metal-organic compounds
catena-Poly[[(nitrato-κ2O,O′)silver(I)]-μ3-4-pyridone-κ3O:O:O]
aSchool of Chemistry and Chemical Engineering, Zhao Qing University, Zhaoqing 526061, People's Republic of China
*Correspondence e-mail: xgwu69@yahoo.com.cn
In the title complex, [Ag(NO3)(C5H5NO)]n, the AgI atom is coordinated by two O atoms from two different 4-pyridone ligands and two O atoms from one nitrate anion, displaying a nearly planar coordination geometry. The O atoms of two 4-pyridone ligands bridge two symmetrically related AgNO3 units, forming a dimer, with an Ag⋯Ag separation of 3.680 (2) Å. Neighbouring dimers are linked into an infinite chain through weak Ag⋯O interactions [2.765 (2) Å], Ag⋯Ag interactions [3.1511 (4) Å] and π–π stacking interactions [centroid–centroid distance = 3.623 (4) Å]. N—H⋯O and C—H⋯O hydrogen bonds assemble these chains into a three-dimensional network.
Related literature
For general background to hydroxypyridines, see: Deng et al. (2005); Holis & Lippard (1983); John & Urland (2006); Klausmeyer & Beckles (2007). For related structures, see: Deisenhofer & Michel (1998); Gao et al. (2004); Leng & Ng (2007); Li, Yan et al. (2005); Li, Yin et al. (2005); Pan & Xu (2004); Wu et al. (2003).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809019138/hy2199sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809019138/hy2199Isup2.hkl
A mixture of silver nitrate (0.17 g, 1 mmol), 4-hydroxypyridine (0.095 g, 1 mmol), NaOH (0.02 g, 0.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon-lined reactor, which was heated to 433 K for 3 d and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dried in air (yield 0.18 g, 69.2%).
C-bound H atoms were positioned geometrically and treated as riding atoms, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C). H atom on N atom was located on difference Fourier map and refined with Uiso(H) = 1.2Ueq(N).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ag(NO3)(C5H5NO)] | F(000) = 1024 |
Mr = 264.98 | Dx = 2.416 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 3600 reflections |
a = 19.3509 (7) Å | θ = 1.4–28° |
b = 3.6232 (1) Å | µ = 2.74 mm−1 |
c = 21.2600 (8) Å | T = 296 K |
β = 102.174 (2)° | Block, colorless |
V = 1457.06 (9) Å3 | 0.26 × 0.23 × 0.21 mm |
Z = 8 |
Bruker APEXII CCD diffractometer | 1678 independent reflections |
Radiation source: fine-focus sealed tube | 1557 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
ϕ and ω scans | θmax = 27.5°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −24→24 |
Tmin = 0.508, Tmax = 0.575 | k = −4→4 |
11458 measured reflections | l = −26→27 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.020 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.054 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0276P)2 + 1.8757P] where P = (Fo2 + 2Fc2)/3 |
1678 reflections | (Δ/σ)max = 0.001 |
112 parameters | Δρmax = 0.50 e Å−3 |
1 restraint | Δρmin = −0.52 e Å−3 |
[Ag(NO3)(C5H5NO)] | V = 1457.06 (9) Å3 |
Mr = 264.98 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 19.3509 (7) Å | µ = 2.74 mm−1 |
b = 3.6232 (1) Å | T = 296 K |
c = 21.2600 (8) Å | 0.26 × 0.23 × 0.21 mm |
β = 102.174 (2)° |
Bruker APEXII CCD diffractometer | 1678 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1557 reflections with I > 2σ(I) |
Tmin = 0.508, Tmax = 0.575 | Rint = 0.022 |
11458 measured reflections |
R[F2 > 2σ(F2)] = 0.020 | 1 restraint |
wR(F2) = 0.054 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.50 e Å−3 |
1678 reflections | Δρmin = −0.52 e Å−3 |
112 parameters |
x | y | z | Uiso*/Ueq | ||
Ag1 | −0.054927 (10) | 0.18113 (6) | 0.443081 (9) | 0.04893 (9) | |
C1 | 0.08175 (11) | 0.6362 (6) | 0.41324 (10) | 0.0342 (4) | |
C2 | 0.15034 (12) | 0.7888 (6) | 0.43328 (12) | 0.0411 (5) | |
H2 | 0.1661 | 0.8620 | 0.4758 | 0.049* | |
C3 | 0.19321 (13) | 0.8286 (7) | 0.39055 (14) | 0.0471 (6) | |
H3 | 0.2380 | 0.9306 | 0.4040 | 0.057* | |
C4 | 0.10736 (14) | 0.5710 (7) | 0.30792 (11) | 0.0469 (5) | |
H4 | 0.0939 | 0.4967 | 0.2652 | 0.056* | |
C5 | 0.06220 (12) | 0.5262 (7) | 0.34795 (10) | 0.0394 (4) | |
H5 | 0.0179 | 0.4222 | 0.3325 | 0.047* | |
H1 | 0.1981 (15) | 0.767 (8) | 0.3009 (12) | 0.059* | |
N1 | 0.17149 (12) | 0.7221 (6) | 0.32924 (11) | 0.0486 (5) | |
N2 | −0.15451 (10) | −0.1759 (5) | 0.34244 (9) | 0.0362 (4) | |
O1 | 0.03930 (9) | 0.6001 (5) | 0.45201 (7) | 0.0445 (4) | |
O2 | −0.15517 (10) | −0.2094 (6) | 0.40146 (8) | 0.0543 (5) | |
O3 | −0.10437 (9) | −0.0108 (6) | 0.32724 (9) | 0.0542 (4) | |
O4 | −0.20310 (8) | −0.3092 (5) | 0.30118 (8) | 0.0480 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.04508 (12) | 0.05614 (14) | 0.04269 (12) | −0.01218 (8) | 0.00275 (8) | −0.01404 (8) |
C1 | 0.0356 (10) | 0.0325 (10) | 0.0360 (10) | −0.0024 (8) | 0.0111 (8) | −0.0017 (8) |
C2 | 0.0382 (11) | 0.0412 (11) | 0.0439 (12) | −0.0048 (9) | 0.0085 (9) | −0.0019 (9) |
C3 | 0.0353 (11) | 0.0423 (13) | 0.0658 (16) | −0.0008 (9) | 0.0156 (11) | 0.0055 (11) |
C4 | 0.0583 (14) | 0.0479 (13) | 0.0378 (11) | 0.0046 (11) | 0.0173 (10) | 0.0005 (10) |
C5 | 0.0424 (11) | 0.0417 (12) | 0.0351 (10) | −0.0032 (9) | 0.0101 (8) | −0.0029 (9) |
N1 | 0.0523 (12) | 0.0485 (11) | 0.0532 (12) | 0.0062 (9) | 0.0299 (10) | 0.0065 (9) |
N2 | 0.0312 (8) | 0.0395 (10) | 0.0358 (9) | 0.0001 (7) | 0.0022 (7) | −0.0047 (7) |
O1 | 0.0443 (8) | 0.0547 (10) | 0.0382 (8) | −0.0146 (7) | 0.0175 (7) | −0.0098 (7) |
O2 | 0.0548 (10) | 0.0734 (12) | 0.0336 (8) | −0.0131 (9) | 0.0069 (8) | −0.0082 (8) |
O3 | 0.0461 (9) | 0.0610 (12) | 0.0567 (10) | −0.0179 (9) | 0.0132 (8) | −0.0042 (9) |
O4 | 0.0377 (9) | 0.0678 (11) | 0.0360 (9) | −0.0126 (8) | 0.0022 (7) | −0.0091 (8) |
Ag1—O1i | 2.3259 (15) | C3—N1 | 1.339 (4) |
Ag1—O1 | 2.3493 (16) | C3—H3 | 0.9300 |
Ag1—O1ii | 2.7652 (18) | C4—N1 | 1.344 (4) |
Ag1—O2 | 2.4132 (19) | C4—C5 | 1.352 (3) |
Ag1—O3 | 2.5437 (18) | C4—H4 | 0.9300 |
Ag1—Ag1iii | 3.1511 (4) | C5—H5 | 0.9300 |
C1—O1 | 1.287 (2) | N1—H1 | 0.89 (3) |
C1—C5 | 1.417 (3) | N2—O3 | 1.239 (2) |
C1—C2 | 1.418 (3) | N2—O4 | 1.240 (2) |
C2—C3 | 1.361 (3) | N2—O2 | 1.263 (3) |
C2—H2 | 0.9300 | O1—Ag1i | 2.3259 (15) |
O1i—Ag1—O1 | 76.15 (6) | C2—C3—H3 | 119.7 |
O1i—Ag1—O2 | 118.90 (6) | N1—C4—C5 | 120.7 (2) |
O1—Ag1—O2 | 163.46 (6) | N1—C4—H4 | 119.7 |
O1i—Ag1—O3 | 165.44 (6) | C5—C4—H4 | 119.7 |
O1—Ag1—O3 | 112.45 (5) | C4—C5—C1 | 120.6 (2) |
O2—Ag1—O3 | 51.36 (5) | C4—C5—H5 | 119.7 |
O1i—Ag1—Ag1iii | 58.35 (5) | C1—C5—H5 | 119.7 |
O1—Ag1—Ag1iii | 79.67 (4) | C3—N1—C4 | 121.6 (2) |
O2—Ag1—Ag1iii | 113.41 (5) | C3—N1—H1 | 120 (2) |
O3—Ag1—Ag1iii | 133.22 (5) | C4—N1—H1 | 118 (2) |
O1—C1—C5 | 121.62 (19) | O3—N2—O4 | 121.46 (19) |
O1—C1—C2 | 122.0 (2) | O3—N2—O2 | 118.54 (19) |
C5—C1—C2 | 116.34 (19) | O4—N2—O2 | 120.00 (19) |
C3—C2—C1 | 120.3 (2) | C1—O1—Ag1i | 127.44 (14) |
C3—C2—H2 | 119.9 | C1—O1—Ag1 | 127.10 (13) |
C1—C2—H2 | 119.9 | Ag1i—O1—Ag1 | 103.85 (6) |
N1—C3—C2 | 120.6 (2) | N2—O2—Ag1 | 97.60 (13) |
N1—C3—H3 | 119.7 | N2—O3—Ag1 | 91.99 (13) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y−1, z; (iii) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O2iv | 0.93 | 2.46 | 3.343 (3) | 160 |
N1—H1···O4v | 0.89 (3) | 2.21 (2) | 2.965 (3) | 143 (3) |
N1—H1···O4iv | 0.89 (3) | 2.45 (2) | 3.121 (3) | 133 (3) |
Symmetry codes: (iv) x+1/2, y+3/2, z; (v) −x, y+1, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ag(NO3)(C5H5NO)] |
Mr | 264.98 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 296 |
a, b, c (Å) | 19.3509 (7), 3.6232 (1), 21.2600 (8) |
β (°) | 102.174 (2) |
V (Å3) | 1457.06 (9) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 2.74 |
Crystal size (mm) | 0.26 × 0.23 × 0.21 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.508, 0.575 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11458, 1678, 1557 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.020, 0.054, 1.07 |
No. of reflections | 1678 |
No. of parameters | 112 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.50, −0.52 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Ag1—O1i | 2.3259 (15) | Ag1—O2 | 2.4132 (19) |
Ag1—O1 | 2.3493 (16) | Ag1—O3 | 2.5437 (18) |
Ag1—O1ii | 2.7652 (18) | Ag1—Ag1iii | 3.1511 (4) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y−1, z; (iii) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O2iv | 0.93 | 2.46 | 3.343 (3) | 160 |
N1—H1···O4v | 0.89 (3) | 2.21 (2) | 2.965 (3) | 143 (3) |
N1—H1···O4iv | 0.89 (3) | 2.45 (2) | 3.121 (3) | 133 (3) |
Symmetry codes: (iv) x+1/2, y+3/2, z; (v) −x, y+1, −z+1/2. |
Acknowledgements
The authors acknowledge the Guangdong Natural Science Foundation (SN. 8452606101000739) for supporting this work.
References
Bruker (2007). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Deisenhofer, J. & Michel, H. (1998). EMBO J. 8, 2149–2170. Google Scholar
Deng, Z.-P., Gao, S., Huo, L.-H. & Zhao, H. (2005). Acta Cryst. E61, m2523–m2525. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gao, S., Lu, Z.-Z., Huo, L.-H. & Zhao, H. (2004). Acta Cryst. C60, m651–m653. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Holis, L. S. & Lippard, S. J. (1983). Inorg. Chem. 22, 2708–2713. CSD CrossRef Web of Science Google Scholar
John, D. & Urland, W. (2006). Eur. J. Inorg. Chem. pp. 3503–3509. Web of Science CSD CrossRef Google Scholar
Klausmeyer, K. K. & Beckles, F. R. (2007). Inorg. Chim. Acta, 360, 3241–3249. Web of Science CSD CrossRef CAS Google Scholar
Leng, X. B. & Ng, D. K. P. (2007). Eur. J. Inorg. Chem. pp. 4615–4620. Web of Science CSD CrossRef Google Scholar
Li, G. M., Yan, P. F., Sato, O. & Einaga, Y. (2005). J. Solid State Chem. 178, 36–40. Web of Science CSD CrossRef CAS Google Scholar
Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56–m58. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, Z.-Y., Xue, Y.-H. & Xu, D.-J. (2003). Acta Cryst. E59, m809–m811. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydroxypyridines (PyOH), such as 2-, 3- and 4-PyOH, have attracted great attention in the field of crystal engineering as good candidates for the construction of supramolecular systems because they are bifunctional ligands that are not only capable of coordinating to metal ions but can also form classical hydrogen bonds as both donors and acceptors (Holis & Lippard, 1983; Klausmeyer & Beckles, 2007). 4-PyOH has two tautomers, dominated by the presence of keto form in polar solvents (Deng et al., 2005; John & Urland, 2006). Thus, the protonated N atom can act as hydrogen bond donor and the PyOH uses O atom to coordinate to metal. However, the coordination chemistry of 4-PyOH ligand is still underveloped and only a few complexes have been structurally characterized in recent years (Gao et al., 2004; Leng & Ng, 2007; Li, Yan et al., 2005). In order to gain further insight into the metal-binding modes of the 4-PyOH ligand, we introduced AgI ion into the coordination system of the 4-PyOH ligand. In the present paper, the AgI ion only coordinates via the unfavoured O atom of 4-pyridone ligand, producing the title one-dimensional coordination polymer, which exhibits a three-dimensional hydrogen-bonded architecture.
The coordination environment of AgI centre is shown in Fig. 1. Each AgI atom is coordinated by two O atoms from two different 4-pyridone ligands and two O atoms from one nitrate anion (Table 1), displaying a nearly planar coordination geometry. Two 1H-pyridin-4-one ligands use their O atoms to bridge two symmetrically related AgNO3 units to form a dimer, with an Ag···Ag separation of 3.680 (2)Å. The adjacent dimers are linked through weak Ag···Ag interactions [3.1511 (4)Å] into a one-dimensional polymeric chain, which is also stabilized by weak Ag···O interactions [2.765 (2)Å] and intrachain π–π interactions (Fig. 2). The centroid–centroid and interplanar distances between adjacent pyridyl rings are 3.623 (4) and 3.301 (4)Å, respectively, thus indicating a weak π–π contact (Deisenhofer & Michel, 1998; Li, Yin et al., 2005; Pan & Xu, 2004; Wu et al., 2003). The polymeric chain shows a staircase-like array, with an Ag···Ag···Ag angle of 63.51 (4)° between three successive Ag atoms along the chain. Such an array in the chain may be explained to avoid steric hindrance. N—H···O hydrogen bonds between the ligand N atoms and the nitrate O atoms (Table 2) link adjacent chains to furnish a lamellar layer. The interlayer N—H···O and C—H···O hydrogen bonds (Table 2) further assemble the neighbouring layers, giving rise to a three-dimensional supramolecular network (Fig. 3).