organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Fluoro-2-[(E)-2-pyridylimino­methyl]phenol

aKey Laboratory of Anhui Educational Department, Anhui University of Technology, Maanshan 243002, People's Republic of China, and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: shilei0828@gmail.com

(Received 7 May 2009; accepted 8 May 2009; online 14 May 2009)

In the title compound, C12H9FN2O, the dihedral angle between the benzene ring and the pyridine ring is 4.35 (16)°. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯N hydrogen bond.

Related literature

For a related structure, see: Li et al. (2006[Li, Y.-G., Huang, K.-X., Ai, L. & Zhu, H.-L. (2006). Acta Cryst. E62, o2219-o2220.]). For reference strutural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9FN2O

  • Mr = 216.21

  • Monoclinic, P 21 /n

  • a = 13.1635 (11) Å

  • b = 6.2252 (6) Å

  • c = 13.8235 (17) Å

  • β = 113.33 (3)°

  • V = 1040.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.40 × 0.25 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.960, Tmax = 0.985

  • 1907 measured reflections

  • 1825 independent reflections

  • 1210 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.145

  • S = 1.05

  • 1825 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.86 2.588 (2) 147

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, we have reported the structural characterization of one Schiff base compound derived from the condensation of 5-chloro-salicylaldehyde and primary amines (Li et al., 2006). As an extension of this work, we report here the crystal structure of the title compound, (I). In (I), all bond lengths are within normal ranges (Allen et al., 1987) (Fig. 1). There is an intramolecular O—H···N hydrogen bond in (I). The dihedral angle between the two aromatic rings is 4.35(0.16)°.

Related literature top

For a related structure, see: Li et al. (2006). For reference strutural data, see: Allen et al. (1987).

Experimental top

Pyridin-2-amine (94 mg, 1 mmol) and 5-fluoro-salicylaldehyde (140 mg, 1 mmol) were dissolved in methanol (10 ml) at 323 K. The mixture was stirred for 2 h to give a clear yellow solution. After keeping the solution in air for 7 d by slow evaporation of the solvent, yellow blocks of (I) were formed at the bottom of the vessel, with 80% yield. The crystals were isolated, washed three times with methanol and dried in a vacuum desiccator containing anhydrous CaCl2.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93–0.96 Å, O—H = 0.82Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids.
4-Fluoro-2-[(E)-2-pyridyliminomethyl]phenol top
Crystal data top
C12H9FN2OF(000) = 448
Mr = 216.21Dx = 1.381 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 13.1635 (11) Åθ = 9–12°
b = 6.2252 (6) ŵ = 0.10 mm1
c = 13.8235 (17) ÅT = 293 K
β = 113.33 (3)°Block, yellow
V = 1040.1 (3) Å30.40 × 0.25 × 0.15 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1825 independent reflections
Radiation source: fine-focus sealed tube1210 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ω/2θ scansθmax = 25.0°, θmin = 1.8°
Absorption correction: ψ scan
(North et al., 1968)
h = 015
Tmin = 0.960, Tmax = 0.985k = 07
1907 measured reflectionsl = 1615
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0657P)2 + 0.1652P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1825 reflectionsΔρmax = 0.16 e Å3
147 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.089 (10)
Crystal data top
C12H9FN2OV = 1040.1 (3) Å3
Mr = 216.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.1635 (11) ŵ = 0.10 mm1
b = 6.2252 (6) ÅT = 293 K
c = 13.8235 (17) Å0.40 × 0.25 × 0.15 mm
β = 113.33 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1825 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
1210 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.985Rint = 0.064
1907 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.05Δρmax = 0.16 e Å3
1825 reflectionsΔρmin = 0.17 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.96836 (16)0.2734 (3)0.23488 (17)0.0457 (6)
C21.06679 (18)0.2492 (4)0.21918 (18)0.0529 (6)
C31.1349 (2)0.0730 (4)0.2622 (2)0.0633 (7)
H31.19960.05680.25100.076*
C41.1080 (2)0.0767 (4)0.3207 (2)0.0658 (7)
H41.15400.19360.34960.079*
C51.0116 (2)0.0506 (4)0.3357 (2)0.0619 (7)
C60.94233 (19)0.1189 (3)0.29492 (19)0.0548 (6)
H60.87790.13180.30690.066*
C70.89393 (17)0.4506 (3)0.18913 (17)0.0484 (6)
H70.83010.46320.20220.058*
C80.83993 (18)0.7650 (3)0.08721 (17)0.0488 (6)
C90.8652 (2)0.9050 (4)0.02246 (19)0.0591 (7)
H90.92690.88160.00700.071*
C100.7981 (2)1.0788 (4)0.01873 (19)0.0673 (7)
H100.81411.17620.06180.081*
C110.7071 (2)1.1067 (4)0.0045 (2)0.0677 (7)
H110.66001.22310.02230.081*
C120.6870 (2)0.9583 (4)0.0684 (2)0.0660 (7)
H120.62470.97720.08350.079*
F10.98419 (14)0.2003 (2)0.39318 (14)0.0938 (6)
N10.91366 (15)0.5906 (3)0.13106 (15)0.0514 (5)
N20.75169 (16)0.7888 (3)0.11012 (15)0.0582 (6)
O11.09729 (14)0.3937 (3)0.16264 (16)0.0721 (6)
H11.04760.48180.13640.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0411 (11)0.0435 (12)0.0504 (13)0.0015 (10)0.0159 (10)0.0095 (10)
C20.0488 (13)0.0527 (13)0.0569 (14)0.0022 (11)0.0206 (11)0.0129 (12)
C30.0499 (14)0.0678 (17)0.0690 (16)0.0094 (13)0.0201 (13)0.0160 (14)
C40.0655 (17)0.0503 (15)0.0676 (17)0.0120 (13)0.0116 (13)0.0067 (13)
C50.0649 (16)0.0453 (13)0.0677 (16)0.0035 (12)0.0181 (13)0.0006 (12)
C60.0502 (13)0.0500 (14)0.0638 (15)0.0036 (11)0.0221 (11)0.0062 (12)
C70.0439 (12)0.0493 (13)0.0539 (14)0.0027 (10)0.0216 (11)0.0089 (11)
C80.0513 (13)0.0479 (13)0.0462 (13)0.0020 (11)0.0181 (11)0.0058 (11)
C90.0651 (16)0.0579 (15)0.0577 (15)0.0051 (12)0.0280 (13)0.0030 (12)
C100.0829 (19)0.0613 (16)0.0551 (15)0.0051 (15)0.0248 (14)0.0088 (13)
C110.0761 (18)0.0572 (16)0.0582 (15)0.0115 (14)0.0143 (14)0.0083 (13)
C120.0631 (16)0.0661 (16)0.0678 (16)0.0146 (13)0.0249 (13)0.0088 (14)
F10.1042 (13)0.0645 (10)0.1094 (13)0.0031 (9)0.0390 (10)0.0279 (9)
N10.0525 (11)0.0486 (11)0.0553 (12)0.0021 (9)0.0237 (9)0.0043 (10)
N20.0564 (12)0.0585 (12)0.0618 (13)0.0107 (10)0.0257 (10)0.0087 (10)
O10.0616 (11)0.0784 (13)0.0899 (14)0.0050 (9)0.0444 (10)0.0052 (11)
Geometric parameters (Å, º) top
C1—C61.399 (3)C7—H70.9300
C1—C21.404 (3)C8—N21.328 (3)
C1—C71.444 (3)C8—C91.381 (3)
C2—O11.353 (3)C8—N11.422 (3)
C2—C31.392 (3)C9—C101.370 (3)
C3—C41.369 (3)C9—H90.9300
C3—H30.9300C10—C111.368 (4)
C4—C51.375 (3)C10—H100.9300
C4—H40.9300C11—C121.375 (3)
C5—C61.362 (3)C11—H110.9300
C5—F11.363 (3)C12—N21.335 (3)
C6—H60.9300C12—H120.9300
C7—N11.279 (3)O1—H10.8200
C6—C1—C2118.4 (2)C1—C7—H7119.2
C6—C1—C7120.12 (19)N2—C8—C9122.8 (2)
C2—C1—C7121.5 (2)N2—C8—N1119.8 (2)
O1—C2—C3118.8 (2)C9—C8—N1117.3 (2)
O1—C2—C1121.4 (2)C10—C9—C8119.1 (2)
C3—C2—C1119.7 (2)C10—C9—H9120.4
C4—C3—C2121.0 (2)C8—C9—H9120.4
C4—C3—H3119.5C11—C10—C9118.9 (2)
C2—C3—H3119.5C11—C10—H10120.6
C3—C4—C5118.6 (2)C9—C10—H10120.6
C3—C4—H4120.7C10—C11—C12118.4 (2)
C5—C4—H4120.7C10—C11—H11120.8
C6—C5—F1118.9 (2)C12—C11—H11120.8
C6—C5—C4122.4 (2)N2—C12—C11123.8 (2)
F1—C5—C4118.8 (2)N2—C12—H12118.1
C5—C6—C1119.8 (2)C11—C12—H12118.1
C5—C6—H6120.1C7—N1—C8120.91 (19)
C1—C6—H6120.1C8—N2—C12117.0 (2)
N1—C7—C1121.6 (2)C2—O1—H1109.5
N1—C7—H7119.2
C6—C1—C2—O1179.5 (2)C6—C1—C7—N1177.70 (19)
C7—C1—C2—O11.6 (3)C2—C1—C7—N11.2 (3)
C6—C1—C2—C30.7 (3)N2—C8—C9—C101.3 (3)
C7—C1—C2—C3178.2 (2)N1—C8—C9—C10178.0 (2)
O1—C2—C3—C4179.5 (2)C8—C9—C10—C110.9 (4)
C1—C2—C3—C40.6 (3)C9—C10—C11—C120.0 (4)
C2—C3—C4—C50.4 (4)C10—C11—C12—N20.6 (4)
C3—C4—C5—C60.2 (4)C1—C7—N1—C8179.53 (19)
C3—C4—C5—F1179.5 (2)N2—C8—N1—C72.8 (3)
F1—C5—C6—C1179.4 (2)C9—C8—N1—C7177.8 (2)
C4—C5—C6—C10.3 (4)C9—C8—N2—C120.8 (3)
C2—C1—C6—C50.5 (3)N1—C8—N2—C12178.5 (2)
C7—C1—C6—C5178.4 (2)C11—C12—N2—C80.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.588 (2)147

Experimental details

Crystal data
Chemical formulaC12H9FN2O
Mr216.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.1635 (11), 6.2252 (6), 13.8235 (17)
β (°) 113.33 (3)
V3)1040.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.25 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.960, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
1907, 1825, 1210
Rint0.064
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.145, 1.05
No. of reflections1825
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.17

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.588 (2)147
 

Acknowledgements

We thank the Measurement Foundation of Nanjing University, and Dr Rui-Qin Fang for her support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLi, Y.-G., Huang, K.-X., Ai, L. & Zhu, H.-L. (2006). Acta Cryst. E62, o2219–o2220.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds