis (Fig.2). Referring to Table 1, O4—H41···O10 is the only intramolecular hydrogen bond detected in the structure. O12—H121···O4 and O1—H11···O6 link the molecules into chains, and O9—H91···O1 and O10—H101···O4 stabilize the structure with inter-chain hydrogen bonds. O4 is involved as an acceptor in two hydrogen bonds and as a donor in an almost linear hydrogen bond - the latter by means of H41. The crystal structure shows three equatorial groups and two axial groups, one of which is an axial anomeric hydroxyl group; this would be expected to be the most thermodynamically stable pyranose anomer. The fairly high value of the anisotropic displacement of O12 - compared to the other C and O atoms - is probably due to thermal motion. It results also in a higher - compared to the other H atoms - isotropic displacement for H121 i.e. the hydrogen atom connected to the last atom of the flexible C7—C11—O12 chain.