metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages m685-m686

catena-Poly[[(nitrato-κ2O,O′)silver(I)]-μ3-4-pyridone-κ3O:O:O]

aSchool of Chemistry and Chemical Engineering, Zhao Qing University, Zhaoqing 526061, People's Republic of China
*Correspondence e-mail: xgwu69@yahoo.com.cn

(Received 8 May 2009; accepted 20 May 2009; online 29 May 2009)

In the title complex, [Ag(NO3)(C5H5NO)]n, the AgI atom is coordinated by two O atoms from two different 4-pyridone ligands and two O atoms from one nitrate anion, displaying a nearly planar coordination geometry. The O atoms of two 4-pyridone ligands bridge two symmetrically related AgNO3 units, forming a dimer, with an Ag⋯Ag separation of 3.680 (2) Å. Neighbouring dimers are linked into an infinite chain through weak Ag⋯O inter­actions [2.765 (2) Å], Ag⋯Ag inter­actions [3.1511 (4) Å] and ππ stacking inter­actions [centroid–centroid distance = 3.623 (4) Å]. N—H⋯O and C—H⋯O hydrogen bonds assemble these chains into a three-dimensional network.

Related literature

For general background to hydroxy­pyridines, see: Deng et al. (2005[Deng, Z.-P., Gao, S., Huo, L.-H. & Zhao, H. (2005). Acta Cryst. E61, m2523-m2525.]); Holis & Lippard (1983[Holis, L. S. & Lippard, S. J. (1983). Inorg. Chem. 22, 2708-2713.]); John & Urland (2006[John, D. & Urland, W. (2006). Eur. J. Inorg. Chem. pp. 3503-3509.]); Klausmeyer & Beckles (2007[Klausmeyer, K. K. & Beckles, F. R. (2007). Inorg. Chim. Acta, 360, 3241-3249.]). For related structures, see: Deisenhofer & Michel (1998[Deisenhofer, J. & Michel, H. (1998). EMBO J. 8, 2149-2170.]); Gao et al. (2004[Gao, S., Lu, Z.-Z., Huo, L.-H. & Zhao, H. (2004). Acta Cryst. C60, m651-m653.]); Leng & Ng (2007[Leng, X. B. & Ng, D. K. P. (2007). Eur. J. Inorg. Chem. pp. 4615-4620.]); Li, Yan et al. (2005[Li, G. M., Yan, P. F., Sato, O. & Einaga, Y. (2005). J. Solid State Chem. 178, 36-40.]); Li, Yin et al. (2005[Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.]); Pan & Xu (2004[Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56-m58.]); Wu et al. (2003[Wu, Z.-Y., Xue, Y.-H. & Xu, D.-J. (2003). Acta Cryst. E59, m809-m811.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(NO3)(C5H5NO)]

  • Mr = 264.98

  • Monoclinic, C 2/c

  • a = 19.3509 (7) Å

  • b = 3.6232 (1) Å

  • c = 21.2600 (8) Å

  • β = 102.174 (2)°

  • V = 1457.06 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.74 mm−1

  • T = 296 K

  • 0.26 × 0.23 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.508, Tmax = 0.575

  • 11458 measured reflections

  • 1678 independent reflections

  • 1557 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.054

  • S = 1.07

  • 1678 reflections

  • 112 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—O1i 2.3259 (15)
Ag1—O1 2.3493 (16)
Ag1—O1ii 2.7652 (18)
Ag1—O2 2.4132 (19)
Ag1—O3 2.5437 (18)
Ag1—Ag1iii 3.1511 (4)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y-1, z; (iii) -x, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2iv 0.93 2.46 3.343 (3) 160
N1—H1⋯O4v 0.89 (3) 2.21 (2) 2.965 (3) 143 (3)
N1—H1⋯O4iv 0.89 (3) 2.45 (2) 3.121 (3) 133 (3)
Symmetry codes: (iv) [x+{\script{1\over 2}}, y+{\script{3\over 2}}, z]; (v) [-x, y+1, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydroxypyridines (PyOH), such as 2-, 3- and 4-PyOH, have attracted great attention in the field of crystal engineering as good candidates for the construction of supramolecular systems because they are bifunctional ligands that are not only capable of coordinating to metal ions but can also form classical hydrogen bonds as both donors and acceptors (Holis & Lippard, 1983; Klausmeyer & Beckles, 2007). 4-PyOH has two tautomers, dominated by the presence of keto form in polar solvents (Deng et al., 2005; John & Urland, 2006). Thus, the protonated N atom can act as hydrogen bond donor and the PyOH uses O atom to coordinate to metal. However, the coordination chemistry of 4-PyOH ligand is still underveloped and only a few complexes have been structurally characterized in recent years (Gao et al., 2004; Leng & Ng, 2007; Li, Yan et al., 2005). In order to gain further insight into the metal-binding modes of the 4-PyOH ligand, we introduced AgI ion into the coordination system of the 4-PyOH ligand. In the present paper, the AgI ion only coordinates via the unfavoured O atom of 4-pyridone ligand, producing the title one-dimensional coordination polymer, which exhibits a three-dimensional hydrogen-bonded architecture.

The coordination environment of AgI centre is shown in Fig. 1. Each AgI atom is coordinated by two O atoms from two different 4-pyridone ligands and two O atoms from one nitrate anion (Table 1), displaying a nearly planar coordination geometry. Two 1H-pyridin-4-one ligands use their O atoms to bridge two symmetrically related AgNO3 units to form a dimer, with an Ag···Ag separation of 3.680 (2)Å. The adjacent dimers are linked through weak Ag···Ag interactions [3.1511 (4)Å] into a one-dimensional polymeric chain, which is also stabilized by weak Ag···O interactions [2.765 (2)Å] and intrachain ππ interactions (Fig. 2). The centroid–centroid and interplanar distances between adjacent pyridyl rings are 3.623 (4) and 3.301 (4)Å, respectively, thus indicating a weak ππ contact (Deisenhofer & Michel, 1998; Li, Yin et al., 2005; Pan & Xu, 2004; Wu et al., 2003). The polymeric chain shows a staircase-like array, with an Ag···Ag···Ag angle of 63.51 (4)° between three successive Ag atoms along the chain. Such an array in the chain may be explained to avoid steric hindrance. N—H···O hydrogen bonds between the ligand N atoms and the nitrate O atoms (Table 2) link adjacent chains to furnish a lamellar layer. The interlayer N—H···O and C—H···O hydrogen bonds (Table 2) further assemble the neighbouring layers, giving rise to a three-dimensional supramolecular network (Fig. 3).

Related literature top

For general background to hydroxypyridines, see: Deng et al. (2005); Holis & Lippard (1983); John & Urland (2006); Klausmeyer & Beckles (2007). For related structures, see: Deisenhofer & Michel (1998); Gao et al. (2004); Leng & Ng (2007); Li, Yan et al. (2005); Li, Yin et al. (2005); Pan & Xu (2004); Wu et al. (2003).

Experimental top

A mixture of silver nitrate (0.17 g, 1 mmol), 4-hydroxypyridine (0.095 g, 1 mmol), NaOH (0.02 g, 0.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon-lined reactor, which was heated to 433 K for 3 d and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dried in air (yield 0.18 g, 69.2%).

Refinement top

C-bound H atoms were positioned geometrically and treated as riding atoms, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C). H atom on N atom was located on difference Fourier map and refined with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x, 1-y, 1-z.]
[Figure 2] Fig. 2. View of one-dimensional infinite chain. Dashed lines denote Ag···Ag and ππ interactions.
[Figure 3] Fig. 3. A packing view of the title compound. Hydrogen bonds are shown as dashed lines.
catena-Poly[[(nitrato-κ2O,O')silver(I)]- µ3-4-pyridone-κ3O:O:O] top
Crystal data top
[Ag(NO3)(C5H5NO)]F(000) = 1024
Mr = 264.98Dx = 2.416 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3600 reflections
a = 19.3509 (7) Åθ = 1.4–28°
b = 3.6232 (1) ŵ = 2.74 mm1
c = 21.2600 (8) ÅT = 296 K
β = 102.174 (2)°Block, colorless
V = 1457.06 (9) Å30.26 × 0.23 × 0.21 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
1678 independent reflections
Radiation source: fine-focus sealed tube1557 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2424
Tmin = 0.508, Tmax = 0.575k = 44
11458 measured reflectionsl = 2627
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0276P)2 + 1.8757P]
where P = (Fo2 + 2Fc2)/3
1678 reflections(Δ/σ)max = 0.001
112 parametersΔρmax = 0.50 e Å3
1 restraintΔρmin = 0.52 e Å3
Crystal data top
[Ag(NO3)(C5H5NO)]V = 1457.06 (9) Å3
Mr = 264.98Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.3509 (7) ŵ = 2.74 mm1
b = 3.6232 (1) ÅT = 296 K
c = 21.2600 (8) Å0.26 × 0.23 × 0.21 mm
β = 102.174 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1678 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1557 reflections with I > 2σ(I)
Tmin = 0.508, Tmax = 0.575Rint = 0.022
11458 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0201 restraint
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.50 e Å3
1678 reflectionsΔρmin = 0.52 e Å3
112 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.054927 (10)0.18113 (6)0.443081 (9)0.04893 (9)
C10.08175 (11)0.6362 (6)0.41324 (10)0.0342 (4)
C20.15034 (12)0.7888 (6)0.43328 (12)0.0411 (5)
H20.16610.86200.47580.049*
C30.19321 (13)0.8286 (7)0.39055 (14)0.0471 (6)
H30.23800.93060.40400.057*
C40.10736 (14)0.5710 (7)0.30792 (11)0.0469 (5)
H40.09390.49670.26520.056*
C50.06220 (12)0.5262 (7)0.34795 (10)0.0394 (4)
H50.01790.42220.33250.047*
H10.1981 (15)0.767 (8)0.3009 (12)0.059*
N10.17149 (12)0.7221 (6)0.32924 (11)0.0486 (5)
N20.15451 (10)0.1759 (5)0.34244 (9)0.0362 (4)
O10.03930 (9)0.6001 (5)0.45201 (7)0.0445 (4)
O20.15517 (10)0.2094 (6)0.40146 (8)0.0543 (5)
O30.10437 (9)0.0108 (6)0.32724 (9)0.0542 (4)
O40.20310 (8)0.3092 (5)0.30118 (8)0.0480 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.04508 (12)0.05614 (14)0.04269 (12)0.01218 (8)0.00275 (8)0.01404 (8)
C10.0356 (10)0.0325 (10)0.0360 (10)0.0024 (8)0.0111 (8)0.0017 (8)
C20.0382 (11)0.0412 (11)0.0439 (12)0.0048 (9)0.0085 (9)0.0019 (9)
C30.0353 (11)0.0423 (13)0.0658 (16)0.0008 (9)0.0156 (11)0.0055 (11)
C40.0583 (14)0.0479 (13)0.0378 (11)0.0046 (11)0.0173 (10)0.0005 (10)
C50.0424 (11)0.0417 (12)0.0351 (10)0.0032 (9)0.0101 (8)0.0029 (9)
N10.0523 (12)0.0485 (11)0.0532 (12)0.0062 (9)0.0299 (10)0.0065 (9)
N20.0312 (8)0.0395 (10)0.0358 (9)0.0001 (7)0.0022 (7)0.0047 (7)
O10.0443 (8)0.0547 (10)0.0382 (8)0.0146 (7)0.0175 (7)0.0098 (7)
O20.0548 (10)0.0734 (12)0.0336 (8)0.0131 (9)0.0069 (8)0.0082 (8)
O30.0461 (9)0.0610 (12)0.0567 (10)0.0179 (9)0.0132 (8)0.0042 (9)
O40.0377 (9)0.0678 (11)0.0360 (9)0.0126 (8)0.0022 (7)0.0091 (8)
Geometric parameters (Å, º) top
Ag1—O1i2.3259 (15)C3—N11.339 (4)
Ag1—O12.3493 (16)C3—H30.9300
Ag1—O1ii2.7652 (18)C4—N11.344 (4)
Ag1—O22.4132 (19)C4—C51.352 (3)
Ag1—O32.5437 (18)C4—H40.9300
Ag1—Ag1iii3.1511 (4)C5—H50.9300
C1—O11.287 (2)N1—H10.89 (3)
C1—C51.417 (3)N2—O31.239 (2)
C1—C21.418 (3)N2—O41.240 (2)
C2—C31.361 (3)N2—O21.263 (3)
C2—H20.9300O1—Ag1i2.3259 (15)
O1i—Ag1—O176.15 (6)C2—C3—H3119.7
O1i—Ag1—O2118.90 (6)N1—C4—C5120.7 (2)
O1—Ag1—O2163.46 (6)N1—C4—H4119.7
O1i—Ag1—O3165.44 (6)C5—C4—H4119.7
O1—Ag1—O3112.45 (5)C4—C5—C1120.6 (2)
O2—Ag1—O351.36 (5)C4—C5—H5119.7
O1i—Ag1—Ag1iii58.35 (5)C1—C5—H5119.7
O1—Ag1—Ag1iii79.67 (4)C3—N1—C4121.6 (2)
O2—Ag1—Ag1iii113.41 (5)C3—N1—H1120 (2)
O3—Ag1—Ag1iii133.22 (5)C4—N1—H1118 (2)
O1—C1—C5121.62 (19)O3—N2—O4121.46 (19)
O1—C1—C2122.0 (2)O3—N2—O2118.54 (19)
C5—C1—C2116.34 (19)O4—N2—O2120.00 (19)
C3—C2—C1120.3 (2)C1—O1—Ag1i127.44 (14)
C3—C2—H2119.9C1—O1—Ag1127.10 (13)
C1—C2—H2119.9Ag1i—O1—Ag1103.85 (6)
N1—C3—C2120.6 (2)N2—O2—Ag197.60 (13)
N1—C3—H3119.7N2—O3—Ag191.99 (13)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1, z; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2iv0.932.463.343 (3)160
N1—H1···O4v0.89 (3)2.21 (2)2.965 (3)143 (3)
N1—H1···O4iv0.89 (3)2.45 (2)3.121 (3)133 (3)
Symmetry codes: (iv) x+1/2, y+3/2, z; (v) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag(NO3)(C5H5NO)]
Mr264.98
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)19.3509 (7), 3.6232 (1), 21.2600 (8)
β (°) 102.174 (2)
V3)1457.06 (9)
Z8
Radiation typeMo Kα
µ (mm1)2.74
Crystal size (mm)0.26 × 0.23 × 0.21
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.508, 0.575
No. of measured, independent and
observed [I > 2σ(I)] reflections
11458, 1678, 1557
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.054, 1.07
No. of reflections1678
No. of parameters112
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.52

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ag1—O1i2.3259 (15)Ag1—O22.4132 (19)
Ag1—O12.3493 (16)Ag1—O32.5437 (18)
Ag1—O1ii2.7652 (18)Ag1—Ag1iii3.1511 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1, z; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2iv0.932.463.343 (3)160
N1—H1···O4v0.89 (3)2.21 (2)2.965 (3)143 (3)
N1—H1···O4iv0.89 (3)2.45 (2)3.121 (3)133 (3)
Symmetry codes: (iv) x+1/2, y+3/2, z; (v) x, y+1, z+1/2.
 

Acknowledgements

The authors acknowledge the Guangdong Natural Science Foundation (SN. 8452606101000739) for supporting this work.

References

First citationBruker (2007). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeisenhofer, J. & Michel, H. (1998). EMBO J. 8, 2149–2170.  Google Scholar
First citationDeng, Z.-P., Gao, S., Huo, L.-H. & Zhao, H. (2005). Acta Cryst. E61, m2523–m2525.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGao, S., Lu, Z.-Z., Huo, L.-H. & Zhao, H. (2004). Acta Cryst. C60, m651–m653.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHolis, L. S. & Lippard, S. J. (1983). Inorg. Chem. 22, 2708–2713.  CSD CrossRef Web of Science Google Scholar
First citationJohn, D. & Urland, W. (2006). Eur. J. Inorg. Chem. pp. 3503–3509.  Web of Science CSD CrossRef Google Scholar
First citationKlausmeyer, K. K. & Beckles, F. R. (2007). Inorg. Chim. Acta, 360, 3241–3249.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeng, X. B. & Ng, D. K. P. (2007). Eur. J. Inorg. Chem. pp. 4615–4620.  Web of Science CSD CrossRef Google Scholar
First citationLi, G. M., Yan, P. F., Sato, O. & Einaga, Y. (2005). J. Solid State Chem. 178, 36–40.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56–m58.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Z.-Y., Xue, Y.-H. & Xu, D.-J. (2003). Acta Cryst. E59, m809–m811.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages m685-m686
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds