organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Bis(1H-indol-3-yl)indolin-3-one

aGraduate School, The Chinese Academy of Sciences, Beijing 100039, People's Republic of China, and bThe State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
*Correspondence e-mail: xujing@fjirsm.ac.cn

(Received 22 April 2009; accepted 11 May 2009; online 20 May 2009)

In the title mol­ecule, C24H17N3O, the mean plane of the indolone ring forms dihedral angles of 112.0 (1) and 103.1 (1)° with the planes of the two indole rings. The dihedral angle between the mean planes of the two indole rings is 63.5 (1)°. In the crystal structure, mol­ecules are linked via inter­molecular N—H⋯O hydrogen bonds, forming a two-dimensional network parallel to the ab plane.

Related literature

For the applications of indole derivatives, see: Ramesh et al. (2009[Ramesh, P., Sundaresan, S. S., Lakshmi, N. V., Perumal, P. T. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o994.]). For the isolation of the title compound as a natural product, see: Ganachaud et al. (2008[Ganachaud, C., Garfagnoli, V., Tron, T. & Iacazio, G. (2008). Tetrahedron Lett. 49, 2476-2478.]); Stull et al. (1995[Stull, T. L., Hyun, L., Sharetzsky, C., Wooten, J., McCauley, J. P. & Smith, A. B. III (1995). J. Biol. Chem. 270, 5-8.]).

[Scheme 1]

Experimental

Crystal data
  • C24H17N3O

  • Mr = 363.41

  • Monoclinic, P 21 /n

  • a = 10.559 (4) Å

  • b = 8.931 (3) Å

  • c = 19.899 (7) Å

  • β = 98.480 (6)°

  • V = 1856.1 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.40 × 0.35 × 0.15 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.968, Tmax = 0.988

  • 14004 measured reflections

  • 4245 independent reflections

  • 3606 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.118

  • S = 1.06

  • 4245 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O1i 0.86 2.12 2.9412 (17) 159
N3—H3B⋯O1ii 0.86 2.18 2.9830 (16) 156
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Indole derivatives are used as bioactive drugs and they exibit anti-allergic, central nervous system depressant and muscle relaxant properties (Ramesh et al., 2009). The title compound is a natural product that has been isolated from bacterial sources (Stull et al.., 1995; Ganachaud et al.., 2008). Recently, we found different indole derivatives could be formed by oxidation solely on the basis of the reaction solvent and temperature. As part of our studies, we report herein the synthesis and crystal structure of the title compound (I) (Fig. 1).

The title compound is a trimeric condensation product of indole through the formation of a quaternary carbon (C8) centre. The indolone ring forms dihedral angle of 112.0 (1)° and 103.1 (1)°, respectively, with the two indole rings (C9/C10/C11/C12/C13/C14/C15/C16/N2) and (C17/C18/C19/C20/C21/C22/C23/C24/N3). The mean planes of the two indole form a dihedral angle of 63.5 (1)°. In the crystal structure, the carbonyl atom O1 acts as a bifurcated acceptor for the N-H groups of atoms N2 and N3 to form a two-dimensional network parallel to the ab plane (Table 1, Fig. 2).

Related literature top

For the applications of indole derivatives, see: Ramesh et al. (2009). For the isolation of the title compound as a natural product, see: Ganachaud et al. (2008); Stull et al. (1995).

Experimental top

The title compound was obtained from a mixture of 1H-indole (78 mg) with tBuCOOH (0.18 ml) and H3PMo12O14 (9 mg) in toluene (1 ml) and CH3COOH (1 ml) under a nitrogen atmosphere at room temperature for 24 h. The crude product was isolated and purified by silica gel columnchromatography. Yellow prism-shaped crystals of (I) suitable for X-ray diffraction were grown by slow evaporation of a dichloromethane solution at room temperature.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å; N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellopsoids. H atoms are shown as small spheres.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing the hydrogen bonded layers parallel to the ab plane. Intermolecular hydrogen bonds are shown as dashed lines and H atoms not involved in H-bonding have been omitted.
2,2-Bis(1H-indol-3-yl)indolin-3-one top
Crystal data top
C24H17N3OF(000) = 760
Mr = 363.41Dx = 1.300 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4234 reflections
a = 10.559 (4) Åθ = 3.0–27.5°
b = 8.931 (3) ŵ = 0.08 mm1
c = 19.899 (7) ÅT = 293 K
β = 98.480 (6)°Prism, yellow
V = 1856.1 (11) Å30.40 × 0.35 × 0.15 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
4245 independent reflections
Radiation source: fine-focus sealed tube3606 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 2.1°
CCD_Profile_fitting scansh = 1113
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1111
Tmin = 0.968, Tmax = 0.988l = 2225
14004 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.4603P]
where P = (Fo2 + 2Fc2)/3
4245 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C24H17N3OV = 1856.1 (11) Å3
Mr = 363.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.559 (4) ŵ = 0.08 mm1
b = 8.931 (3) ÅT = 293 K
c = 19.899 (7) Å0.40 × 0.35 × 0.15 mm
β = 98.480 (6)°
Data collection top
Rigaku Mercury CCD
diffractometer
4245 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3606 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.988Rint = 0.024
14004 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.06Δρmax = 0.21 e Å3
4245 reflectionsΔρmin = 0.19 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.96565 (9)0.43252 (10)0.15911 (5)0.0369 (2)
N10.95403 (12)0.04726 (13)0.11858 (6)0.0406 (3)
H1A0.96680.04740.12390.049*
N20.75509 (12)0.05077 (15)0.28328 (7)0.0490 (3)
H2B0.69140.00170.29230.059*
N31.31856 (12)0.10180 (15)0.26178 (6)0.0471 (3)
H3B1.37240.06590.29450.056*
C10.89773 (13)0.11138 (16)0.05986 (7)0.0374 (3)
C20.85094 (14)0.0420 (2)0.00189 (8)0.0483 (4)
H2A0.85320.06150.00650.058*
C30.80181 (17)0.1314 (2)0.05518 (8)0.0635 (5)
H3A0.77060.08680.09660.076*
C40.7967 (2)0.2867 (3)0.04991 (9)0.0746 (6)
H4A0.76300.34370.08740.090*
C50.84151 (19)0.3558 (2)0.01064 (8)0.0604 (5)
H5A0.83830.45950.01470.072*
C60.89185 (13)0.26719 (17)0.06585 (7)0.0392 (3)
C70.94976 (12)0.30732 (14)0.13383 (6)0.0315 (3)
C80.99057 (13)0.15946 (14)0.17220 (6)0.0321 (3)
C90.81798 (14)0.15783 (17)0.32497 (7)0.0417 (3)
C100.79721 (18)0.2065 (2)0.38885 (8)0.0557 (4)
H10A0.73240.16550.41000.067*
C110.8753 (2)0.3166 (2)0.41938 (8)0.0616 (5)
H11A0.86350.35090.46210.074*
C120.97253 (17)0.3786 (2)0.38756 (8)0.0550 (4)
H12A1.02360.45410.40930.066*
C130.99417 (15)0.32982 (17)0.32449 (7)0.0424 (3)
H13A1.05970.37120.30400.051*
C140.91605 (13)0.21709 (15)0.29179 (7)0.0351 (3)
C150.90865 (13)0.13904 (15)0.22798 (7)0.0342 (3)
C160.80919 (14)0.04053 (17)0.22537 (8)0.0432 (3)
H16A0.78230.02400.18940.052*
C171.34968 (13)0.18478 (15)0.20847 (7)0.0380 (3)
C181.46884 (15)0.23042 (18)0.19416 (9)0.0491 (4)
H18A1.54360.20650.22300.059*
C191.47219 (15)0.31203 (18)0.13592 (9)0.0511 (4)
H19A1.55070.34360.12510.061*
C201.36003 (15)0.34840 (18)0.09265 (8)0.0461 (4)
H20A1.36510.40300.05330.055*
C211.24194 (14)0.30469 (15)0.10722 (7)0.0380 (3)
H21A1.16790.33040.07820.046*
C221.23417 (12)0.22113 (14)0.16619 (6)0.0322 (3)
C231.13200 (12)0.15690 (14)0.19763 (6)0.0326 (3)
C241.18882 (14)0.08515 (16)0.25473 (7)0.0412 (3)
H24A1.14540.03250.28460.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0351 (5)0.0344 (5)0.0407 (5)0.0007 (4)0.0040 (4)0.0052 (4)
N10.0497 (7)0.0320 (6)0.0391 (6)0.0014 (5)0.0029 (5)0.0058 (5)
N20.0361 (7)0.0527 (8)0.0603 (8)0.0086 (6)0.0138 (6)0.0105 (6)
N30.0361 (7)0.0560 (8)0.0472 (7)0.0108 (6)0.0002 (5)0.0156 (6)
C10.0288 (7)0.0464 (8)0.0367 (7)0.0010 (6)0.0041 (5)0.0075 (6)
C20.0377 (8)0.0583 (9)0.0474 (8)0.0003 (7)0.0016 (6)0.0203 (7)
C30.0549 (11)0.0890 (14)0.0415 (9)0.0140 (10)0.0100 (8)0.0235 (9)
C40.0916 (16)0.0844 (14)0.0395 (9)0.0287 (12)0.0181 (9)0.0053 (9)
C50.0750 (12)0.0580 (10)0.0423 (8)0.0195 (9)0.0110 (8)0.0010 (7)
C60.0353 (7)0.0455 (8)0.0347 (7)0.0055 (6)0.0015 (6)0.0053 (6)
C70.0252 (6)0.0364 (7)0.0330 (6)0.0018 (5)0.0048 (5)0.0025 (5)
C80.0327 (7)0.0322 (6)0.0311 (6)0.0015 (5)0.0034 (5)0.0032 (5)
C90.0367 (8)0.0463 (8)0.0437 (8)0.0066 (6)0.0114 (6)0.0125 (6)
C100.0577 (10)0.0660 (11)0.0486 (9)0.0120 (9)0.0249 (8)0.0170 (8)
C110.0735 (13)0.0775 (13)0.0365 (8)0.0178 (10)0.0174 (8)0.0021 (8)
C120.0601 (11)0.0623 (10)0.0419 (8)0.0047 (8)0.0051 (7)0.0090 (7)
C130.0425 (8)0.0485 (8)0.0366 (7)0.0009 (6)0.0067 (6)0.0014 (6)
C140.0327 (7)0.0391 (7)0.0338 (6)0.0038 (5)0.0058 (5)0.0054 (5)
C150.0309 (7)0.0353 (7)0.0359 (7)0.0004 (5)0.0039 (5)0.0026 (5)
C160.0367 (8)0.0436 (8)0.0486 (8)0.0051 (6)0.0044 (6)0.0023 (6)
C170.0338 (7)0.0366 (7)0.0430 (7)0.0063 (5)0.0037 (6)0.0013 (6)
C180.0297 (7)0.0524 (9)0.0640 (10)0.0058 (6)0.0030 (7)0.0001 (8)
C190.0359 (8)0.0515 (9)0.0686 (11)0.0027 (7)0.0172 (7)0.0014 (8)
C200.0472 (9)0.0473 (8)0.0463 (8)0.0034 (7)0.0154 (7)0.0031 (7)
C210.0371 (7)0.0407 (7)0.0359 (7)0.0006 (6)0.0049 (6)0.0006 (6)
C220.0313 (7)0.0308 (6)0.0346 (6)0.0036 (5)0.0051 (5)0.0022 (5)
C230.0319 (7)0.0327 (6)0.0334 (6)0.0029 (5)0.0056 (5)0.0001 (5)
C240.0376 (8)0.0436 (8)0.0428 (8)0.0054 (6)0.0070 (6)0.0096 (6)
Geometric parameters (Å, º) top
O1—C71.2274 (16)C9—C141.411 (2)
N1—C11.3571 (18)C10—C111.367 (3)
N1—C81.4731 (16)C10—H10A0.9300
N1—H1A0.8600C11—C121.398 (3)
N2—C161.363 (2)C11—H11A0.9300
N2—C91.371 (2)C12—C131.379 (2)
N2—H2B0.8600C12—H12A0.9300
N3—C241.3645 (19)C13—C141.400 (2)
N3—C171.3731 (19)C13—H13A0.9300
N3—H3B0.8600C14—C151.4405 (19)
C1—C61.399 (2)C15—C161.3652 (19)
C1—C21.3997 (19)C16—H16A0.9300
C2—C31.367 (3)C17—C181.391 (2)
C2—H2A0.9300C17—C221.4136 (19)
C3—C41.392 (3)C18—C191.374 (2)
C3—H3A0.9300C18—H18A0.9300
C4—C51.374 (2)C19—C201.396 (2)
C4—H4A0.9300C19—H19A0.9300
C5—C61.394 (2)C20—C211.378 (2)
C5—H5A0.9300C20—H20A0.9300
C6—C71.4451 (18)C21—C221.4031 (19)
C7—C81.5542 (18)C21—H21A0.9300
C8—C231.5046 (19)C22—C231.4434 (18)
C8—C151.5155 (19)C23—C241.3640 (19)
C9—C101.391 (2)C24—H24A0.9300
C1—N1—C8111.79 (11)C10—C11—C12121.26 (16)
C1—N1—H1A124.1C10—C11—H11A119.4
C8—N1—H1A124.1C12—C11—H11A119.4
C16—N2—C9109.42 (12)C13—C12—C11121.24 (17)
C16—N2—H2B125.3C13—C12—H12A119.4
C9—N2—H2B125.3C11—C12—H12A119.4
C24—N3—C17109.29 (12)C12—C13—C14119.00 (15)
C24—N3—H3B125.4C12—C13—H13A120.5
C17—N3—H3B125.4C14—C13—H13A120.5
N1—C1—C6111.45 (12)C13—C14—C9118.37 (13)
N1—C1—C2128.48 (14)C13—C14—C15135.19 (13)
C6—C1—C2120.06 (14)C9—C14—C15106.43 (13)
C3—C2—C1117.83 (16)C16—C15—C14106.67 (12)
C3—C2—H2A121.1C16—C15—C8124.66 (13)
C1—C2—H2A121.1C14—C15—C8128.66 (12)
C2—C3—C4122.53 (15)N2—C16—C15109.91 (14)
C2—C3—H3A118.7N2—C16—H16A125.0
C4—C3—H3A118.7C15—C16—H16A125.0
C5—C4—C3120.11 (17)N3—C17—C18130.01 (13)
C5—C4—H4A119.9N3—C17—C22107.46 (12)
C3—C4—H4A119.9C18—C17—C22122.53 (14)
C4—C5—C6118.52 (17)C19—C18—C17117.69 (14)
C4—C5—H5A120.7C19—C18—H18A121.2
C6—C5—H5A120.7C17—C18—H18A121.2
C5—C6—C1120.95 (14)C18—C19—C20121.24 (14)
C5—C6—C7131.01 (14)C18—C19—H19A119.4
C1—C6—C7107.97 (12)C20—C19—H19A119.4
O1—C7—C6128.53 (13)C21—C20—C19121.07 (14)
O1—C7—C8124.16 (12)C21—C20—H20A119.5
C6—C7—C8107.31 (11)C19—C20—H20A119.5
N1—C8—C23111.98 (11)C20—C21—C22119.54 (13)
N1—C8—C15109.37 (11)C20—C21—H21A120.2
C23—C8—C15113.41 (11)C22—C21—H21A120.2
N1—C8—C7101.43 (10)C21—C22—C17117.92 (12)
C23—C8—C7111.57 (10)C21—C22—C23135.52 (12)
C15—C8—C7108.37 (11)C17—C22—C23106.56 (12)
N2—C9—C10130.02 (15)C24—C23—C22106.43 (12)
N2—C9—C14107.57 (13)C24—C23—C8125.45 (12)
C10—C9—C14122.41 (15)C22—C23—C8128.05 (11)
C11—C10—C9117.71 (15)C23—C24—N3110.25 (13)
C11—C10—H10A121.1C23—C24—H24A124.9
C9—C10—H10A121.1N3—C24—H24A124.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.862.122.9412 (17)159
N3—H3B···O1ii0.862.182.9830 (16)156
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+5/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H17N3O
Mr363.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.559 (4), 8.931 (3), 19.899 (7)
β (°) 98.480 (6)
V3)1856.1 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.35 × 0.15
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.968, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
14004, 4245, 3606
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.118, 1.06
No. of reflections4245
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.862.122.9412 (17)159.0
N3—H3B···O1ii0.862.182.9830 (16)156.3
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+5/2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Fujian province (grant No. 2006 J0273) and the `One Hundred Talent' Projects from the Chinese Academy of Sciences.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGanachaud, C., Garfagnoli, V., Tron, T. & Iacazio, G. (2008). Tetrahedron Lett. 49, 2476–2478.  Web of Science CSD CrossRef CAS Google Scholar
First citationRamesh, P., Sundaresan, S. S., Lakshmi, N. V., Perumal, P. T. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o994.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStull, T. L., Hyun, L., Sharetzsky, C., Wooten, J., McCauley, J. P. & Smith, A. B. III (1995). J. Biol. Chem. 270, 5–8.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds