organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Ammonio-4-hy­droxy­benzoate monohydrate

aDepartment of Chemistry, Government College University, Lahore, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Botany, Government College University, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 7 May 2009; accepted 9 May 2009; online 14 May 2009)

The title compound, C7H7NO3·H2O, which crystallized as a hydrate, was obtained from an extraction of the plant species Saussurea atkinsonii of the asteraceae family collected from the hilly area (Ayubia) of Pakistan during the flowering season. The dihedral angle between the benzene ring and the carboxyl­ate group is 25.64 (5)°. In the crystal, the packing is consolidated by N—H⋯O and O—H⋯O hydrogen bonds, as well as weak aromatic ππ stacking [centroid–centroid separation = 3.9365 (9) Å] and C=O⋯π inter­actions.

Related literature

For a related structure, see: Bertasso et al. (2001[Bertasso, M., Holzenkampfer, M., Zeeck, A., Dall'Antonia, F. & Fiedler, H.-P. (2001). J. Antibiot. 54, 730-737.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7NO3·H2O

  • Mr = 171.15

  • Orthorhombic, P b c a

  • a = 8.7711 (3) Å

  • b = 12.7193 (7) Å

  • c = 12.9289 (6) Å

  • V = 1442.38 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 K

  • 0.26 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.976

  • 8827 measured reflections

  • 1725 independent reflections

  • 1277 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.118

  • S = 1.06

  • 1725 reflections

  • 127 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.952 (18) 1.945 (18) 2.8884 (16) 170.4 (14)
N1—H1A⋯O2i 0.952 (18) 2.335 (18) 2.9008 (18) 117.6 (13)
N1—H1B⋯O4ii 0.944 (19) 2.001 (19) 2.8957 (19) 157.4 (16)
N1—H1C⋯O1iii 0.933 (17) 1.860 (17) 2.7846 (18) 170.5 (16)
O3—H3⋯O4iv 0.904 (18) 1.760 (18) 2.6456 (15) 166.0 (19)
O4—H41⋯O2iv 0.90 (2) 1.80 (2) 2.6945 (18) 171.1 (17)
O4—H42⋯O1iii 0.884 (19) 2.03 (2) 2.9027 (18) 168.8 (17)
C6—H6⋯O3v 0.93 2.55 3.446 (2) 161
C7—O2⋯CgAvi 1.25 (1) 3.49 (1) 3.9313 (16) 101 (1)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (vi) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The medicinal plants are available all over the world. Locally available plant specie Saussurea atkinsonii of asteraceae family was collected from hilly area (Ayubia) of Pakistan during the flowering season. The plant was dried inside room for 20–25 days. The title compound (I), (Fig. 1), is an extract of it in chloroform and methanol. The study of its bio-activity is in progress.

The crystal structure of (II) (4-vinylphenyl 3-amino-4-hydroxybenzoate or bagremycin A (Bertasso et al., 2001), has been reported which contains the aromatic ring along with heavy atoms of the substituants of (I). In the title compound, the bond distances and bond angles are within normal ranges (Allen et al., 1987). The benzene ring A (C1–C6) is planar and is oriented at a dihedral angle of 25.64 (5)° with the CO2 group. The N-atom of ammonium is in plane of the ring A, whereas the O-atom of hydroxy group is at a distance of -0.0580 (21) Å from the same.

There exist intensive intermolecular H-bonding (Table 1), resulting in three-dimensional polymeric network. There also exist CgA···CgAi [symmetry code i = 1 - x, 1 - y, -z] interaction at a distance of 3.9365 (9) Å, where CgA is the centroid of aromatic ring. The molecules may also be stabilized due to C==O···π interaction (Table 1).

Related literature top

For a related structure, see: Bertasso et al. (2001). For reference structural data, see: Allen et al. (1987).

Experimental top

The Specie Saussurea atkinsonii of asteraceae family was dried inside room for 20–25 days as a whole and grinded. The extract was obtained using soxhlet apparatus in 50% chloroform and 50% methanol and it was subjected to isolation by performing column chromatography and thin layer chromatography. The extract obtained was recrystallized from methanol and light brown rods of (I) were obtained. The water found in the structure was presumably incorporated from the atomsphere.

Refinement top

The coordinates of H-atoms of hydroxy, ammonium moiety and water molecule were refined. The other H-atoms were positioned geometrically, with C-H = 0.93 Å for aromatic type and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C, N, O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radius.
[Figure 2] Fig. 2. The partial packing of (I), showing that molecules form three-dimensional polymeric network.
3-Ammonio-4-hydroxybenzoate monohydrate top
Crystal data top
C7H7NO3·H2OF(000) = 720
Mr = 171.15Dx = 1.576 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1725 reflections
a = 8.7711 (3) Åθ = 3.2–28.3°
b = 12.7193 (7) ŵ = 0.13 mm1
c = 12.9289 (6) ÅT = 296 K
V = 1442.38 (11) Å3Rod, light brown
Z = 80.26 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1752 independent reflections
Radiation source: fine-focus sealed tube1277 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 3.2°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1516
Tmin = 0.971, Tmax = 0.976l = 1117
8827 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0684P)2 + 0.0409P]
where P = (Fo2 + 2Fc2)/3
1725 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C7H7NO3·H2OV = 1442.38 (11) Å3
Mr = 171.15Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.7711 (3) ŵ = 0.13 mm1
b = 12.7193 (7) ÅT = 296 K
c = 12.9289 (6) Å0.26 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1752 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1277 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.976Rint = 0.033
8827 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.31 e Å3
1725 reflectionsΔρmin = 0.24 e Å3
127 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69598 (12)0.67023 (9)0.16442 (9)0.0284 (4)
O20.83764 (11)0.53206 (10)0.12269 (9)0.0302 (4)
O30.20823 (11)0.29862 (10)0.11448 (10)0.0319 (4)
N10.48231 (14)0.21872 (11)0.16388 (11)0.0232 (4)
C10.57236 (15)0.50443 (12)0.14203 (11)0.0205 (5)
C20.58869 (15)0.39732 (13)0.15731 (11)0.0203 (4)
C30.46511 (14)0.33137 (12)0.14912 (11)0.0193 (4)
C40.32078 (15)0.37051 (12)0.12444 (12)0.0212 (4)
C50.30300 (15)0.47766 (13)0.11230 (12)0.0241 (5)
C60.42742 (15)0.54444 (13)0.12153 (12)0.0232 (4)
C70.71208 (15)0.57284 (13)0.14299 (11)0.0216 (5)
O40.43081 (12)0.34489 (11)0.45169 (10)0.0308 (4)
H1A0.587 (2)0.2008 (14)0.1721 (12)0.0278*
H1B0.4519 (19)0.1828 (14)0.1034 (15)0.0278*
H1C0.4229 (18)0.1948 (14)0.2189 (14)0.0278*
H20.684030.369740.173250.0243*
H30.119 (2)0.3252 (16)0.0913 (15)0.0383*
H50.207140.505240.097850.0289*
H60.414020.616560.113980.0279*
H410.3898 (19)0.4057 (16)0.4289 (15)0.0369*
H420.381 (2)0.2927 (16)0.4217 (15)0.0369*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0316 (5)0.0154 (7)0.0383 (7)0.0051 (4)0.0053 (4)0.0044 (5)
O20.0231 (5)0.0245 (7)0.0430 (7)0.0032 (5)0.0043 (4)0.0063 (5)
O30.0193 (5)0.0217 (7)0.0548 (8)0.0032 (4)0.0059 (5)0.0000 (6)
N10.0214 (6)0.0150 (8)0.0331 (8)0.0010 (5)0.0027 (5)0.0015 (6)
C10.0236 (7)0.0164 (9)0.0216 (8)0.0029 (5)0.0013 (5)0.0026 (6)
C20.0183 (6)0.0190 (9)0.0235 (8)0.0006 (5)0.0011 (5)0.0006 (6)
C30.0209 (6)0.0142 (9)0.0228 (8)0.0003 (5)0.0018 (5)0.0013 (6)
C40.0195 (6)0.0188 (9)0.0254 (8)0.0024 (5)0.0004 (5)0.0019 (6)
C50.0205 (6)0.0218 (9)0.0300 (9)0.0041 (6)0.0024 (6)0.0003 (7)
C60.0290 (7)0.0137 (8)0.0270 (8)0.0014 (6)0.0000 (5)0.0005 (7)
C70.0265 (7)0.0169 (9)0.0214 (8)0.0044 (6)0.0013 (5)0.0002 (6)
O40.0257 (5)0.0255 (8)0.0412 (7)0.0017 (5)0.0044 (4)0.0023 (6)
Geometric parameters (Å, º) top
O1—C71.277 (2)C1—C71.503 (2)
O2—C71.2453 (17)C1—C61.3948 (19)
O3—C41.3518 (18)C1—C21.384 (2)
O3—H30.904 (18)C2—C31.375 (2)
O4—H410.90 (2)C3—C41.3972 (19)
O4—H420.884 (19)C4—C51.381 (2)
N1—C31.453 (2)C5—C61.388 (2)
N1—H1C0.933 (17)C2—H20.9300
N1—H1A0.952 (18)C5—H50.9300
N1—H1B0.944 (19)C6—H60.9300
C4—O3—H3114.3 (13)O3—C4—C5125.06 (12)
H41—O4—H42107.7 (17)C3—C4—C5118.69 (13)
C3—N1—H1A110.5 (11)O3—C4—C3116.26 (13)
C3—N1—H1B109.8 (11)C4—C5—C6120.36 (13)
H1A—N1—H1B104.4 (14)C1—C6—C5120.64 (15)
H1A—N1—H1C112.1 (14)O1—C7—O2123.20 (14)
C3—N1—H1C111.3 (11)O2—C7—C1118.57 (14)
H1B—N1—H1C108.4 (15)O1—C7—C1118.24 (12)
C2—C1—C6118.72 (13)C3—C2—H2120.00
C2—C1—C7118.97 (12)C1—C2—H2120.00
C6—C1—C7122.24 (14)C4—C5—H5120.00
C1—C2—C3120.53 (13)C6—C5—H5120.00
N1—C3—C2120.64 (12)C1—C6—H6120.00
C2—C3—C4120.97 (14)C5—C6—H6120.00
N1—C3—C4118.38 (12)
C6—C1—C2—C32.1 (2)C1—C2—C3—C40.5 (2)
C7—C1—C2—C3175.02 (13)N1—C3—C4—O31.1 (2)
C2—C1—C6—C52.7 (2)N1—C3—C4—C5178.75 (14)
C7—C1—C6—C5174.30 (14)C2—C3—C4—O3177.60 (14)
C2—C1—C7—O1156.35 (14)C2—C3—C4—C52.5 (2)
C2—C1—C7—O223.8 (2)O3—C4—C5—C6178.25 (15)
C6—C1—C7—O126.7 (2)C3—C4—C5—C61.9 (2)
C6—C1—C7—O2153.17 (15)C4—C5—C6—C10.7 (2)
C1—C2—C3—N1179.24 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.952 (18)1.945 (18)2.8884 (16)170.4 (14)
N1—H1A···O2i0.952 (18)2.335 (18)2.9008 (18)117.6 (13)
N1—H1B···O4ii0.944 (19)2.001 (19)2.8957 (19)157.4 (16)
N1—H1C···O1iii0.933 (17)1.860 (17)2.7846 (18)170.5 (16)
O3—H3···O4iv0.904 (18)1.760 (18)2.6456 (15)166.0 (19)
O4—H41···O2iv0.90 (2)1.80 (2)2.6945 (18)171.1 (17)
O4—H42···O1iii0.884 (19)2.03 (2)2.9027 (18)168.8 (17)
C6—H6···O3v0.932.553.446 (2)161
C7—O2···CgAvi1.25 (1)3.49 (1)3.9313 (16)101 (1)
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x, y+1/2, z1/2; (iii) x+1, y1/2, z+1/2; (iv) x1/2, y, z+1/2; (v) x+1/2, y+1/2, z; (vi) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H7NO3·H2O
Mr171.15
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)8.7711 (3), 12.7193 (7), 12.9289 (6)
V3)1442.38 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.26 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.971, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
8827, 1752, 1277
Rint0.033
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.06
No. of reflections1725
No. of parameters127
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.24

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.952 (18)1.945 (18)2.8884 (16)170.4 (14)
N1—H1A···O2i0.952 (18)2.335 (18)2.9008 (18)117.6 (13)
N1—H1B···O4ii0.944 (19)2.001 (19)2.8957 (19)157.4 (16)
N1—H1C···O1iii0.933 (17)1.860 (17)2.7846 (18)170.5 (16)
O3—H3···O4iv0.904 (18)1.760 (18)2.6456 (15)166.0 (19)
O4—H41···O2iv0.90 (2)1.80 (2)2.6945 (18)171.1 (17)
O4—H42···O1iii0.884 (19)2.03 (2)2.9027 (18)168.8 (17)
C6—H6···O3v0.932.553.446 (2)161
C7—O2···CgAvi1.2453 (17)3.4940 (13)3.9313 (16)101.24 (9)
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x, y+1/2, z1/2; (iii) x+1, y1/2, z+1/2; (iv) x1/2, y, z+1/2; (v) x+1/2, y+1/2, z; (vi) x+1/2, y, z+1/2.
 

Acknowledgements

SU greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing a Scholarship under the Indigenous PhD Program (PIN 042–121314-PS2–287).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBertasso, M., Holzenkampfer, M., Zeeck, A., Dall'Antonia, F. & Fiedler, H.-P. (2001). J. Antibiot. 54, 730–737.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds