organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1233-o1234

4-tert-Butyl­amino-3-nitro­benzoic acid

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bKulliyyah of Science, International Islamic University Malaysia (IIUM), Jalan Istana, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 Universiti Sains Malaysia, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 22 April 2009; accepted 25 April 2009; online 7 May 2009)

In the title compound, C11H14N2O4, all non-H atoms lie in a mirror plane except for one of the methyl groups which deviates from the mirror plane by 0.919 (3) Å and is twisted by a torsion angle of 62.9 (2)°. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal packing, the mol­ecules are linked together by O—H⋯O hydrogen bonds, forming dimers with graph-set motif R22(8) which propagate along the a-axis direction. C—H⋯O contacts link adjacent dimers with a graph-set motif C22(7), forming chains along b, and further consolidate the structure into a three-dimensional network. The crystal packing is further strengthened by short inter­molecular O⋯O=C [2.655 (4) Å] contacts.

Related literature

Nitro benzoic acid derivatives are important inter­mediates for the synthesis of various heterocyclic compounds of pharmacological inter­est, see: Brouillette et al. (1999[Brouillette, J. W., Atigadda, V. R., Luo, M., Air, G. M., Babu, Y. S. & Bantia, S. (1999). Bioorg. Med. Chem. Lett. 9, 1901-1906.]); Williams et al. (1995[Williams, M., Bischofberger, N., Swaminathan, S. & Kim, C. U. (1995). Bioorg. Med. Chem. Lett. 5, 2251-2254.]). For the structure of 4-(tert-butyl­amino)-3-nitro­benzoate, see: Mohd Maidin et al. (2008[Mohd Maidin, S. M., Abdul Rahim, A. S., Osman, H., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, o1550-o1551.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14N2O4

  • Mr = 238.24

  • Monoclinic, C 2/m

  • a = 20.8125 (15) Å

  • b = 6.7412 (5) Å

  • c = 8.0793 (5) Å

  • β = 90.863 (6)°

  • V = 1133.41 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.39 × 0.10 × 0.03 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.997

  • 6267 measured reflections

  • 1418 independent reflections

  • 985 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.153

  • S = 1.11

  • 1418 reflections

  • 107 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2i 0.82 (4) 1.83 (4) 2.655 (4) 178 (4)
C1—H1A⋯O3ii 0.93 2.52 3.407 (4) 161
N2—H1N2⋯O4 0.81 (4) 1.97 (4) 2.641 (4) 139 (4)
C9—H9C⋯O2iii 0.96 2.53 3.437 (3) 158
Symmetry codes: (i) -x+1, y, -z+1; (ii) x, y, z-1; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Nitro benzoic acid derivatives are important intermediates for the synthesis of various heterocyclic compounds of pharmacological interest (Brouillette et al., 1999; Williams et al., 1995). As a part of our ongoing study on such compounds, in this paper, we present the crystal structure of the title compound (I) which was synthesized as an intermediate.

In the asymmetric unit of (I), all non-hydrogen atoms lie in a mirror plane except the methyl-C9A moiety, which is deviated from the mean plane by 0.919 (3) Å and twisted by a torsion angle C6–N2–C7–C9 of 62.9 (2) Å.

An intramolecular N—H···O hydrogen bond generates a ring of motif S(6) (Bernstein et al., 1995) (Fig. 1). In the crystal packing, the molecules are linked together by O—H···O hydrogen bonds to form dimers with the graph set motif R22(8) which propagate along the a-direction (Table 1). C—H···O contacts link adjacent dimers with a graph set motif C22(7) (Fig. 2) to form chains along the b-direction and further consolidate the structure into a 3D network. The crystal packing is further strengthened by short intermolecular O···Oi-ii = 2.655 (4)Å contacts; symmetry code: (i) 1-x, y, 1-z; (ii) 1-x, 1-y, 1-z.

Related literature top

Nitro benzoic acid derivatives are important intermediates for the synthesis of various heterocyclic compounds of pharmacological interest, see: Brouillette et al. (1999); Williams et al. (1995). For the structure of 4-(tert-butylamino)-3-nitrobenzoate, see: Mohd Maidin et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Compound (I) was prepared by refluxing ethyl 4-(tert-butylamino)-3-nitrobenzoate (0.7 g, 0.0026 mol) (Mohd Maidin et al., 2008) and KOH (0.14 g, 0.0026 mol) in aqueous ethanol (10 ml) for 3 h. Ethanol was then removed in vacuo and the reaction mixture was diluted with water (15 ml). The aqueous layer was washed with dichloromethane (10 ml × 2) and acidified with concentrated hydrochloric acid to bring about the precipitation of the desired benzoic acid. Recrystallization of the precipitate with hot ethyl acetate afforded yellow crystals of the title compound (I).

Refinement top

H atoms were positioned geometrically [C–H = 0.93–0.96 Å] and refined using a riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating–group model was used for the methyl groups. The O- and N-bound hydrogen atoms were located from the Fourier map and allowed to refine freely.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme. Intramolecular hydrogen bonding is shown as a dashed line. [Symmetry code used to generate methyl moiety C9A: x, -y + 1, z]
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the c axis. Dashed lines indicate the hydrogen bonding and C—H···O contacts.
(I) top
Crystal data top
C11H14N2O4F(000) = 504
Mr = 238.24Dx = 1.396 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 1829 reflections
a = 20.8125 (15) Åθ = 3.2–30.6°
b = 6.7412 (5) ŵ = 0.11 mm1
c = 8.0793 (5) ÅT = 100 K
β = 90.863 (6)°Plate, yellow
V = 1133.41 (14) Å30.39 × 0.10 × 0.03 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1418 independent reflections
Radiation source: fine-focus sealed tube985 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2626
Tmin = 0.959, Tmax = 0.997k = 88
6267 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.058P)2 + 2.3728P]
where P = (Fo2 + 2Fc2)/3
1418 reflections(Δ/σ)max < 0.001
107 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C11H14N2O4V = 1133.41 (14) Å3
Mr = 238.24Z = 4
Monoclinic, C2/mMo Kα radiation
a = 20.8125 (15) ŵ = 0.11 mm1
b = 6.7412 (5) ÅT = 100 K
c = 8.0793 (5) Å0.39 × 0.10 × 0.03 mm
β = 90.863 (6)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1418 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
985 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.997Rint = 0.057
6267 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.37 e Å3
1418 reflectionsΔρmin = 0.31 e Å3
107 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44372 (12)0.50000.3166 (3)0.0189 (6)
O20.43314 (11)0.50000.5919 (3)0.0185 (6)
O30.22447 (11)0.50000.8193 (3)0.0198 (6)
O40.13560 (11)0.50000.6766 (3)0.0187 (6)
N10.19540 (13)0.50000.6848 (3)0.0130 (6)
N20.13842 (13)0.50000.3497 (4)0.0131 (6)
C10.24626 (16)0.50000.2381 (4)0.0142 (7)
H1A0.22980.50000.13040.017*
C20.31116 (16)0.50000.2615 (4)0.0145 (7)
H2A0.33770.50000.17000.017*
C30.33894 (15)0.50000.4217 (4)0.0122 (7)
C40.29869 (16)0.50000.5563 (4)0.0126 (7)
H4A0.31630.50000.66280.015*
C50.23216 (16)0.50000.5349 (4)0.0130 (7)
C60.20244 (16)0.50000.3726 (4)0.0129 (7)
C70.09935 (16)0.50000.1929 (4)0.0145 (7)
C80.02967 (16)0.50000.2518 (4)0.0184 (8)
H8B0.00080.50000.15810.028*
H8C0.02280.38610.32060.028*
C90.11138 (11)0.3105 (4)0.0926 (3)0.0169 (6)
H9A0.15580.30440.06270.025*
H9B0.08500.31200.00600.025*
H9C0.10080.19660.15810.025*
C100.40933 (15)0.50000.4522 (4)0.0132 (7)
H1N20.1189 (18)0.50000.435 (5)0.015 (10)*
H1O10.4804 (19)0.50000.341 (5)0.010 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0086 (13)0.0327 (15)0.0154 (14)0.0000.0005 (10)0.000
O20.0121 (12)0.0293 (14)0.0142 (13)0.0000.0012 (10)0.000
O30.0207 (13)0.0282 (14)0.0104 (12)0.0000.0002 (10)0.000
O40.0130 (13)0.0279 (14)0.0153 (13)0.0000.0045 (10)0.000
N10.0154 (15)0.0119 (14)0.0117 (15)0.0000.0033 (11)0.000
N20.0113 (15)0.0189 (15)0.0092 (15)0.0000.0029 (12)0.000
C10.0197 (18)0.0147 (17)0.0082 (17)0.0000.0002 (14)0.000
C20.0176 (18)0.0131 (16)0.0129 (18)0.0000.0074 (14)0.000
C30.0155 (17)0.0082 (15)0.0128 (17)0.0000.0004 (13)0.000
C40.0172 (17)0.0109 (16)0.0096 (17)0.0000.0014 (13)0.000
C50.0178 (18)0.0085 (15)0.0126 (17)0.0000.0016 (13)0.000
C60.0166 (17)0.0088 (15)0.0134 (17)0.0000.0003 (14)0.000
C70.0132 (17)0.0158 (17)0.0142 (17)0.0000.0026 (13)0.000
C80.0173 (18)0.0215 (18)0.0164 (18)0.0000.0021 (14)0.000
C90.0184 (12)0.0163 (12)0.0160 (12)0.0014 (10)0.0014 (10)0.0003 (10)
C100.0134 (17)0.0093 (16)0.0170 (18)0.0000.0027 (14)0.000
Geometric parameters (Å, º) top
O1—C101.318 (4)C3—C41.383 (5)
O1—H1O10.79 (4)C3—C101.482 (5)
O2—C101.226 (4)C4—C51.393 (5)
O3—N11.236 (4)C4—H4A0.9300
O4—N11.245 (4)C5—C61.441 (5)
N1—C51.442 (4)C7—C81.533 (5)
N2—C61.343 (4)C7—C91.536 (3)
N2—C71.495 (4)C7—C9i1.536 (3)
N2—H1N20.80 (4)C8—H8B0.9595
C1—C21.361 (5)C8—H8C0.9600
C1—C61.429 (5)C9—H9A0.9600
C1—H1A0.9300C9—H9B0.9600
C2—C31.409 (5)C9—H9C0.9600
C2—H2A0.9300
C10—O1—H1O1109 (3)N2—C6—C1122.6 (3)
O3—N1—O4121.5 (3)N2—C6—C5122.5 (3)
O3—N1—C5118.6 (3)C1—C6—C5114.9 (3)
O4—N1—C5119.9 (3)N2—C7—C8104.0 (3)
C6—N2—C7130.0 (3)N2—C7—C9110.88 (17)
C6—N2—H1N2113 (3)C8—C7—C9109.04 (18)
C7—N2—H1N2117 (3)N2—C7—C9i110.88 (17)
C2—C1—C6122.5 (3)C8—C7—C9i109.04 (18)
C2—C1—H1A118.7C9—C7—C9i112.6 (3)
C6—C1—H1A118.7C7—C8—H8B109.9
C1—C2—C3121.4 (3)C7—C8—H8C109.3
C1—C2—H2A119.3H8B—C8—H8C111.1
C3—C2—H2A119.3C7—C9—H9A109.5
C4—C3—C2118.5 (3)C7—C9—H9B109.5
C4—C3—C10118.5 (3)H9A—C9—H9B109.5
C2—C3—C10122.9 (3)C7—C9—H9C109.5
C3—C4—C5121.0 (3)H9A—C9—H9C109.5
C3—C4—H4A119.5H9B—C9—H9C109.5
C5—C4—H4A119.5O2—C10—O1123.3 (3)
C4—C5—C6121.7 (3)O2—C10—C3122.6 (3)
C4—C5—N1115.8 (3)O1—C10—C3114.2 (3)
C6—C5—N1122.5 (3)
C6—C1—C2—C30.0C2—C1—C6—N2180.0
C1—C2—C3—C40.0C2—C1—C6—C50.0
C1—C2—C3—C10180.0C4—C5—C6—N2180.0
C2—C3—C4—C50.0N1—C5—C6—N20.0
C10—C3—C4—C5180.0C4—C5—C6—C10.0
C3—C4—C5—C60.0N1—C5—C6—C1180.0
C3—C4—C5—N1180.0C6—N2—C7—C8180.0
O3—N1—C5—C40.0C6—N2—C7—C962.9 (2)
O4—N1—C5—C4180.0C6—N2—C7—C9i62.9 (2)
O3—N1—C5—C6180.0C4—C3—C10—O20.0
O4—N1—C5—C60.0C2—C3—C10—O2180.0
C7—N2—C6—C10.0C4—C3—C10—O1180.0
C7—N2—C6—C5180.0C2—C3—C10—O10.0
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2ii0.82 (4)1.83 (4)2.655 (4)178 (4)
C1—H1A···O3iii0.932.523.407 (4)161
N2—H1N2···O40.81 (4)1.97 (4)2.641 (4)139 (4)
C9—H9C···O2iv0.962.533.437 (3)158
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y, z1; (iv) x+1/2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC11H14N2O4
Mr238.24
Crystal system, space groupMonoclinic, C2/m
Temperature (K)100
a, b, c (Å)20.8125 (15), 6.7412 (5), 8.0793 (5)
β (°) 90.863 (6)
V3)1133.41 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.39 × 0.10 × 0.03
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.959, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
6267, 1418, 985
Rint0.057
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.153, 1.11
No. of reflections1418
No. of parameters107
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.31

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.82 (4)1.83 (4)2.655 (4)178 (4)
C1—H1A···O3ii0.932.523.407 (4)160.9
N2—H1N2···O40.81 (4)1.97 (4)2.641 (4)139 (4)
C9—H9C···O2iii0.962.533.437 (3)158.4
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z1; (iii) x+1/2, y1/2, z+1.
 

Footnotes

Additional correspondence author, e-mail: aisyah@usm.my.

§Thomson Reuters ResearcherID: A-5473-2009. Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

SNNB, ASAR and SAH are grateful to Universiti Sains Malaysia (USM) for funding the synthetic chemistry work under the University Research Grant (1001/PFARMASI/815026). SNNB thanks USM for a post–doctoral research fellowship. HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrouillette, J. W., Atigadda, V. R., Luo, M., Air, G. M., Babu, Y. S. & Bantia, S. (1999). Bioorg. Med. Chem. Lett. 9, 1901–1906.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMohd Maidin, S. M., Abdul Rahim, A. S., Osman, H., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, o1550–o1551.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, M., Bischofberger, N., Swaminathan, S. & Kim, C. U. (1995). Bioorg. Med. Chem. Lett. 5, 2251–2254.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1233-o1234
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds