organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-(2-Thienylmethylene)di-2-naphthol ethyl acetate solvate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: liyhnju@hotmail.com

(Received 1 April 2009; accepted 4 May 2009; online 14 May 2009)

In the title compound, C25H18O2S·C4H8O2, there are inter­molecular O—H⋯O hydrogen bonds between the main mol­ecule and the solvent molecule. The thio­phene ring is oriented at dihedral angles of 70.87 (7) and 75.36 (4)° with respect to the mean planes of the two naphthyl ring systems.

Related literature

For the properties of bis­naphthols, see: Handique & Barauh et al. (2002[Handique, J. G. & Barauh, J. B. (2002). React. Funct. Polym. A, 52, 163-188.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C25H18O2S·C4H8O2

  • Mr = 470.57

  • Monoclinic, P 21 /c

  • a = 13.425 (3) Å

  • b = 21.613 (4) Å

  • c = 8.417 (2) Å

  • β = 98.808 (15)°

  • V = 2413.4 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 291 K

  • 0.40 × 0.27 × 0.25 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.95, Tmax = 0.96

  • 23800 measured reflections

  • 5314 independent reflections

  • 4010 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.158

  • S = 1.00

  • 5314 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.91 1.88 2.764 (3) 163
Symmetry code: (i) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

The molten reaction of 2-naphthol, thiophene-2-carbaldehyde and 1-p-tolylethanamine at 120°C did not yield a Betti-type product, but the title bisnaphthol compound. Bisnaphthols are usually referred to as a diverse group of synthetic compounds containing two naphthol units which are connected by an aldehyde group. They have synthetic, medicinal and industrial value (Handique & Barauh et al. 2002). Here we report the synthesis and crystal structure of the title compound. The asymmetric unit of the compound contains an ethyl acetate solvent molecule (Fig. 1). The bond lengths and angles are within normal ranges (Allen et al. 1987).

Rings of the two naphthols and thiophene are, of course, planar. The dihedral angles between rings A (C2–C6/C11) and B (C6–C11), and between rings C (C12–C16/C21) and D (C16–C21), are 0.87 (4) and 1.57 (3), respectively. The orientation of ring E (C22–C25/S1) with respect to the mean planes of the two naphthyl groups containing rings A and B, and C and D, may be described by the dihedral angles of 70.87 (7) and 75.36 (4), respectively. The dihedral angle between the mean planes of the two naphthyl groups is 75.36 (4).

As can be seen from the packing diagram (Fig. 2), intermolecular O—H···O hydrogen bonds (Table 1) link the molecules. Dipole–dipole and van der Waals interactions are also effective in the molecular packing.

Related literature top

For the properties of bisnaphthols, see: Handique & Barauh et al. (2002). For bond-length data, see: Allen et al. (1987).

Experimental top

Thiophene-2-carbaldehyde (1.68 g, 0.015 mol) and 1-p-tolylethanamine (2.025 g, 0.015 mol) was added to 2-naphthol (2.16 g, 0.015 mol) without solvent under nitrogen. The temperature was raised to 120°C in one hour gradually and the mixture was stirred at this temperature for 10 h. The system was treated with 20 ml of ethanol 95% and cooled. The precipitate was filtered and washed with a small amount of ethanol 95%. The title compound was isolated using column chromatography (petroleum ether:ethyl acetate 2:1). Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of ethyl acetate solution.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.91–0.96 Å and Uiso(H) = 1.3–1.5Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the c axis showing hydrogen bondings network.
1,1'-(2-Thienylmethylene)di-2-naphthol ethyl acetate solvate top
Crystal data top
C25H18O2S·C4H8O2F(000) = 992
Mr = 470.57Dx = 1.295 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4944 reflections
a = 13.425 (3) Åθ = 2.4–27.2°
b = 21.613 (4) ŵ = 0.17 mm1
c = 8.417 (2) ÅT = 291 K
β = 98.808 (15)°Prism, colourless
V = 2413.4 (9) Å30.40 × 0.27 × 0.25 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
5314 independent reflections
Radiation source: fine-focus sealed tube4010 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 13.6612 pixels mm-1θmax = 27.1°, θmin = 3.1°
CCD Profile fitting scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 2727
Tmin = 0.95, Tmax = 0.96l = 1010
23800 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0651P)2 + 1.3572P]
where P = (Fo2 + 2Fc2)/3
5314 reflections(Δ/σ)max < 0.001
309 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C25H18O2S·C4H8O2V = 2413.4 (9) Å3
Mr = 470.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.425 (3) ŵ = 0.17 mm1
b = 21.613 (4) ÅT = 291 K
c = 8.417 (2) Å0.40 × 0.27 × 0.25 mm
β = 98.808 (15)°
Data collection top
Rigaku SCXmini
diffractometer
5314 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4010 reflections with I > 2σ(I)
Tmin = 0.95, Tmax = 0.96Rint = 0.047
23800 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.00Δρmax = 0.19 e Å3
5314 reflectionsΔρmin = 0.31 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.31470 (16)0.04909 (9)0.4961 (3)0.0371 (5)
H10.38020.02920.49570.045*
C20.33844 (16)0.10811 (9)0.5991 (3)0.0376 (5)
C30.28873 (17)0.16412 (10)0.5686 (3)0.0451 (5)
C40.3180 (2)0.21791 (11)0.6593 (3)0.0573 (7)
H40.28410.25500.63360.069*
C50.3952 (2)0.21569 (12)0.7836 (3)0.0591 (7)
H50.41350.25130.84290.071*
C60.44799 (18)0.16039 (11)0.8243 (3)0.0480 (6)
C70.5277 (2)0.15747 (14)0.9552 (3)0.0618 (7)
H70.54370.19251.01800.074*
C80.5814 (2)0.10479 (15)0.9913 (3)0.0652 (8)
H80.63500.10431.07570.078*
C90.55585 (19)0.05109 (13)0.9008 (3)0.0568 (7)
H90.59280.01500.92520.068*
C100.47685 (17)0.05134 (11)0.7766 (3)0.0458 (5)
H100.45980.01490.72040.055*
C110.42030 (16)0.10589 (10)0.7312 (3)0.0404 (5)
C120.25054 (15)0.00026 (9)0.5662 (2)0.0361 (4)
C130.16002 (16)0.01613 (10)0.6138 (3)0.0414 (5)
C140.09914 (18)0.02789 (11)0.6780 (3)0.0488 (6)
H140.03910.01550.71080.059*
C150.12767 (18)0.08802 (12)0.6921 (3)0.0501 (6)
H150.08710.11640.73500.060*
C160.21813 (17)0.10821 (10)0.6425 (3)0.0428 (5)
C170.2476 (2)0.17108 (11)0.6544 (3)0.0579 (7)
H170.20700.19950.69720.070*
C180.3338 (2)0.19076 (12)0.6049 (4)0.0650 (8)
H180.35240.23220.61540.078*
C190.3948 (2)0.14842 (12)0.5376 (4)0.0596 (7)
H190.45340.16200.50220.072*
C200.36867 (17)0.08722 (11)0.5238 (3)0.0464 (5)
H200.41000.06010.47810.056*
C210.28040 (16)0.06379 (10)0.5769 (2)0.0370 (5)
C220.27474 (17)0.06136 (10)0.3198 (3)0.0399 (5)
C230.18677 (18)0.04016 (11)0.2295 (3)0.0476 (5)
H230.13950.01540.26930.057*
C240.1777 (2)0.06118 (15)0.0666 (3)0.0673 (8)
H240.12300.05160.01130.081*
C250.2557 (2)0.09609 (14)0.0369 (3)0.0647 (7)
H250.26090.11330.06280.078*
C260.8122 (2)0.13551 (18)0.8359 (4)0.0821 (10)
H26B0.79990.09280.85800.123*
H26C0.75650.15160.76230.123*
H26D0.81950.15870.93430.123*
C270.9068 (2)0.14072 (14)0.7629 (3)0.0598 (7)
C281.0195 (3)0.20912 (15)0.6570 (5)0.0830 (10)
H28B1.01310.18880.55310.100*
H28C1.07750.19190.72560.100*
C291.0330 (3)0.27622 (15)0.6379 (5)0.0852 (10)
H29B1.09270.28360.59090.128*
H29C1.03940.29590.74120.128*
H29D0.97560.29280.56910.128*
O10.20776 (13)0.17382 (8)0.4507 (2)0.0556 (4)
H1A0.18190.13730.40770.106 (13)*
O20.12727 (13)0.07581 (8)0.5945 (2)0.0564 (5)
H2A0.06500.08330.62070.110 (13)*
O30.95846 (15)0.09760 (9)0.7375 (3)0.0736 (6)
O40.92817 (15)0.19908 (10)0.7291 (3)0.0728 (6)
S10.34342 (5)0.10506 (3)0.20365 (8)0.0582 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0354 (10)0.0330 (10)0.0441 (11)0.0001 (8)0.0099 (9)0.0002 (9)
C20.0368 (11)0.0338 (10)0.0439 (11)0.0041 (9)0.0115 (9)0.0015 (9)
C30.0457 (12)0.0382 (12)0.0525 (13)0.0019 (10)0.0114 (11)0.0021 (10)
C40.0652 (16)0.0334 (12)0.0756 (18)0.0004 (11)0.0181 (14)0.0056 (12)
C50.0699 (17)0.0439 (14)0.0657 (17)0.0144 (13)0.0177 (14)0.0156 (12)
C60.0495 (13)0.0497 (14)0.0467 (13)0.0158 (11)0.0139 (11)0.0050 (10)
C70.0661 (17)0.0686 (18)0.0509 (15)0.0277 (15)0.0096 (13)0.0073 (13)
C80.0548 (16)0.089 (2)0.0490 (15)0.0225 (16)0.0012 (12)0.0039 (15)
C90.0466 (14)0.0697 (17)0.0529 (15)0.0025 (13)0.0039 (11)0.0125 (13)
C100.0427 (12)0.0473 (13)0.0485 (13)0.0057 (10)0.0105 (10)0.0026 (10)
C110.0379 (11)0.0434 (12)0.0424 (11)0.0086 (9)0.0139 (9)0.0000 (9)
C120.0358 (10)0.0355 (11)0.0378 (10)0.0043 (9)0.0079 (9)0.0002 (8)
C130.0385 (11)0.0391 (11)0.0472 (12)0.0004 (9)0.0084 (9)0.0015 (9)
C140.0410 (12)0.0518 (14)0.0574 (14)0.0047 (10)0.0194 (11)0.0018 (11)
C150.0462 (13)0.0488 (13)0.0575 (14)0.0121 (11)0.0154 (11)0.0029 (11)
C160.0429 (12)0.0394 (12)0.0461 (12)0.0058 (10)0.0064 (10)0.0028 (9)
C170.0620 (16)0.0381 (12)0.0753 (18)0.0091 (12)0.0155 (14)0.0069 (12)
C180.0685 (18)0.0359 (13)0.093 (2)0.0037 (12)0.0205 (16)0.0043 (13)
C190.0568 (15)0.0453 (14)0.0800 (19)0.0068 (12)0.0210 (14)0.0009 (13)
C200.0437 (12)0.0396 (12)0.0577 (14)0.0004 (10)0.0132 (11)0.0014 (10)
C210.0366 (10)0.0363 (10)0.0374 (11)0.0032 (9)0.0035 (9)0.0003 (9)
C220.0438 (12)0.0347 (10)0.0433 (12)0.0017 (9)0.0131 (9)0.0018 (9)
C230.0494 (13)0.0544 (14)0.0393 (12)0.0096 (11)0.0078 (10)0.0001 (10)
C240.0680 (18)0.086 (2)0.0461 (14)0.0053 (16)0.0021 (13)0.0025 (14)
C250.081 (2)0.0704 (18)0.0453 (14)0.0063 (15)0.0185 (14)0.0104 (13)
C260.0555 (17)0.102 (3)0.093 (2)0.0005 (17)0.0272 (16)0.024 (2)
C270.0524 (15)0.0723 (19)0.0556 (16)0.0040 (14)0.0108 (12)0.0122 (14)
C280.086 (2)0.072 (2)0.101 (3)0.0128 (18)0.047 (2)0.0006 (18)
C290.084 (2)0.075 (2)0.097 (3)0.0114 (18)0.015 (2)0.0006 (19)
O10.0534 (10)0.0441 (10)0.0672 (11)0.0089 (8)0.0028 (9)0.0003 (8)
O20.0460 (9)0.0431 (9)0.0851 (13)0.0081 (7)0.0265 (9)0.0043 (9)
O30.0633 (12)0.0669 (13)0.0975 (16)0.0098 (10)0.0340 (12)0.0031 (11)
O40.0678 (13)0.0683 (13)0.0873 (15)0.0129 (10)0.0281 (11)0.0074 (11)
S10.0638 (4)0.0544 (4)0.0600 (4)0.0099 (3)0.0212 (3)0.0090 (3)
Geometric parameters (Å, º) top
C1—C221.522 (3)C17—C181.357 (4)
C1—C121.536 (3)C17—H170.9300
C1—C21.548 (3)C18—C191.404 (4)
C1—H10.9800C18—H180.9300
C2—C31.387 (3)C19—C201.369 (3)
C2—C111.439 (3)C19—H190.9300
C3—O11.371 (3)C20—C211.422 (3)
C3—C41.413 (3)C20—H200.9300
C4—C51.357 (4)C22—C231.381 (3)
C4—H40.9300C22—S11.725 (2)
C5—C61.405 (4)C23—C241.431 (4)
C5—H50.9300C23—H230.9300
C6—C71.415 (4)C24—C251.344 (4)
C6—C111.432 (3)C24—H240.9300
C7—C81.357 (4)C25—S11.699 (3)
C7—H70.9300C25—H250.9300
C8—C91.402 (4)C26—C271.497 (4)
C8—H80.9300C26—H26B0.9600
C9—C101.370 (3)C26—H26C0.9600
C9—H90.9300C26—H26D0.9600
C10—C111.422 (3)C27—O31.201 (3)
C10—H100.9300C27—O41.334 (4)
C12—C131.380 (3)C28—O41.465 (4)
C12—C211.440 (3)C28—C291.473 (4)
C13—O21.364 (3)C28—H28B0.9700
C13—C141.414 (3)C28—H28C0.9700
C14—C151.355 (3)C29—H29B0.9600
C14—H140.9300C29—H29C0.9600
C15—C161.412 (3)C29—H29D0.9600
C15—H150.9300O1—H1A0.9136
C16—C171.415 (3)O2—H2A0.9116
C16—C211.437 (3)
C22—C1—C12111.05 (17)C18—C17—H17119.3
C22—C1—C2114.47 (17)C16—C17—H17119.3
C12—C1—C2115.52 (17)C17—C18—C19119.8 (2)
C22—C1—H1104.8C17—C18—H18120.1
C12—C1—H1104.8C19—C18—H18120.1
C2—C1—H1104.8C20—C19—C18120.4 (2)
C3—C2—C11117.4 (2)C20—C19—H19119.8
C3—C2—C1124.3 (2)C18—C19—H19119.8
C11—C2—C1118.19 (18)C19—C20—C21122.2 (2)
O1—C3—C2125.0 (2)C19—C20—H20118.9
O1—C3—C4112.9 (2)C21—C20—H20118.9
C2—C3—C4122.1 (2)C20—C21—C16116.4 (2)
C5—C4—C3120.3 (2)C20—C21—C12124.04 (19)
C5—C4—H4119.9C16—C21—C12119.56 (19)
C3—C4—H4119.9C23—C22—C1128.5 (2)
C4—C5—C6121.0 (2)C23—C22—S1110.84 (17)
C4—C5—H5119.5C1—C22—S1120.59 (16)
C6—C5—H5119.5C22—C23—C24111.2 (2)
C5—C6—C7121.4 (2)C22—C23—H23124.4
C5—C6—C11119.2 (2)C24—C23—H23124.4
C7—C6—C11119.4 (2)C25—C24—C23113.7 (3)
C8—C7—C6121.6 (3)C25—C24—H24123.2
C8—C7—H7119.2C23—C24—H24123.2
C6—C7—H7119.2C24—C25—S1111.8 (2)
C7—C8—C9119.7 (3)C24—C25—H25124.1
C7—C8—H8120.1S1—C25—H25124.1
C9—C8—H8120.1C27—C26—H26B109.5
C10—C9—C8120.5 (3)C27—C26—H26C109.5
C10—C9—H9119.7H26B—C26—H26C109.5
C8—C9—H9119.7C27—C26—H26D109.5
C9—C10—C11121.8 (2)H26B—C26—H26D109.5
C9—C10—H10119.1H26C—C26—H26D109.5
C11—C10—H10119.1O3—C27—O4123.1 (3)
C10—C11—C6116.9 (2)O3—C27—C26124.4 (3)
C10—C11—C2123.2 (2)O4—C27—C26112.5 (3)
C6—C11—C2119.9 (2)O4—C28—C29108.4 (3)
C13—C12—C21118.02 (18)O4—C28—H28B110.0
C13—C12—C1120.75 (18)C29—C28—H28B110.0
C21—C12—C1121.17 (18)O4—C28—H28C110.0
O2—C13—C12118.84 (19)C29—C28—H28C110.0
O2—C13—C14119.1 (2)H28B—C28—H28C108.4
C12—C13—C14122.0 (2)C28—C29—H29B109.5
C15—C14—C13120.4 (2)C28—C29—H29C109.5
C15—C14—H14119.8H29B—C29—H29C109.5
C13—C14—H14119.8C28—C29—H29D109.5
C14—C15—C16121.0 (2)H29B—C29—H29D109.5
C14—C15—H15119.5H29C—C29—H29D109.5
C16—C15—H15119.5C3—O1—H1A111.5
C15—C16—C17121.3 (2)C13—O2—H2A115.5
C15—C16—C21119.0 (2)C27—O4—C28116.7 (2)
C17—C16—C21119.7 (2)C25—S1—C2292.43 (13)
C18—C17—C16121.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.911.882.764 (3)163
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC25H18O2S·C4H8O2
Mr470.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)13.425 (3), 21.613 (4), 8.417 (2)
β (°) 98.808 (15)
V3)2413.4 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.40 × 0.27 × 0.25
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.95, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
23800, 5314, 4010
Rint0.047
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.158, 1.00
No. of reflections5314
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.31

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.911.882.764 (3)162.7
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported by a Start-up Grant (No. 4007041028) and a Science Technology Grant (No. KJ2009375) from Southeast University to YHL.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHandique, J. G. & Barauh, J. B. (2002). React. Funct. Polym. A, 52, 163–188.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds