metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­aqua­bis­(6-methoxycarbonyl­pyridazine-3-carboxyl­ato-κ2N,O)zinc(II) dihydrate

aInstitute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: jlec@ichtj.waw.pl

(Received 28 April 2009; accepted 6 May 2009; online 14 May 2009)

In the title centrosymmetric complex, [Zn(C7H5N2O4)2(H2O)2]·2H2O, the ZnII ion is coordinated in a trans mode by two symmetry-related bis-chelating 6-methoxycarbonyl­pyridazine-3-carboxyl­ate ligands via N and O atoms, and by two aqua ligand O atoms in axial positions, in a slightly distorted octa­hedral environment. In the crystal structure, complex mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds between coordinated and solvent water mol­ecules and carboxyl­ate O atoms, forming mol­ecular ribbons propagating along the a axis.

Related literature

For the crystal structures of two zinc complexes with pyridazine-3-carboxyl­ate and water ligands, see: Gryz et al. (2003[Gryz, M., Starosta, W., Ptasiewicz-Bąk, H. & Leciejewicz, J. (2003). J. Coord. Chem. 56, 1505-1511.], 2004[Gryz, M., Starosta, W. & Leciejewicz, J. (2004). Acta Cryst. E60, m1481-m1483.]). For a centrosymmetric dimeric zinc(II) complex with pyridazine-3,6-dicarboxyl­ate and water ligands, see: Gryz et al. (2006[Gryz, M., Starosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m3470-m3472.]). For modifications of pyridazine-3,6-dicarboxylic acid, see: Starosta & Leciejewicz (2004[Starosta, W. & Leciejewicz, J. (2004). Acta Cryst. E60, o2219-o2220.]); Sueur et al. (1987[Sueur, S., Lagrenee, M., Abraham, F. & Bremard, C. (1987). J. Heterocycl. Chem. 24, 1285-1289.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H5N2O4)2(H2O)2]·2H2O

  • Mr = 499.69

  • Triclinic, [P \overline 1]

  • a = 6.3678 (13) Å

  • b = 8.3178 (17) Å

  • c = 9.7717 (19) Å

  • α = 102.99 (3)°

  • β = 108.90 (3)°

  • γ = 94.97 (3)°

  • V = 469.93 (17) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.38 mm−1

  • T = 293 K

  • 0.31 × 0.25 × 0.05 mm

Data collection
  • Kuma KM4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.]) Tmin = 0.699, Tmax = 0.942

  • 2787 measured reflections

  • 2595 independent reflections

  • 2235 reflections with I > 2σ(I)

  • Rint = 0.022

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.101

  • S = 1.07

  • 2595 reflections

  • 159 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H22⋯O11i 0.93 (4) 1.99 (4) 2.874 (3) 158 (4)
O2—H21⋯O21ii 0.72 (4) 2.23 (4) 2.940 (3) 168 (4)
O1—H12⋯O12i 0.84 (3) 1.86 (3) 2.695 (2) 174 (3)
O1—H11⋯O2 0.90 (4) 1.89 (4) 2.720 (2) 152 (3)
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+1, -z+1.

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd. Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd. Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the molecluar structure of the title compound (I) (Fig.1) the ZnII ion, which is located on a center of symmetry, is coordinated in trans mode by two, symmetry related, bis chelating ligand molecules through their N,O bonding atoms. Two water O atoms in axial positions complete the number of coordinated atoms to six. The coordination geometry is slightly distorted octahedral. Bond distances and bond angles are close to those reported for two zinc complexes with pyridazine-3-carboxylate and water ligands (Gryz et al., 2003, 2004), a complex with pyridazine-3,6-dicarboxylate and water ligands (Gryz et al., 2006) and for both modifications of pyridazine-3,6-dicarboxylic acid (Sueur et al., 1987; Starosta & Leciejewicz, 2004). The ligand molecules and the ZnII ion are almost coplanar [r.m.s. 0.0074 Å]. The carboxylic C12/O11/O12 and the carboxymethyl C18/O21/O22/C19 groups make dihedral angles with the pyridazine ring of 3.0 (2) and 6.8 (1)°, respectively. In the crystal structure complex molecules are linked by hydrogen bonds to form molecular ribbons (Fig. 2). The relevant hydrogen-bond parameters are listed in Table 1.

Related literature top

For the crystal structures of two zinc complexes with pyridazine-3-carboxylate and water ligands, see: Gryz et al. (2003, 2004). For a centrosymmetric dimeric zinc(II) complex with pyridazine-3,6-dicarboxylate and water ligands, see: Gryz et al. (2006). For modifications of pyridazine-3,6-dicarboxylic acid, see: Starosta & Leciejewicz (2004); Sueur et al. (1987).

Experimental top

Hot aqueous solutions containing 2 mmol of 6-carboxymethylpyridazine-3-carboxylic acid and 1 mmol of zinc(II) acetate tetrahydrate, respectively, were mixed and boiled for two hours with constant stirring and then left to crystallize at room temperature. After few days, well formed colorless single crystals were found in the mother liquid in the mass of polycrystalline material. The crystals were washed with cold ethanol and dried in air.

Refinement top

H atoms bonded to C atoms were placed in calculated positions with C—H = 0.93 and 0.96 Å and included in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl atoms. Water H atoms were located in difference Fourier maps and were refined isotropically.

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry code:(i) -x + 1, -y + 1, -z + 1. The symmetry related solvent water molecule is not shown.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
trans-Diaquabis(6-methoxycarbonylpyridazine-3-carboxylato- κ2N,O)zinc(II) dihydrate top
Crystal data top
[Zn(C7H5N2O4)2(H2O)2]·2H2OZ = 1
Mr = 499.69F(000) = 256
Triclinic, P1Dx = 1.766 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.3678 (13) ÅCell parameters from 25 reflections
b = 8.3178 (17) Åθ = 6–15°
c = 9.7717 (19) ŵ = 1.38 mm1
α = 102.99 (3)°T = 293 K
β = 108.90 (3)°Plate, colourless
γ = 94.97 (3)°0.31 × 0.25 × 0.05 mm
V = 469.93 (17) Å3
Data collection top
Kuma KM4 four-circle
diffractometer
2235 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 30.1°, θmin = 2.3°
profile data from ω/2θ scansh = 08
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 811
Tmin = 0.699, Tmax = 0.942l = 1313
2787 measured reflections3 standard reflections every 200 reflections
2595 independent reflections intensity decay: 0.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0761P)2 + 0.0253P]
where P = (Fo2 + 2Fc2)/3
2595 reflections(Δ/σ)max = 0.002
159 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
[Zn(C7H5N2O4)2(H2O)2]·2H2Oγ = 94.97 (3)°
Mr = 499.69V = 469.93 (17) Å3
Triclinic, P1Z = 1
a = 6.3678 (13) ÅMo Kα radiation
b = 8.3178 (17) ŵ = 1.38 mm1
c = 9.7717 (19) ÅT = 293 K
α = 102.99 (3)°0.31 × 0.25 × 0.05 mm
β = 108.90 (3)°
Data collection top
Kuma KM4 four-circle
diffractometer
2235 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.022
Tmin = 0.699, Tmax = 0.9423 standard reflections every 200 reflections
2787 measured reflections intensity decay: 0.0%
2595 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.65 e Å3
2595 reflectionsΔρmin = 0.75 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.50000.50000.02700 (11)
O110.8125 (2)0.43757 (16)0.58939 (15)0.0313 (3)
O121.0055 (2)0.22915 (17)0.57098 (18)0.0371 (3)
N110.2403 (2)0.15325 (19)0.29574 (15)0.0255 (3)
N120.4382 (2)0.24189 (17)0.39017 (15)0.0235 (3)
C170.8332 (3)0.2900 (2)0.53776 (18)0.0253 (3)
C130.6217 (3)0.1734 (2)0.42383 (17)0.0226 (3)
C140.6202 (3)0.0068 (2)0.36089 (19)0.0278 (3)
H140.75110.03930.38320.033*
O10.4013 (2)0.44171 (18)0.67752 (15)0.0326 (3)
H110.382 (6)0.535 (5)0.738 (4)0.060 (9)*
O210.1599 (2)0.0300 (2)0.10069 (19)0.0436 (3)
C160.2308 (3)0.0079 (2)0.23612 (17)0.0242 (3)
C180.0011 (3)0.0981 (2)0.13509 (17)0.0272 (3)
C150.4172 (3)0.0876 (2)0.26422 (19)0.0297 (3)
H150.40480.20080.21910.036*
O220.0035 (2)0.25921 (17)0.09206 (16)0.0378 (3)
C190.2178 (4)0.3623 (3)0.0046 (3)0.0479 (5)
H1910.33540.29660.00890.072*
H1920.24590.45460.03460.072*
H1930.21460.40410.10360.072*
O20.1965 (3)0.6755 (3)0.8035 (2)0.0493 (4)
H120.274 (5)0.379 (4)0.639 (3)0.043 (7)*
H210.207 (6)0.765 (5)0.830 (4)0.061 (11)*
H220.054 (7)0.622 (6)0.738 (4)0.074 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01928 (14)0.01626 (16)0.03827 (16)0.00521 (9)0.00402 (10)0.00167 (10)
O110.0207 (5)0.0216 (6)0.0435 (6)0.0055 (4)0.0047 (5)0.0023 (5)
O120.0205 (5)0.0257 (7)0.0593 (8)0.0086 (5)0.0064 (5)0.0095 (6)
N110.0200 (6)0.0217 (6)0.0317 (6)0.0038 (5)0.0065 (5)0.0048 (5)
N120.0199 (6)0.0177 (6)0.0308 (6)0.0042 (5)0.0073 (5)0.0045 (5)
C170.0190 (6)0.0219 (7)0.0346 (7)0.0040 (5)0.0080 (5)0.0088 (6)
C130.0206 (6)0.0193 (7)0.0288 (6)0.0045 (5)0.0092 (5)0.0071 (5)
C140.0230 (7)0.0223 (8)0.0373 (8)0.0080 (6)0.0098 (6)0.0065 (6)
O10.0249 (6)0.0286 (6)0.0404 (6)0.0026 (5)0.0095 (5)0.0053 (5)
O210.0268 (6)0.0339 (8)0.0563 (8)0.0047 (5)0.0021 (6)0.0040 (6)
C160.0237 (7)0.0200 (7)0.0265 (6)0.0024 (5)0.0072 (5)0.0043 (5)
C180.0271 (7)0.0233 (8)0.0271 (6)0.0004 (6)0.0072 (6)0.0038 (5)
C150.0312 (8)0.0181 (7)0.0369 (8)0.0060 (6)0.0113 (6)0.0022 (6)
O220.0329 (6)0.0231 (6)0.0429 (7)0.0004 (5)0.0017 (5)0.0002 (5)
C190.0403 (10)0.0297 (10)0.0535 (11)0.0072 (9)0.0010 (9)0.0003 (8)
O20.0391 (8)0.0403 (10)0.0611 (10)0.0129 (7)0.0139 (7)0.0023 (8)
Geometric parameters (Å, º) top
Zn1—O112.0617 (13)C14—H140.9300
Zn1—O11i2.0617 (13)O1—H110.90 (4)
Zn1—N12i2.1118 (15)O1—H120.84 (3)
Zn1—N122.1118 (15)O21—C181.192 (2)
Zn1—O1i2.1612 (14)C16—C151.390 (2)
Zn1—O12.1612 (14)C16—C181.500 (2)
O11—C171.253 (2)C18—O221.309 (2)
O12—C171.227 (2)C15—H150.9300
N11—C161.324 (2)O22—C191.445 (2)
N11—N121.3277 (19)C19—H1910.9600
N12—C131.323 (2)C19—H1920.9600
C17—C131.520 (2)C19—H1930.9600
C13—C141.382 (2)O2—H210.72 (4)
C14—C151.371 (2)O2—H220.93 (4)
O11—Zn1—O11i180.0C14—C13—C17122.46 (14)
O11—Zn1—N12i101.21 (6)C15—C14—C13117.11 (16)
O11i—Zn1—N12i78.79 (6)C15—C14—H14121.4
O11—Zn1—N1278.79 (6)C13—C14—H14121.4
O11i—Zn1—N12101.21 (6)Zn1—O1—H11111 (2)
N12i—Zn1—N12180.0Zn1—O1—H12108.5 (18)
O11—Zn1—O1i89.08 (6)H11—O1—H12106 (3)
O11i—Zn1—O1i90.91 (6)N11—C16—C15123.58 (15)
N12i—Zn1—O1i89.79 (6)N11—C16—C18113.77 (15)
N12—Zn1—O1i90.20 (6)C15—C16—C18122.66 (15)
O11—Zn1—O190.92 (6)O21—C18—O22125.50 (16)
O11i—Zn1—O189.08 (6)O21—C18—C16123.73 (16)
N12i—Zn1—O190.21 (6)O22—C18—C16110.77 (15)
N12—Zn1—O189.80 (6)C14—C15—C16117.52 (16)
O1i—Zn1—O1180.00 (6)C14—C15—H15121.2
C17—O11—Zn1116.33 (11)C16—C15—H15121.2
C16—N11—N12117.85 (14)C18—O22—C19116.76 (16)
C13—N12—N11121.74 (14)O22—C19—H191109.5
C13—N12—Zn1112.69 (11)O22—C19—H192109.5
N11—N12—Zn1125.56 (11)H191—C19—H192109.5
O12—C17—O11126.85 (16)O22—C19—H193109.5
O12—C17—C13116.54 (15)H191—C19—H193109.5
O11—C17—C13116.61 (14)H192—C19—H193109.5
N12—C13—C14122.16 (15)H21—O2—H22114 (4)
N12—C13—C17115.37 (14)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H22···O11ii0.93 (4)1.99 (4)2.874 (3)158 (4)
O2—H21···O21iii0.72 (4)2.23 (4)2.940 (3)168 (4)
O1—H12···O12ii0.84 (3)1.86 (3)2.695 (2)174 (3)
O1—H11···O20.90 (4)1.89 (4)2.720 (2)152 (3)
Symmetry codes: (ii) x1, y, z; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C7H5N2O4)2(H2O)2]·2H2O
Mr499.69
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.3678 (13), 8.3178 (17), 9.7717 (19)
α, β, γ (°)102.99 (3), 108.90 (3), 94.97 (3)
V3)469.93 (17)
Z1
Radiation typeMo Kα
µ (mm1)1.38
Crystal size (mm)0.31 × 0.25 × 0.05
Data collection
DiffractometerKuma KM4 four-circle
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.699, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
2787, 2595, 2235
Rint0.022
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.101, 1.07
No. of reflections2595
No. of parameters159
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.75

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H22···O11i0.93 (4)1.99 (4)2.874 (3)158 (4)
O2—H21···O21ii0.72 (4)2.23 (4)2.940 (3)168 (4)
O1—H12···O12i0.84 (3)1.86 (3)2.695 (2)174 (3)
O1—H11···O20.90 (4)1.89 (4)2.720 (2)152 (3)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1.
 

References

First citationGryz, M., Starosta, W. & Leciejewicz, J. (2004). Acta Cryst. E60, m1481–m1483.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGryz, M., Starosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m3470–m3472.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGryz, M., Starosta, W., Ptasiewicz-Bąk, H. & Leciejewicz, J. (2003). J. Coord. Chem. 56, 1505–1511.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd. Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd. Wrocław, Poland.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2004). Acta Cryst. E60, o2219–o2220.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSueur, S., Lagrenee, M., Abraham, F. & Bremard, C. (1987). J. Heterocycl. Chem. 24, 1285–1289.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds