organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phenyl-1H-1,3,7,8-tetra­aza­cyclo­penta­[l]phenanthrene

aAffiliated Hospital, Jiangsu University, Zhenjiang 212001, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: liuchunbo431@yahoo.com.cn

(Received 10 May 2009; accepted 10 May 2009; online 20 May 2009)

There are two mol­ecules in the asymmetric unit of the title compound, C19H12N4, with dihedral angles of 2.41 (10) and 10.53 (12)° between the fused ring system and the pendant phenyl ring. In the crystal, mol­ecules are linked into chains by N—H⋯N hydrogen bonds and aromatic ππ stacking inter­actions [shortest centroid–centroid distance = 3.6176 (16) Å] complete the structure.

Related literature

For the synthesis, see: Steck & Day (1943[Steck, E. A. & Day, A. R. (1943). J. Am. Chem. Soc. 65, 452-456.]); For related structures, see: Che et al. (2008[Che, G.-B., Liu, C.-B., Liu, B., Wang, Q.-W. & Xu, Z.-L. (2008). CrystEngComm, 10, 184-191.]); Stephenson & Hardie (2006[Stephenson, M. D. & Hardie, M. J. (2006). Cryst. Growth Des. 6, 423-432.]); Xi (2008[Xi, H.-M. (2008). Acta Cryst. E64, o1981.]).

[Scheme 1]

Experimental

Crystal data
  • C19H12N4

  • Mr = 296.33

  • Triclinic, [P \overline 1]

  • a = 10.016 (2) Å

  • b = 12.210 (2) Å

  • c = 12.415 (3) Å

  • α = 89.90 (3)°

  • β = 78.44 (3)°

  • γ = 77.96 (3)°

  • V = 1453.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 292 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.975, Tmax = 0.984

  • 14453 measured reflections

  • 6587 independent reflections

  • 3657 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.156

  • S = 1.01

  • 6587 reflections

  • 415 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N5i 0.86 2.10 2.932 (3) 164
N7—H7⋯N1 0.86 2.12 2.951 (2) 163
Symmetry code: (i) x, y-1, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,10-Phenanthroline (phen) or its derivatives, as an important chelating ligands with excellent coordinating abilities and fruitful aromatic systems, have been extensively used to build supramolecular architectures (Che, Liu et al., 2008; Stephenson, Hardie et al., 2006). We report here the synthesis and structure of the title compound, namely, C19H12N4 (I), using the phen derivative 2-Phenyl-1H-1,3,7,8-tetraazacyclopenta- [l]phenanthrene (L).

The asymmetric unit of (I) consists of two independent L molecules (Fig.1). The two phenyl rings are slightly twisted with respect to the fused-ring system [dihedral angles = 1.34 and 1.54 °], which is different from a related compound that has been reported (Xi, 2008). In the crystal structure, N—H···N hydrogen bonds (Table 1) link the molecules into chains along the b axis. The neighbouring chains interact through π-π contact between two L ligands [centroid separation = 3.541 Å], leading to the ultimate supramolecular structure (Fig. 2).

Related literature top

For the synthesis, see: Steck & Day (1943); For related structures, see: Che et al. (2008); Stephenson & Hardie (2006); Xi (2008).

Experimental top

The L ligand was synthesized according to the literature method of Steck & Day (1943): a mixture of L, MnCl2 and water in a molar ratio of 2:1:5000 was sealed in a Teflon-lined autoclave and heated to 413 K for 3 d. Upon cooling and opening the bomb, accidentally, pale yellow blocks of (I) were obtained.

Refinement top

The H atoms were positioned geometrically (C—H = 0.93 Å, N—H = 0.86Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I). Displacement ellipsoids are drawn at the 30% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. A view of the crystal packing, showing the N—H···N hydrogen bonds and π-π stacking interactions. H atoms have been omitted.
2-Phenyl-1H-1,3,7,8-tetraazacyclopenta[l]phenanthrene top
Crystal data top
C19H12N4Z = 4
Mr = 296.33F(000) = 616
Triclinic, P1Dx = 1.354 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.016 (2) ÅCell parameters from 3449 reflections
b = 12.210 (2) Åθ = 3.0–27.5°
c = 12.415 (3) ŵ = 0.08 mm1
α = 89.90 (3)°T = 292 K
β = 78.44 (3)°Block, pale yellow
γ = 77.96 (3)°0.30 × 0.25 × 0.20 mm
V = 1453.7 (5) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6587 independent reflections
Radiation source: fine-focus sealed tube3657 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1212
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1515
Tmin = 0.975, Tmax = 0.984l = 1616
14453 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0719P)2 + 0.0624P]
where P = (Fo2 + 2Fc2)/3
6587 reflections(Δ/σ)max < 0.001
415 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C19H12N4γ = 77.96 (3)°
Mr = 296.33V = 1453.7 (5) Å3
Triclinic, P1Z = 4
a = 10.016 (2) ÅMo Kα radiation
b = 12.210 (2) ŵ = 0.08 mm1
c = 12.415 (3) ÅT = 292 K
α = 89.90 (3)°0.30 × 0.25 × 0.20 mm
β = 78.44 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6587 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3657 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.984Rint = 0.048
14453 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.01Δρmax = 0.41 e Å3
6587 reflectionsΔρmin = 0.20 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0622 (2)0.23344 (19)0.81330 (18)0.0490 (6)
H10.12210.28010.86970.059*
C20.0895 (2)0.12895 (19)0.79496 (18)0.0484 (6)
H20.16580.10680.83800.058*
C30.0027 (2)0.05936 (18)0.71295 (17)0.0450 (5)
H3A0.01820.01150.70010.054*
C40.1104 (2)0.09578 (17)0.64798 (15)0.0372 (5)
C50.2049 (2)0.03323 (16)0.55681 (16)0.0389 (5)
C60.3066 (2)0.07524 (17)0.48872 (16)0.0399 (5)
C70.3291 (2)0.18394 (18)0.51052 (16)0.0411 (5)
C80.4316 (2)0.2316 (2)0.44514 (19)0.0511 (6)
H80.49160.19180.38430.061*
C90.4418 (3)0.3372 (2)0.4723 (2)0.0620 (7)
H90.50880.37070.43000.074*
C100.3510 (3)0.3944 (2)0.5639 (2)0.0602 (7)
H100.35900.46650.58080.072*
C110.2416 (2)0.24813 (17)0.60234 (16)0.0396 (5)
C120.1303 (2)0.20394 (17)0.67106 (15)0.0376 (5)
C130.3167 (2)0.08769 (19)0.42188 (16)0.0441 (5)
C140.3576 (2)0.1902 (2)0.35036 (18)0.0471 (6)
C150.3037 (3)0.2845 (2)0.3759 (2)0.0621 (7)
H150.24080.28520.44190.075*
C160.3416 (3)0.3775 (2)0.3051 (2)0.0745 (8)
H160.30360.44010.32310.089*
C170.4350 (3)0.3777 (3)0.2086 (3)0.0802 (10)
H170.46130.44060.16090.096*
C180.4895 (3)0.2857 (3)0.1823 (2)0.0781 (9)
H180.55290.28610.11630.094*
C190.4521 (3)0.1917 (2)0.2523 (2)0.0631 (7)
H190.49040.12950.23350.076*
C200.0061 (2)0.71983 (19)0.57979 (18)0.0495 (6)
H200.03840.76050.52330.059*
C210.0429 (2)0.61739 (19)0.60084 (18)0.0485 (6)
H210.09890.59100.56000.058*
C220.0046 (2)0.55589 (18)0.68273 (17)0.0455 (5)
H220.01690.48620.69760.055*
C230.0864 (2)0.59938 (17)0.74404 (16)0.0382 (5)
C240.1393 (2)0.54495 (17)0.83266 (16)0.0379 (5)
C250.2102 (2)0.59356 (18)0.89767 (16)0.0406 (5)
C260.2425 (2)0.70078 (18)0.87370 (16)0.0405 (5)
C270.3175 (2)0.7535 (2)0.93361 (18)0.0510 (6)
H270.34980.71920.99310.061*
C280.3424 (3)0.8564 (2)0.9033 (2)0.0599 (7)
H280.39100.89360.94230.072*
C290.2938 (3)0.9040 (2)0.8131 (2)0.0611 (7)
H290.31190.97370.79310.073*
C300.1977 (2)0.75555 (17)0.78341 (16)0.0404 (5)
C310.1167 (2)0.70490 (17)0.71880 (16)0.0384 (5)
C320.1928 (2)0.43446 (18)0.96433 (16)0.0415 (5)
C330.2076 (2)0.33528 (19)1.03149 (17)0.0447 (5)
C340.1535 (3)0.2436 (2)1.0129 (2)0.0654 (7)
H340.10450.24430.95660.078*
C350.1709 (3)0.1517 (3)1.0762 (2)0.0797 (9)
H350.13320.09081.06270.096*
C360.2433 (3)0.1487 (3)1.1591 (2)0.0751 (8)
H360.25580.08591.20150.090*
C370.2964 (3)0.2383 (3)1.1787 (2)0.0709 (8)
H370.34470.23711.23550.085*
C380.2797 (3)0.3312 (2)1.11548 (19)0.0603 (7)
H380.31740.39181.12970.072*
N10.04442 (19)0.27076 (14)0.75517 (14)0.0444 (5)
N20.2540 (2)0.35239 (16)0.62830 (15)0.0488 (5)
N30.21246 (18)0.07178 (14)0.51377 (13)0.0429 (4)
H30.16170.11840.53950.052*
N40.37586 (19)0.00010 (16)0.40376 (14)0.0461 (5)
N50.0722 (2)0.76364 (15)0.63503 (14)0.0460 (5)
N60.2236 (2)0.85701 (16)0.75407 (15)0.0505 (5)
N70.12911 (18)0.44362 (14)0.87635 (13)0.0403 (4)
H70.08990.39470.85290.048*
N80.24317 (19)0.52409 (15)0.98030 (14)0.0441 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0537 (14)0.0477 (14)0.0407 (12)0.0078 (11)0.0015 (11)0.0058 (11)
C20.0496 (13)0.0490 (14)0.0437 (12)0.0115 (11)0.0017 (11)0.0028 (11)
C30.0518 (13)0.0392 (12)0.0451 (12)0.0118 (10)0.0098 (11)0.0036 (10)
C40.0449 (12)0.0340 (11)0.0327 (10)0.0070 (9)0.0098 (9)0.0033 (9)
C50.0489 (12)0.0327 (11)0.0346 (11)0.0057 (10)0.0103 (10)0.0025 (9)
C60.0452 (12)0.0406 (12)0.0347 (11)0.0076 (10)0.0118 (10)0.0055 (9)
C70.0446 (12)0.0435 (13)0.0382 (11)0.0108 (10)0.0140 (10)0.0070 (10)
C80.0479 (14)0.0620 (16)0.0468 (13)0.0183 (12)0.0106 (11)0.0090 (11)
C90.0588 (16)0.0709 (18)0.0647 (16)0.0337 (14)0.0118 (13)0.0143 (14)
C100.0650 (17)0.0540 (16)0.0692 (17)0.0279 (13)0.0156 (14)0.0053 (13)
C110.0452 (12)0.0385 (12)0.0385 (11)0.0092 (10)0.0162 (10)0.0054 (9)
C120.0446 (12)0.0364 (11)0.0328 (10)0.0066 (9)0.0121 (9)0.0031 (9)
C130.0481 (13)0.0463 (13)0.0351 (11)0.0030 (11)0.0094 (10)0.0002 (10)
C140.0477 (13)0.0498 (14)0.0415 (12)0.0009 (11)0.0139 (10)0.0055 (11)
C150.0723 (17)0.0529 (16)0.0540 (15)0.0022 (13)0.0077 (13)0.0143 (13)
C160.086 (2)0.0588 (18)0.0757 (19)0.0058 (15)0.0186 (17)0.0197 (15)
C170.0701 (19)0.081 (2)0.082 (2)0.0056 (17)0.0209 (17)0.0417 (18)
C180.0578 (17)0.103 (3)0.0629 (17)0.0055 (17)0.0007 (14)0.0354 (18)
C190.0541 (15)0.0762 (18)0.0535 (15)0.0076 (13)0.0047 (12)0.0152 (14)
C200.0639 (15)0.0469 (14)0.0419 (12)0.0100 (12)0.0224 (11)0.0082 (10)
C210.0564 (14)0.0453 (14)0.0483 (13)0.0087 (11)0.0235 (11)0.0018 (11)
C220.0580 (14)0.0366 (12)0.0465 (12)0.0103 (11)0.0209 (11)0.0018 (10)
C230.0429 (12)0.0340 (12)0.0366 (11)0.0050 (9)0.0092 (9)0.0008 (9)
C240.0468 (12)0.0322 (11)0.0343 (10)0.0053 (9)0.0103 (9)0.0005 (9)
C250.0449 (12)0.0423 (12)0.0330 (11)0.0043 (10)0.0094 (9)0.0003 (9)
C260.0414 (12)0.0431 (13)0.0361 (11)0.0079 (10)0.0069 (9)0.0017 (9)
C270.0543 (14)0.0593 (16)0.0434 (13)0.0175 (12)0.0142 (11)0.0027 (11)
C280.0663 (16)0.0649 (17)0.0567 (15)0.0290 (14)0.0160 (13)0.0051 (13)
C290.0739 (18)0.0540 (16)0.0648 (16)0.0317 (14)0.0175 (14)0.0048 (13)
C300.0456 (12)0.0366 (12)0.0393 (11)0.0104 (10)0.0073 (10)0.0009 (9)
C310.0434 (12)0.0368 (12)0.0337 (11)0.0052 (9)0.0087 (9)0.0003 (9)
C320.0459 (13)0.0442 (13)0.0321 (10)0.0027 (10)0.0095 (9)0.0022 (9)
C330.0474 (13)0.0467 (13)0.0350 (11)0.0013 (10)0.0059 (10)0.0067 (10)
C340.085 (2)0.0583 (17)0.0612 (16)0.0206 (15)0.0298 (14)0.0237 (13)
C350.103 (2)0.0656 (19)0.079 (2)0.0267 (17)0.0296 (18)0.0329 (16)
C360.080 (2)0.070 (2)0.0656 (18)0.0016 (16)0.0087 (16)0.0328 (15)
C370.0715 (19)0.088 (2)0.0504 (15)0.0020 (17)0.0226 (14)0.0220 (15)
C380.0646 (17)0.0678 (18)0.0473 (14)0.0062 (14)0.0167 (12)0.0108 (13)
N10.0540 (11)0.0385 (10)0.0400 (10)0.0086 (9)0.0094 (9)0.0009 (8)
N20.0573 (12)0.0411 (11)0.0536 (11)0.0171 (9)0.0179 (9)0.0032 (9)
N30.0521 (11)0.0370 (10)0.0377 (10)0.0091 (8)0.0049 (9)0.0007 (8)
N40.0486 (11)0.0494 (12)0.0369 (9)0.0057 (9)0.0052 (8)0.0018 (9)
N50.0581 (12)0.0423 (11)0.0408 (10)0.0114 (9)0.0165 (9)0.0046 (8)
N60.0622 (13)0.0431 (11)0.0516 (11)0.0204 (10)0.0146 (10)0.0027 (9)
N70.0514 (11)0.0349 (10)0.0373 (9)0.0093 (8)0.0149 (8)0.0042 (8)
N80.0496 (11)0.0466 (11)0.0369 (9)0.0079 (9)0.0134 (8)0.0042 (8)
Geometric parameters (Å, º) top
C1—N11.327 (3)C20—C211.386 (3)
C1—C21.388 (3)C20—H200.9300
C1—H10.9300C21—C221.366 (3)
C2—C31.362 (3)C21—H210.9300
C2—H20.9300C22—C231.402 (3)
C3—C41.405 (3)C22—H220.9300
C3—H3A0.9300C23—C311.405 (3)
C4—C121.414 (3)C23—C241.420 (3)
C4—C51.426 (3)C24—N71.365 (3)
C5—N31.371 (2)C24—C251.384 (3)
C5—C61.374 (3)C25—N81.377 (3)
C6—N41.371 (3)C25—C261.430 (3)
C6—C71.427 (3)C26—C271.399 (3)
C7—C81.402 (3)C26—C301.407 (3)
C7—C111.414 (3)C27—C281.369 (3)
C8—C91.363 (3)C27—H270.9300
C8—H80.9300C28—C291.388 (4)
C9—C101.390 (3)C28—H280.9300
C9—H90.9300C29—N61.319 (3)
C10—N21.320 (3)C29—H290.9300
C10—H100.9300C30—N61.352 (3)
C11—N21.350 (3)C30—C311.468 (3)
C11—C121.459 (3)C31—N51.358 (3)
C12—N11.359 (3)C32—N81.327 (3)
C13—N41.327 (3)C32—N71.365 (3)
C13—N31.367 (3)C32—C331.468 (3)
C13—C141.472 (3)C33—C381.377 (3)
C14—C191.381 (3)C33—C341.380 (3)
C14—C151.381 (3)C34—C351.371 (4)
C15—C161.377 (3)C34—H340.9300
C15—H150.9300C35—C361.370 (4)
C16—C171.364 (4)C35—H350.9300
C16—H160.9300C36—C371.354 (4)
C17—C181.360 (4)C36—H360.9300
C17—H170.9300C37—C381.380 (4)
C18—C191.381 (3)C37—H370.9300
C18—H180.9300C38—H380.9300
C19—H190.9300N3—H30.8600
C20—N51.328 (3)N7—H70.8600
N1—C1—C2123.9 (2)C21—C22—C23119.0 (2)
N1—C1—H1118.1C21—C22—H22120.5
C2—C1—H1118.1C23—C22—H22120.5
C3—C2—C1118.9 (2)C22—C23—C31118.7 (2)
C3—C2—H2120.5C22—C23—C24124.4 (2)
C1—C2—H2120.5C31—C23—C24116.91 (18)
C2—C3—C4119.3 (2)N7—C24—C25105.51 (18)
C2—C3—H3A120.3N7—C24—C23131.11 (18)
C4—C3—H3A120.3C25—C24—C23123.3 (2)
C3—C4—C12118.36 (18)N8—C25—C24110.69 (19)
C3—C4—C5124.80 (19)N8—C25—C26128.53 (19)
C12—C4—C5116.80 (18)C24—C25—C26120.8 (2)
N3—C5—C6105.81 (17)C27—C26—C30118.2 (2)
N3—C5—C4130.73 (19)C27—C26—C25124.0 (2)
C6—C5—C4123.36 (19)C30—C26—C25117.79 (19)
N4—C6—C5110.98 (18)C28—C27—C26119.0 (2)
N4—C6—C7128.25 (19)C28—C27—H27120.5
C5—C6—C7120.76 (18)C26—C27—H27120.5
C8—C7—C11118.0 (2)C27—C28—C29118.6 (2)
C8—C7—C6123.79 (19)C27—C28—H28120.7
C11—C7—C6118.21 (19)C29—C28—H28120.7
C9—C8—C7118.9 (2)N6—C29—C28124.3 (2)
C9—C8—H8120.6N6—C29—H29117.8
C7—C8—H8120.6C28—C29—H29117.8
C8—C9—C10119.2 (2)N6—C30—C26122.15 (19)
C8—C9—H9120.4N6—C30—C31117.3 (2)
C10—C9—H9120.4C26—C30—C31120.52 (19)
N2—C10—C9124.0 (2)N5—C31—C23121.66 (18)
N2—C10—H10118.0N5—C31—C30117.79 (19)
C9—C10—H10118.0C23—C31—C30120.55 (19)
N2—C11—C7122.30 (19)N8—C32—N7112.31 (19)
N2—C11—C12117.46 (19)N8—C32—C33123.9 (2)
C7—C11—C12120.21 (18)N7—C32—C33123.74 (19)
N1—C12—C4121.24 (19)C38—C33—C34117.9 (2)
N1—C12—C11118.20 (18)C38—C33—C32119.7 (2)
C4—C12—C11120.53 (18)C34—C33—C32122.4 (2)
N4—C13—N3112.41 (17)C35—C34—C33120.9 (3)
N4—C13—C14123.79 (19)C35—C34—H34119.5
N3—C13—C14123.8 (2)C33—C34—H34119.5
C19—C14—C15118.4 (2)C36—C35—C34120.5 (3)
C19—C14—C13118.8 (2)C36—C35—H35119.7
C15—C14—C13122.9 (2)C34—C35—H35119.7
C16—C15—C14121.1 (3)C37—C36—C35119.2 (3)
C16—C15—H15119.5C37—C36—H36120.4
C14—C15—H15119.5C35—C36—H36120.4
C17—C16—C15119.8 (3)C36—C37—C38120.8 (3)
C17—C16—H16120.1C36—C37—H37119.6
C15—C16—H16120.1C38—C37—H37119.6
C18—C17—C16119.9 (2)C33—C38—C37120.7 (3)
C18—C17—H17120.1C33—C38—H38119.7
C16—C17—H17120.1C37—C38—H38119.7
C17—C18—C19120.9 (3)C1—N1—C12118.24 (18)
C17—C18—H18119.6C10—N2—C11117.7 (2)
C19—C18—H18119.6C13—N3—C5106.42 (18)
C14—C19—C18120.0 (3)C13—N3—H3126.8
C14—C19—H19120.0C5—N3—H3126.8
C18—C19—H19120.0C13—N4—C6104.37 (17)
N5—C20—C21124.2 (2)C20—N5—C31117.64 (19)
N5—C20—H20117.9C29—N6—C30117.6 (2)
C21—C20—H20117.9C24—N7—C32107.11 (17)
C22—C21—C20118.7 (2)C24—N7—H7126.4
C22—C21—H21120.6C32—N7—H7126.4
C20—C21—H21120.6C32—N8—C25104.37 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N5i0.862.102.932 (3)164
N7—H7···N10.862.122.951 (2)163
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC19H12N4
Mr296.33
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)10.016 (2), 12.210 (2), 12.415 (3)
α, β, γ (°)89.90 (3), 78.44 (3), 77.96 (3)
V3)1453.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.975, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
14453, 6587, 3657
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.156, 1.01
No. of reflections6587
No. of parameters415
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.20

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N5i0.862.102.932 (3)164
N7—H7···N10.862.122.951 (2)163
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors thank the Postdoctoral Foundation of Jiangsu Province (No. 0801010B) for support.

References

First citationChe, G.-B., Liu, C.-B., Liu, B., Wang, Q.-W. & Xu, Z.-L. (2008). CrystEngComm, 10, 184–191.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteck, E. A. & Day, A. R. (1943). J. Am. Chem. Soc. 65, 452–456.  CrossRef CAS Google Scholar
First citationStephenson, M. D. & Hardie, M. J. (2006). Cryst. Growth Des. 6, 423–432.  Web of Science CSD CrossRef CAS Google Scholar
First citationXi, H.-M. (2008). Acta Cryst. E64, o1981.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds