organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(±)-trans-6,7-Dimeth­­oxy-1-oxo-3-(2-thien­yl)isochroman-4-carboxylic acid

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bFaculty of Chemistry, University of Sofia, 1 James Bourchier Boulevard, 1164 Sofia, Bulgaria, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 11 May 2009; accepted 18 May 2009; online 23 May 2009)

The title compound, C16H14O6S, was synthesized by the reaction of 6,7-dimethoxy­homophthalic anhydride with thio­phene-2-carbaldehyde in the presence of 4-(dimethyl­amino)pyridine (DMAP) as a basic catalyst. The thio­phene ring of the title mol­ecule is disordered over two sites with occupancies of 0.877 (3) and 0.123 (3). The disorder corresponds to an approximate 180° rotation of the thio­phene ring with respect to the C—C bond linking it to the rest of the mol­ecule. The six-membered ring of the 3,4-dihydro­isochromanone ring system is not planar [puckering parameters QT = 0.571 (2) Å, θ = 115.2 (2)° and φ = 99.1 (2)°]. The benzene ring of the 3,4-dihydro­isochromanone ring system makes dihedral angles of 75.0 (2) and 77.2 (5)° with the disordered thio­phene rings. Inter­molecular O—H⋯O and C—H⋯O hydrogen bonds, as well as C—H⋯π inter­actions, lead to the observed supra­molecular structure.

Related literature

For details of the synthesis of the title compound, see: Bogdanov & Palamareva (2004[Bogdanov, M. G. & Palamareva, M. D. (2004). Tetrahedron, 60, 2525-2530.]). For the synthesis of new dihydro­isocoumarins, see: Bogdanov et al. (2007a[Bogdanov, M. G., Gocheva, B. T., Dimitrova, D. B. & Palamreva, M. D. (2007a). J. Heterocycl. Chem. 44, 673-677.],b[Bogdanov, M. G., Kandinska, M. I., Dimitrova, D. B., Gocheva, B. T. & Palamareva, M. D. (2007b). Z. Naturforsch. Teil C, 62, 477-482.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14O6S

  • Mr = 334.34

  • Triclinic, [P \overline 1]

  • a = 8.3369 (6) Å

  • b = 8.4587 (6) Å

  • c = 11.9143 (9) Å

  • α = 76.441 (6)°

  • β = 81.127 (6)°

  • γ = 72.958 (6)°

  • V = 777.6 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.53 × 0.41 × 0.21 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.885, Tmax = 0.952

  • 8329 measured reflections

  • 3229 independent reflections

  • 2663 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.113

  • S = 1.07

  • 3229 reflections

  • 219 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O3i 0.86 (3) 1.84 (2) 2.658 (2) 159 (3)
C2—H2⋯O5ii 0.93 2.54 3.465 (2) 172
C10—H10⋯O6iii 0.98 2.54 3.475 (2) 159
C11—H11⋯Cg4iv 0.98 2.61 3.525 (2) 156
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+2, -z+1; (iii) -x, -y+2, -z+1; (iv) -x+1, -y+1, -z+1. Cg4 is the centroid of the C1–C6 ring.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound (I) was obtained as a part of a research project aimed at the synthesis of new dihydroisocoumarins with potential pharmacological activities (Bogdanov et al., 2007a,b). (I) was synthesized by a one-pot reaction of 6,7-dimethoxyhomophthalic anhydride with thiophene-2-carboxaldehyde in the presence of DMAP as a basic catalyst (Bogdanov & Palamareva, 2004). The structure of (I) was determined by spectral methods (1H NMR & IR) and microanalysis. In this paper, we report the X-ray crystallographic study of (I).

In the title molecule, (I), the thiophene ring is disordered over two sites and the major component of the disorder labelled with suffix A is shown in Fig. 1. The disorder corresponds to an approximate 180° rotation with respect to the C10—C13 bond. The six-membered ring (O4/C1/C6/C9–C11) of the 3,4-dihydroisochromanone ring system is not planar, showing the puckering parameters: QT = 0.571 (2) Å, θ = 115.2 (2)° and ϕ = 99.1 (2)° (Cremer & Pople, 1975). The benzene ring (C1–C6) of the 3,4-dihydroisochromanone ring system encloses dihedral angles of 75.0 (2)° and 77.2 (5)° with the thiophene rings A(C13/C14A/C15/C16/S1A) and B (C13/C14B/C15/C16/S1B), respectively.

The crystal structure is realized by intermolecular O—H···O and C—H···O hydrogen bonds and C—H···π interactions (Table 1, Fig. 2).

Related literature top

For details of the synthesis of the title compound, see: Bogdanov & Palamareva (2004). For the synthesis of new dihydroisocoumarins, see: Bogdanov et al. (2007a,b). For ring-puckering parameters, see: Cremer & Pople (1975).

Experimental top

Compound (I) was synthesized by the reaction of 6,7-dimethoxyhomophthalic anhydride (1) with thiophene-2-carbaldehyde (2) in the presence of DMAP as a basic catalyst (Bogdanov & Palamareva, 2004). To a mixture of 1 (0.33 g, 1.5 mmol) and 2 (0.15 ml, 1.65 mmol) in dry chloroform (5 ml) DMAP (0.18 g, 1.5 mmol) was added. The mixture was stirred at room temperature for 1 h. At the end of the reaction (monitored by TLC), the reaction mixture was extracted with 10% sodium hydrogen carbonate. The aqueous layer was further acidified (pH = 3) with 10% hydrochloric acid and extracted with ethyl acetate. The organic layer was dried (sodium sulfate), filtered and the solvent was then evaporated under reduced pressure giving (0.49 g, 98%) of a diastereomeric mixture of cis- and trans-(±)-6,7-dimethoxy-1-oxo-3-(thiophen-2-yl)isochroman-4-carboxylic acids, in a 30:70 ratio, favoring the trans diastereomer. Pure trans-diastereomer (I) was obtained by fractional crystallization of the residue from ethyl acetate. The product was characterized by 1H NMR, IR spectra and elemental analysis. Single crystals were obtained by slow evaporation of a chloroform–ethyl acetate (3:1) solution of (I) at room temperature (m.p. 465–467 K). Analysis, calculated for C16H14O6S (334.34): C 57.48, H 4.22, O 28.71, S 9.59 (%); found: C 57.74, H 3.97, O 28.71, S 9.91 (%). IR (KBr) 1693 cm-1 (CO), 1741 cm-1 (CO). The 1H NMR spectrum of (I) was obtained on a Bruker DRX-250 spectrometer at 250.13 MHz. Chemical shifts (δ) are expressed in parts per million (p.p.m.). 1H NMR (250 MHz, DMSO-d6) δ = 3.82 (3H, s, –O—CH3), 3.85 (3H, s, –O—CH3), 4.43 (1H, d, J = 3 Hz, H-4), 6.29 (1H, d, J = 3 Hz, H-3), 6.96 (1H, dd, J = 3.6 and 5 Hz, Th—H), 7.08 (1H, s, Ph—H), 7.13 (1H, d, J = 3.5 Hz, Th—H), 7.37 (1H, s, Ph—H), 7.44 (1H, dd, J = 1 and 5 Hz, Th—H).

Refinement top

The H atom of the hydroxyl group was found from a difference Fourier map and refined freely [O6—H6 = 0.864 (3) Å]. H atoms bonded to C atoms were placed at calculated positions with the C—H distances in a range of 0.93–0.98 Å, and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2 or 1.5Ueq(C). The ratio of the refined site occupancies for the major and minor components of the disordered thiophene ring is 0.877 (3):0.123 (3). Similarity restraints were applied to the displacement parameters of the disordered atoms, and there were also geometrical restraints.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecule of (I) with the atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level. The minor component of the disorder has been omitted.
[Figure 2] Fig. 2. Perspective view of the intermolecular hdrogen bonding interactions in the structure of (I). H atoms not involved in hydrogen bonding and the minor component of the disordered thiophene ring have been omitted for clarity.
(±)-trans-6,7-Dimethoxy-1-oxo-3-(2-thienyl)isochroman-4-carboxylic acid top
Crystal data top
C16H14O6SZ = 2
Mr = 334.34F(000) = 348
Triclinic, P1Dx = 1.428 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3369 (6) ÅCell parameters from 16761 reflections
b = 8.4587 (6) Åθ = 2.6–28.0°
c = 11.9143 (9) ŵ = 0.24 mm1
α = 76.441 (6)°T = 296 K
β = 81.127 (6)°Prism, colourless
γ = 72.958 (6)°0.53 × 0.41 × 0.21 mm
V = 777.6 (1) Å3
Data collection top
Stoe IPDS II
diffractometer
3229 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2663 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.030
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.6°
ω scansh = 1010
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1010
Tmin = 0.885, Tmax = 0.952l = 1414
8329 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.2422P]
where P = (Fo2 + 2Fc2)/3
3229 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.27 e Å3
13 restraintsΔρmin = 0.31 e Å3
Crystal data top
C16H14O6Sγ = 72.958 (6)°
Mr = 334.34V = 777.6 (1) Å3
Triclinic, P1Z = 2
a = 8.3369 (6) ÅMo Kα radiation
b = 8.4587 (6) ŵ = 0.24 mm1
c = 11.9143 (9) ÅT = 296 K
α = 76.441 (6)°0.53 × 0.41 × 0.21 mm
β = 81.127 (6)°
Data collection top
Stoe IPDS II
diffractometer
3229 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2663 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.952Rint = 0.030
8329 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04413 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.27 e Å3
3229 reflectionsΔρmin = 0.31 e Å3
219 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S1A0.17140 (13)0.63559 (11)0.85712 (7)0.0759 (3)0.877 (3)
O10.5188 (2)0.77377 (19)0.14713 (12)0.0557 (5)
O20.38518 (19)0.54308 (18)0.12791 (12)0.0503 (5)
O30.15691 (17)0.32562 (15)0.54690 (12)0.0445 (4)
O40.13106 (15)0.53400 (15)0.63275 (10)0.0370 (4)
O50.42866 (19)0.91589 (18)0.62175 (13)0.0515 (5)
O60.22136 (17)1.01715 (16)0.50460 (13)0.0451 (4)
C10.33543 (19)0.67769 (19)0.44799 (14)0.0304 (4)
C20.4244 (2)0.7526 (2)0.35183 (16)0.0356 (5)
C30.4377 (2)0.7065 (2)0.24602 (16)0.0384 (5)
C40.3637 (2)0.5802 (2)0.23513 (15)0.0372 (5)
C50.2797 (2)0.5039 (2)0.33076 (16)0.0359 (5)
C60.26476 (19)0.55214 (19)0.43731 (15)0.0311 (5)
C70.6107 (4)0.8880 (4)0.1547 (2)0.0869 (13)
C80.3476 (3)0.3914 (3)0.12059 (19)0.0611 (8)
C90.1816 (2)0.4620 (2)0.53946 (15)0.0330 (5)
C100.1347 (2)0.7092 (2)0.61942 (15)0.0319 (5)
C110.31183 (19)0.72133 (19)0.56665 (14)0.0305 (4)
C120.3300 (2)0.8940 (2)0.56779 (15)0.0339 (5)
C130.0822 (2)0.7555 (2)0.73510 (16)0.0385 (5)
C14A0.0344 (8)0.8941 (8)0.7626 (6)0.0585 (17)0.877 (3)
C150.0506 (4)0.9063 (4)0.8781 (2)0.0802 (8)
C160.0534 (4)0.7747 (4)0.9384 (2)0.0802 (8)
S1B0.0621 (16)0.9313 (15)0.7433 (10)0.058 (3)0.123 (3)
C14B0.144 (3)0.692 (3)0.8422 (15)0.0802 (8)0.123 (3)
H50.232400.419700.324800.0430*
H60.227 (3)1.112 (3)0.516 (2)0.064 (7)*
H7A0.696700.831900.206600.1050*
H7B0.535500.982900.183400.1050*
H7C0.661800.926400.079200.1050*
H8A0.231900.398000.148000.0730*
H20.475100.833900.358700.0430*
H8C0.366900.377900.041400.0730*
H100.052700.781300.565400.0380*
H110.394500.636100.614800.0370*
H14A0.098700.975100.708000.0700*0.877 (3)
H150.124400.994800.909100.0960*
H160.060600.760401.017500.0960*
H8B0.419000.296500.167400.0730*
H14B0.238800.600800.853300.0960*0.123 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0947 (6)0.0739 (6)0.0417 (4)0.0110 (4)0.0144 (3)0.0153 (3)
O10.0752 (10)0.0589 (9)0.0414 (8)0.0358 (8)0.0138 (7)0.0161 (6)
O20.0680 (9)0.0552 (8)0.0366 (7)0.0240 (7)0.0013 (6)0.0192 (6)
O30.0519 (7)0.0311 (6)0.0557 (8)0.0171 (6)0.0018 (6)0.0156 (6)
O40.0425 (6)0.0332 (6)0.0399 (7)0.0162 (5)0.0033 (5)0.0132 (5)
O50.0596 (8)0.0501 (8)0.0586 (9)0.0260 (7)0.0186 (7)0.0145 (7)
O60.0488 (7)0.0274 (6)0.0646 (9)0.0079 (5)0.0164 (6)0.0154 (6)
C10.0262 (7)0.0273 (7)0.0391 (9)0.0044 (6)0.0033 (6)0.0128 (6)
C20.0346 (8)0.0336 (8)0.0430 (9)0.0126 (7)0.0006 (7)0.0144 (7)
C30.0391 (9)0.0362 (9)0.0392 (9)0.0089 (7)0.0020 (7)0.0112 (7)
C40.0379 (9)0.0384 (9)0.0370 (9)0.0062 (7)0.0049 (7)0.0152 (7)
C50.0342 (8)0.0349 (8)0.0437 (10)0.0099 (7)0.0054 (7)0.0157 (7)
C60.0264 (7)0.0287 (8)0.0395 (9)0.0046 (6)0.0035 (6)0.0128 (7)
C70.129 (3)0.100 (2)0.0588 (15)0.084 (2)0.0344 (16)0.0281 (15)
C80.0914 (17)0.0613 (13)0.0447 (12)0.0308 (13)0.0033 (11)0.0266 (10)
C90.0298 (8)0.0292 (8)0.0422 (9)0.0064 (6)0.0041 (7)0.0131 (7)
C100.0324 (8)0.0282 (8)0.0373 (9)0.0086 (6)0.0015 (7)0.0113 (6)
C110.0296 (7)0.0270 (7)0.0365 (9)0.0060 (6)0.0041 (6)0.0108 (6)
C120.0349 (8)0.0357 (8)0.0364 (9)0.0137 (7)0.0009 (7)0.0150 (7)
C130.0384 (9)0.0389 (9)0.0404 (10)0.0109 (7)0.0015 (7)0.0148 (7)
C14A0.066 (3)0.053 (3)0.047 (3)0.001 (2)0.0090 (19)0.011 (2)
C150.1059 (16)0.0819 (14)0.0539 (11)0.0163 (11)0.0061 (10)0.0355 (10)
C160.1059 (16)0.0819 (14)0.0539 (11)0.0163 (11)0.0061 (10)0.0355 (10)
S1B0.065 (4)0.054 (5)0.041 (4)0.015 (3)0.008 (3)0.020 (4)
C14B0.1059 (16)0.0819 (14)0.0539 (11)0.0163 (11)0.0061 (10)0.0355 (10)
Geometric parameters (Å, º) top
S1A—C131.702 (2)C10—C131.487 (2)
S1A—C161.689 (3)C10—C111.536 (2)
S1B—C151.584 (12)C11—C121.515 (2)
S1B—C131.628 (13)C13—C14B1.379 (19)
O1—C71.423 (4)C13—C14A1.357 (7)
O1—C31.354 (2)C14A—C151.387 (7)
O2—C81.431 (3)C14B—C161.47 (2)
O2—C41.359 (2)C15—C161.326 (4)
O3—C91.211 (2)C2—H20.9300
O4—C91.344 (2)C5—H50.9300
O4—C101.462 (2)C7—H7A0.9600
O5—C121.197 (2)C7—H7B0.9600
O6—C121.327 (2)C7—H7C0.9600
O6—H60.86 (3)C8—H8A0.9600
C1—C111.513 (2)C8—H8B0.9600
C1—C21.392 (2)C8—H8C0.9600
C1—C61.394 (2)C10—H100.9800
C2—C31.384 (3)C11—H110.9800
C3—C41.419 (2)C14A—H14A0.9300
C4—C51.371 (3)C14B—H14B0.9300
C5—C61.399 (2)C15—H150.9300
C6—C91.469 (2)C16—H160.9300
S1A···O43.0857 (15)C3···H11viii3.0300
S1A···C8i3.589 (2)C4···H11viii2.8300
S1B···O6ii3.308 (12)C5···H8B2.8100
S1B···O63.488 (13)C5···H11viii2.7400
S1B···C123.571 (13)C5···H8A2.6600
S1B···C2ii3.530 (13)C6···H102.7900
S1B···C3ii3.694 (13)C6···H11viii2.8700
S1A···H8Ci3.0000C7···H22.5200
S1A···H113.1800C8···H52.5100
O1···O22.581 (2)C9···H112.9600
O2···O12.581 (2)C9···H6iii2.95 (2)
O3···O6iii2.6575 (18)C12···H22.6900
O3···C6iv3.350 (2)H2···O62.8500
O3···O4iv3.2369 (19)H2···C72.5200
O3···C9iv3.051 (2)H2···C122.6900
O4···O3iv3.2369 (19)H2···H7A2.3800
O4···S1A3.0857 (15)H2···H7B2.2400
O5···O6v3.212 (2)H2···O5v2.5400
O5···O5v3.138 (2)H5···O32.6100
O5···C12v3.244 (2)H5···C82.5100
O5···C7v3.382 (3)H5···H8A2.1600
O6···S1Bii3.308 (12)H5···H8B2.4700
O6···C23.150 (2)H5···O4iv2.9200
O6···O3vi2.6575 (18)H6···O3vi1.84 (2)
O6···S1B3.488 (13)H6···C9vi2.95 (2)
O6···C133.385 (2)H6···H10ii2.5000
O6···O5v3.212 (2)H7A···C22.7800
O1···H8Cvii2.7500H7A···H22.3800
O2···H8Cvii2.7700H7B···C22.7100
O3···H6iii1.84 (2)H7B···H22.2400
O3···H10iv2.8100H7B···H8Bvi2.5200
O3···H52.6100H7B···O5v2.7400
O4···H5iv2.9200H7C···H15x2.5600
O5···H2v2.5400H8A···C52.6600
O5···H7Bv2.7400H8A···H52.1600
O6···H14Aii2.8500H8B···C52.8100
O6···H102.6700H8B···H52.4700
O6···H22.8500H8B···H7Biii2.5200
O6···H10ii2.5400H8C···S1Aix3.0000
C1···C1viii3.545 (2)H8C···O1vii2.7500
C2···S1Bii3.530 (13)H8C···O2vii2.7700
C2···C9viii3.532 (2)H10···O62.6700
C2···O63.150 (2)H10···C62.7900
C3···S1Bii3.694 (13)H10···H14A2.5700
C6···O3iv3.350 (2)H10···O3iv2.8100
C7···O5v3.382 (3)H10···O6ii2.5400
C8···S1Aix3.589 (2)H10···H6ii2.5000
C9···C9iv3.150 (2)H11···S1A3.1800
C9···C2viii3.532 (2)H11···C92.9600
C9···O3iv3.051 (2)H11···C1viii3.1000
C12···O5v3.244 (2)H11···C3viii3.0300
C12···S1B3.571 (13)H11···C4viii2.8300
C12···C14A3.527 (7)H11···C5viii2.7400
C13···O63.385 (2)H11···C6viii2.8700
C14A···C123.527 (7)H14A···H102.5700
C1···H11viii3.1000H14A···O6ii2.8500
C2···H7B2.7100H14A···C2ii3.0600
C2···H14Aii3.0600H15···H7Cxi2.5600
C2···H7A2.7800
C13—S1A—C1691.85 (12)C13—C14A—C15115.2 (5)
C13—S1B—C1592.3 (7)C13—C14B—C16117.2 (17)
C3—O1—C7117.71 (16)C14A—C15—C16110.8 (4)
C4—O2—C8116.56 (15)S1B—C15—C16123.5 (5)
C9—O4—C10117.75 (13)S1A—C16—C15113.17 (19)
C12—O6—H6108.4 (17)C14B—C16—C1598.8 (9)
C6—C1—C11116.64 (14)C1—C2—H2120.00
C2—C1—C6119.26 (15)C3—C2—H2120.00
C2—C1—C11124.09 (15)C4—C5—H5120.00
C1—C2—C3120.20 (16)C6—C5—H5120.00
O1—C3—C2124.71 (16)O1—C7—H7A110.00
C2—C3—C4120.36 (16)O1—C7—H7B109.00
O1—C3—C4114.93 (16)O1—C7—H7C109.00
C3—C4—C5119.21 (16)H7A—C7—H7B109.00
O2—C4—C5125.01 (16)H7A—C7—H7C109.00
O2—C4—C3115.78 (16)H7B—C7—H7C109.00
C4—C5—C6120.31 (16)O2—C8—H8A109.00
C5—C6—C9118.97 (15)O2—C8—H8B109.00
C1—C6—C5120.64 (16)O2—C8—H8C109.00
C1—C6—C9120.30 (15)H8A—C8—H8B109.00
O4—C9—C6118.04 (14)H8A—C8—H8C109.00
O3—C9—O4117.07 (16)H8B—C8—H8C109.00
O3—C9—C6124.89 (16)O4—C10—H10109.00
O4—C10—C13107.21 (13)C11—C10—H10109.00
O4—C10—C11107.57 (13)C13—C10—H10109.00
C11—C10—C13115.54 (14)C1—C11—H11108.00
C1—C11—C10106.68 (13)C10—C11—H11108.00
C10—C11—C12109.46 (13)C12—C11—H11108.00
C1—C11—C12115.26 (14)C13—C14A—H14A122.00
O6—C12—C11112.16 (15)C15—C14A—H14A122.00
O5—C12—C11123.52 (16)C16—C14B—H14B121.00
O5—C12—O6124.30 (16)C13—C14B—H14B121.00
C10—C13—C14A128.5 (3)C16—C15—H15125.00
S1A—C13—C10122.57 (13)S1B—C15—H15112.00
S1A—C13—C14A109.0 (3)C14A—C15—H15125.00
S1B—C13—C14B107.5 (11)C14B—C16—H16138.00
S1B—C13—C10118.1 (4)S1A—C16—H16123.00
C10—C13—C14B133.8 (10)C15—C16—H16123.00
C16—S1A—C13—C14A0.8 (4)O1—C3—C4—C5179.60 (16)
C13—S1A—C16—C150.5 (3)O2—C4—C5—C6179.91 (16)
C16—S1A—C13—C10177.53 (18)C3—C4—C5—C61.1 (3)
C7—O1—C3—C26.4 (3)C4—C5—C6—C10.3 (3)
C7—O1—C3—C4173.5 (2)C4—C5—C6—C9176.89 (16)
C8—O2—C4—C3165.72 (18)C5—C6—C9—O4163.86 (15)
C8—O2—C4—C513.3 (3)C5—C6—C9—O317.3 (3)
C10—O4—C9—C610.7 (2)C1—C6—C9—O419.5 (2)
C9—O4—C10—C13177.08 (14)C1—C6—C9—O3159.38 (18)
C9—O4—C10—C1152.23 (19)O4—C10—C11—C12171.59 (13)
C10—O4—C9—O3170.33 (15)O4—C10—C13—S1A50.92 (19)
C2—C1—C11—C10144.44 (16)C13—C10—C11—C1177.25 (14)
C2—C1—C6—C51.3 (2)O4—C10—C11—C163.07 (16)
C6—C1—C11—C12158.42 (15)C11—C10—C13—C14A109.1 (4)
C2—C1—C6—C9175.27 (16)C13—C10—C11—C1251.91 (19)
C11—C1—C2—C3179.11 (16)O4—C10—C13—C14A131.1 (4)
C11—C1—C6—C5179.76 (15)C11—C10—C13—S1A68.96 (19)
C11—C1—C6—C93.7 (2)C1—C11—C12—O5123.00 (19)
C2—C1—C11—C1222.7 (2)C1—C11—C12—O658.6 (2)
C6—C1—C11—C1036.70 (19)C10—C11—C12—O5116.78 (19)
C6—C1—C2—C32.1 (3)C10—C11—C12—O661.66 (18)
C1—C2—C3—C41.3 (3)S1A—C13—C14A—C151.0 (6)
C1—C2—C3—O1178.82 (17)C10—C13—C14A—C15177.2 (3)
C2—C3—C4—C50.3 (3)C13—C14A—C15—C160.7 (7)
C2—C3—C4—O2179.43 (16)C14A—C15—C16—S1A0.1 (5)
O1—C3—C4—O20.5 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y+2, z+1; (iii) x, y1, z; (iv) x, y+1, z+1; (v) x+1, y+2, z+1; (vi) x, y+1, z; (vii) x+1, y+1, z; (viii) x+1, y+1, z+1; (ix) x, y, z1; (x) x+1, y, z1; (xi) x1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O3vi0.86 (3)1.84 (2)2.658 (2)159 (3)
C2—H2···O5v0.932.543.465 (2)172
C10—H10···O6ii0.982.543.475 (2)159
C11—H11···Cg4viii0.982.613.525 (2)156
Symmetry codes: (ii) x, y+2, z+1; (v) x+1, y+2, z+1; (vi) x, y+1, z; (viii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H14O6S
Mr334.34
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.3369 (6), 8.4587 (6), 11.9143 (9)
α, β, γ (°)76.441 (6), 81.127 (6), 72.958 (6)
V3)777.6 (1)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.53 × 0.41 × 0.21
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.885, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
8329, 3229, 2663
Rint0.030
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.113, 1.07
No. of reflections3229
No. of parameters219
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.31

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O3i0.86 (3)1.84 (2)2.658 (2)159 (3)
C2—H2···O5ii0.932.54003.465 (2)172
C10—H10···O6iii0.982.54003.475 (2)159
C11—H11···Cg4iv0.982.613.525 (2)156
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1; (iii) x, y+2, z+1; (iv) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBogdanov, M. G., Gocheva, B. T., Dimitrova, D. B. & Palamreva, M. D. (2007a). J. Heterocycl. Chem. 44, 673–677.  CrossRef CAS Google Scholar
First citationBogdanov, M. G., Kandinska, M. I., Dimitrova, D. B., Gocheva, B. T. & Palamareva, M. D. (2007b). Z. Naturforsch. Teil C, 62, 477–482.  CAS Google Scholar
First citationBogdanov, M. G. & Palamareva, M. D. (2004). Tetrahedron, 60, 2525–2530.  Web of Science CSD CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds