metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages m651-m652

Di­aqua­bis­[4-(di­methyl­amino)benzoato](isonicotinamide)zinc(II)

aHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey, bAnadolu University, Faculty of Science, Department of Chemistry, 26470 Yenibağlar, Eskişehir, Turkey, cKarabük University, Department of Physics, 78050, Karabük, Turkey, and dKafkas University, Department of Chemistry, 63100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 7 May 2009; accepted 11 May 2009; online 14 May 2009)

The mol­ecule of the title ZnII complex, [Zn(C9H10NO2)2(C6H6N2O)(H2O)2], contains two 4-(dimethyl­amino)benzoate (DMAB) ligands, one isonicotinamide (INA) ligand and two water mol­ecules; one of the DMAB ions acts as a bidentate ligand while the other and INA are monodentate ligands. The four O atoms in the equatorial plane around the Zn atom form a distorted square-planar arrangement, while the distorted octa­hedral coordination is completed by the N atom of the INA ligand and the O atom of the water mol­ecule in the axial positions. Intra­molecular C—H⋯O hydrogen bonding results in the formation of a six-membered ring adopting an envelope conformation. The dihedral angle between the carboxyl groups and the adjacent benzene rings are 4.87 (16) and 2.2 (2)°, while the two benzene rings are oriented at a dihedral angle of 65.13 (8)°. The dihedral angle between the benzene and pyridine rings are 11.47 (7) and 74.83 (8)°, respectively. In the crystal structure, inter­molecular O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds link the mol­ecules into a supra­molecular structure. ππ contacts between the pyridine and benzene rings and between the benzene rings [centroid–centroid distances = 3.695 (1) and 3.841 (1) Å, respectively] further stabilize the structure. Weak inter­molecular C—H⋯π inter­actions are also present.

Related literature

For general backgroud, see: Antolini et al. (1982[Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]); Chen & Chen (2002[Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13-21.]); Amiraslanov et al. (1979[Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075-1080.]); Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]); Hauptmann et al. (2000[Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169-172.]); Shnulin et al. (1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]); Antsyshkina et al. (1980[Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098-1103.]); Adiwidjaja et al. (1978[Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079-3083.]); Catterick et al. (1974[Catterick, J., Hursthouse, M. B., New, D. B. & Thorhton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843-844.]); Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For related structures, see: Greenaway et al. (1984[Greenaway, F. T., Pezeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67-71.]); Hökelek et al. (1995[Hökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020-2023.], 1997[Hökelek, T., Budak, K. & Necefoğlu, H. (1997). Acta Cryst. C53, 1049-1051.], 2007[Hökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561-m2562.], 2008[Hökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m505-m506.]); Hökelek & Necefoğlu (1996[Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128-1131.], 1997[Hökelek, T. & Necefoğlu, H. (1997). Acta Cryst. C53, 187-189.], 2007[Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821-m823.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C9H10NO2)2(C6H6N2O)(H2O)2]

  • Mr = 551.91

  • Triclinic, [P \overline 1]

  • a = 6.8616 (2) Å

  • b = 8.0947 (3) Å

  • c = 22.4953 (4) Å

  • α = 90.683 (2)°

  • β = 92.838 (2)°

  • γ = 93.313 (3)°

  • V = 1245.69 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 100 K

  • 0.57 × 0.27 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.720, Tmax = 0.810

  • 21315 measured reflections

  • 6053 independent reflections

  • 5647 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.078

  • S = 1.29

  • 6053 reflections

  • 353 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.99 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 2.0353 (17)
Zn1—O3 2.1328 (17)
Zn1—O4 2.2584 (17)
Zn1—O6 2.1393 (17)
Zn1—O7 2.0647 (17)
Zn1—N1 2.1307 (19)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O4i 0.89 (3) 2.15 (3) 3.034 (3) 174 (3)
N2—H22⋯O3ii 0.89 (3) 1.95 (3) 2.820 (3) 164 (3)
O6—H61⋯O2 0.89 (3) 1.79 (3) 2.646 (2) 161 (3)
O6—H62⋯O5iii 0.88 (3) 1.88 (3) 2.749 (2) 169 (3)
O7—H71⋯N3iv 0.89 (3) 2.01 (3) 2.863 (3) 162 (3)
O7—H72⋯O2v 0.87 (3) 1.80 (3) 2.667 (2) 171 (3)
C22—H22ACg3vi 0.96 2.74 3.567 (3) 145
C23—H23CCg2vii 0.96 2.86 3.644 (3) 140
Symmetry codes: (i) x-1, y+1, z; (ii) x, y+1, z; (iii) x+1, y-1, z; (iv) x-1, y-1, z; (v) x-1, y, z; (vi) -x+1, -y+1, -z; (vii) -x+1, -y, -z. Cg2 and Cg3 are the centroids of the C9–C14 and N1/C15–C19 rings, respectively.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974). The nicotinic acid derivative N,N-Diethylnicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972). Transition metal complexes with biochemical molecules show interesting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982). Some benzoic acid derivatives, such as 4-aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes (Chen & Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000).

The structure-function-coordination relationships of the arylcarboxylate ion in ZnII complexes of benzoic acid derivatives may also change depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the pH and temperature of synthesis (Shnulin et al., 1981; Antsyshkina et al., 1980; Adiwidjaja et al., 1978). When pyridine and its derivatives are used instead of water molecules, the structure is completely different (Catterick et al., 1974).

The structure determination of the title compound, (I), a zinc complex with two 4-dimethylaminobenzoate (DMAB) and one isonicotinamide (INA) ligands and two water molecules, was undertaken in order to determine the properties of the ligands and also to compare the results obtained with those reported previously.

In the monomeric title complex, (I), the Zn atom is surrounded by two DMAB and INA ligands and two water molecules. One of the DMAB ions acts as a bidentate ligand, while the other and INA are monodentate ligands (Fig. 1). The four O atoms (O1, O3, O4 and O7 atoms) in the equatorial plane around the Zn atom form a highly distorted square-planar arrangement, while the distorted octahedral coordination is completed by the N atom of the INA ligand (N1) and the O atom of the water molecule (O6) in the axial positions (Table 1 and Fig. 1).

The near equality of the C1—O1 [1.265 (3) Å], C1—O2 [1.265 (3) Å], C8—O3 [1.278 (3) Å] and C8—O4 [1.271 (3) Å], bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds, and may be compared with the corresponding distances: 1.256 (6) and 1.245 (6) Å in [Mn(DENA)2(C7H4ClO2)2(H2O)2], (II) (Hökelek et al., 2008), 1.265 (6) and 1.275 (6) Å in [Mn(C9H10NO2)2(H2O)4]. 2(H2O), (III) (Hökelek & Necefoğlu, 2007), 1.260 (4) and 1.252 (4) Å in [Zn(DENA)2(C7H4FO2)2(H2O)2],(IV) (Hökelek et al., 2007), 1.259 (9) and 1.273 (9) Å in Cu2(DENA)2(C6H5COO)4, (V) (Hökelek et al., 1995), 1.279 (4) and 1.246 (4) Å in [Zn2(DENA)2(C7H5O3)4]. 2H2O, (VI) (Hökelek & Necefoğlu, 1996), 1.251 (6) and 1.254 (7) Å in [Co(DENA)2(C7H5O3)2(H2O)2], (VII) (Hökelek & Necefoğlu, 1997) and 1.278 (3) and 1.246 (3) Å in [Cu(DENA)2(C7H4NO4)2(H2O)2], (VIII) (Hökelek et al., 1997). In (I), the average Zn—O bond length is 2.1261 (17) Å and the Zn atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O3/C8/O4) by -0.531 (1) Å and 0.023 (3) Å, respectively. The dihedral angle between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C9—C14) are 4.87 (16)° and 2.23 (21)°, respectively, while those between rings A, B and C (N1/C15—C19) are A/B = 65.13 (8), A/C = 11.47 (7) and B/C = 74.83 (8) °. Intramolecular C—H···O hydrogen bond (Table 2) results in the formation of a six-membered ring D (Zn1/O1/O2/O6/C1/H61) adopting envelope conformation, with atom Zn1 displaced by 0.610 (1) Å from the plane of the other ring atoms. In (I), the O3—Zn1—O4 angle is 60.03 (6)°. The corresponding O—M—O (where M is a metal) angles are 58.3 (3)° in (VI) and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) [(IX); Greenaway et al., 1984].

In the crystal structure, strong intermolecular O—H···O, O—H···N and N—H···O hydrogen bonds (Table 2) link the molecules into a supramolecular structure, in which they may be effective in the stabilization of the structure. The ππ contacts between the pyridine and the benzene rings and the benzene rings, Cg1—Cg3i and Cg2···Cg2ii [symmetry codes: (i) x - 1, y, z, (ii) 1 - x, 1 - y, -z, where Cg1, Cg2 and Cg3 are centroids of the rings A (C2—C7), B (C9—C14) and C (N1/C15—C19), respectively] may further stabilize the structure, with centroid-centroid distances of 3.695 (1) and 3.841 (1) Å, respectively. There also exist two weak C—H···π interactions (Table 1).

Related literature top

For general backgroud, see: Antolini et al. (1982); Chen & Chen (2002); Amiraslanov et al. (1979); Bigoli et al. (1972); Hauptmann et al. (2000); Shnulin et al. (1981); Antsyshkina et al. (1980); Adiwidjaja et al. (1978); Catterick et al. (1974); Krishnamachari (1974). For related structures, see: Greenaway et al. (1984); Hökelek et al. (1995, 1997, 2007, 2008); Hökelek & Necefoğlu (1996, 1997, 2007).

Experimental top

The title compound was prepared by the reaction of ZnSO4.H2O (0.90 g, 5 mmol) in H2O (30 ml) and INA (1.22 g, 10 mmol) in H2O (20 ml) with sodium p-dimethylaminobenzoate (1.88 g, 10 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving colorless single crystals.

Refinement top

H atoms of water molecules and NH2 group were located in difference Fourier maps and refined isotropically, with restrains of O6—H61 = 0.891 (17), O6—H62 = 0.879 (19), O7—H71 = 0.89 (3), O7—H72 = 0.875 (18)Å and H61—O6—H62 = 106 (3) and H71—O7—H72 = 106 (2)°. The remaining H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å, for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dashed line.
Diaquabis[4-(dimethylamino)benzoato](isonicotinamide)zinc(II) top
Crystal data top
[Zn(C9H10NO2)2(C6H6N2O)(H2O)2]Z = 2
Mr = 551.91F(000) = 576
Triclinic, P1Dx = 1.471 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8616 (2) ÅCell parameters from 9908 reflections
b = 8.0947 (3) Åθ = 2.7–28.4°
c = 22.4953 (4) ŵ = 1.04 mm1
α = 90.683 (2)°T = 100 K
β = 92.838 (2)°Block, colorless
γ = 93.313 (3)°0.57 × 0.27 × 0.20 mm
V = 1245.69 (6) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6053 independent reflections
Radiation source: fine-focus sealed tube5647 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.720, Tmax = 0.810k = 1010
21315 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.29 w = 1/[σ2(Fo2) + 1.9543P]
where P = (Fo2 + 2Fc2)/3
6053 reflections(Δ/σ)max = 0.001
353 parametersΔρmax = 0.43 e Å3
6 restraintsΔρmin = 0.99 e Å3
Crystal data top
[Zn(C9H10NO2)2(C6H6N2O)(H2O)2]γ = 93.313 (3)°
Mr = 551.91V = 1245.69 (6) Å3
Triclinic, P1Z = 2
a = 6.8616 (2) ÅMo Kα radiation
b = 8.0947 (3) ŵ = 1.04 mm1
c = 22.4953 (4) ÅT = 100 K
α = 90.683 (2)°0.57 × 0.27 × 0.20 mm
β = 92.838 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6053 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5647 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 0.810Rint = 0.021
21315 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0406 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.29Δρmax = 0.43 e Å3
6053 reflectionsΔρmin = 0.99 e Å3
353 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.43308 (4)0.52665 (3)0.277312 (12)0.00968 (7)
O10.6072 (2)0.6802 (2)0.33222 (7)0.0139 (3)
O20.8588 (2)0.5241 (2)0.35273 (8)0.0151 (3)
O30.3267 (2)0.4011 (2)0.19727 (7)0.0136 (3)
O40.6263 (2)0.5140 (2)0.19916 (7)0.0140 (3)
O50.3021 (2)1.0876 (2)0.23256 (8)0.0152 (3)
O60.5716 (2)0.3151 (2)0.31154 (8)0.0137 (3)
H610.683 (3)0.366 (4)0.3259 (14)0.034 (9)*
H620.605 (5)0.250 (4)0.2826 (13)0.043 (11)*
O70.2121 (2)0.4297 (2)0.32786 (8)0.0156 (4)
H710.241 (5)0.362 (4)0.3573 (12)0.041 (10)*
H720.102 (4)0.471 (4)0.3366 (15)0.040 (10)*
N10.2604 (3)0.7288 (2)0.25405 (8)0.0111 (4)
N20.0589 (3)1.2657 (3)0.20535 (10)0.0150 (4)
H210.144 (5)1.345 (4)0.2033 (14)0.028 (9)*
H220.065 (5)1.293 (4)0.1978 (14)0.026 (8)*
N31.2354 (3)1.2427 (2)0.43495 (9)0.0134 (4)
N40.5670 (4)0.1902 (3)0.06335 (10)0.0295 (6)
C10.7806 (3)0.6619 (3)0.35163 (10)0.0118 (4)
C20.8980 (3)0.8119 (3)0.37526 (10)0.0116 (4)
C31.0944 (3)0.8040 (3)0.39285 (10)0.0133 (4)
H31.15250.70320.39070.016*
C41.2056 (3)0.9437 (3)0.41358 (10)0.0137 (4)
H41.33660.93500.42510.016*
C51.1230 (3)1.0971 (3)0.41741 (10)0.0116 (4)
C60.9246 (3)1.1047 (3)0.39978 (11)0.0148 (5)
H60.86561.20490.40230.018*
C70.8157 (3)0.9653 (3)0.37883 (10)0.0138 (5)
H70.68500.97380.36690.017*
C80.4856 (3)0.4329 (3)0.17119 (10)0.0118 (4)
C90.5045 (4)0.3732 (3)0.10964 (10)0.0138 (5)
C100.3518 (4)0.2825 (3)0.07888 (11)0.0186 (5)
H100.23490.26090.09740.022*
C110.3696 (4)0.2240 (3)0.02182 (12)0.0223 (5)
H110.26430.16560.00220.027*
C120.5457 (4)0.2517 (3)0.00729 (11)0.0223 (6)
C130.6994 (4)0.3448 (3)0.02368 (12)0.0227 (6)
H130.81690.36640.00560.027*
C140.6774 (4)0.4042 (3)0.08049 (11)0.0181 (5)
H140.78020.46650.09990.022*
C150.3272 (3)0.8873 (3)0.25996 (10)0.0134 (5)
H150.45760.91010.27210.016*
C160.2101 (3)1.0188 (3)0.24869 (11)0.0138 (5)
H160.26201.12740.25240.017*
C170.0147 (3)0.9856 (3)0.23173 (10)0.0103 (4)
C180.0561 (3)0.8214 (3)0.22551 (10)0.0117 (4)
H180.18680.79520.21450.014*
C190.0719 (3)0.6980 (3)0.23603 (10)0.0120 (4)
H190.02540.58840.23040.014*
C201.1361 (4)1.3649 (3)0.46894 (11)0.0172 (5)
H20A1.22361.46010.47730.026*
H20B1.09641.31730.50560.026*
H20C1.02301.39750.44620.026*
C211.4337 (4)1.2219 (3)0.45885 (13)0.0240 (6)
H21A1.49811.32850.46750.036*
H21B1.50461.16450.43010.036*
H21C1.42901.15890.49470.036*
C220.7510 (5)0.2163 (4)0.09166 (13)0.0376 (8)
H22A0.74770.15130.12770.056*
H22B0.85560.18350.06520.056*
H22C0.77190.33130.10080.056*
C230.4016 (5)0.1097 (4)0.09693 (13)0.0358 (8)
H23A0.44030.07980.13590.054*
H23B0.29780.18410.10050.054*
H23C0.35720.01190.07670.054*
C240.1275 (3)1.1191 (3)0.22302 (10)0.0117 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.00962 (12)0.00784 (13)0.01170 (12)0.00169 (9)0.00048 (9)0.00011 (9)
O10.0114 (8)0.0130 (8)0.0170 (8)0.0028 (6)0.0028 (6)0.0015 (6)
O20.0125 (8)0.0096 (8)0.0232 (9)0.0023 (6)0.0006 (7)0.0010 (7)
O30.0134 (8)0.0131 (8)0.0145 (8)0.0001 (6)0.0033 (6)0.0011 (6)
O40.0138 (8)0.0123 (8)0.0156 (8)0.0018 (6)0.0003 (6)0.0008 (6)
O50.0109 (8)0.0115 (8)0.0232 (9)0.0010 (6)0.0018 (7)0.0018 (7)
O60.0108 (8)0.0128 (9)0.0177 (8)0.0020 (6)0.0005 (6)0.0000 (7)
O70.0133 (8)0.0166 (9)0.0180 (8)0.0055 (7)0.0050 (7)0.0059 (7)
N10.0113 (9)0.0118 (10)0.0102 (9)0.0001 (7)0.0011 (7)0.0004 (7)
N20.0107 (10)0.0095 (10)0.0249 (11)0.0017 (8)0.0012 (8)0.0026 (8)
N30.0125 (9)0.0118 (10)0.0155 (9)0.0011 (7)0.0012 (7)0.0021 (8)
N40.0458 (16)0.0308 (14)0.0131 (11)0.0092 (12)0.0045 (10)0.0039 (9)
C10.0141 (11)0.0119 (11)0.0096 (10)0.0010 (8)0.0016 (8)0.0002 (8)
C20.0127 (11)0.0122 (11)0.0100 (10)0.0003 (8)0.0011 (8)0.0001 (8)
C30.0140 (11)0.0104 (11)0.0157 (11)0.0027 (8)0.0004 (9)0.0006 (9)
C40.0115 (11)0.0148 (12)0.0148 (11)0.0022 (9)0.0014 (8)0.0011 (9)
C50.0140 (11)0.0111 (11)0.0097 (10)0.0005 (8)0.0004 (8)0.0007 (8)
C60.0143 (11)0.0114 (11)0.0189 (11)0.0044 (9)0.0005 (9)0.0010 (9)
C70.0114 (11)0.0143 (12)0.0156 (11)0.0024 (9)0.0009 (8)0.0008 (9)
C80.0120 (11)0.0088 (11)0.0151 (11)0.0027 (8)0.0007 (8)0.0017 (8)
C90.0170 (11)0.0120 (11)0.0126 (11)0.0027 (9)0.0009 (9)0.0007 (8)
C100.0202 (13)0.0200 (13)0.0154 (12)0.0008 (10)0.0003 (9)0.0016 (10)
C110.0285 (14)0.0203 (14)0.0176 (12)0.0024 (11)0.0044 (10)0.0039 (10)
C120.0370 (16)0.0181 (13)0.0128 (11)0.0090 (11)0.0020 (10)0.0007 (10)
C130.0274 (14)0.0234 (14)0.0186 (12)0.0053 (11)0.0093 (10)0.0029 (10)
C140.0213 (13)0.0170 (13)0.0162 (11)0.0013 (10)0.0035 (9)0.0008 (9)
C150.0113 (11)0.0123 (11)0.0166 (11)0.0003 (8)0.0003 (8)0.0031 (9)
C160.0128 (11)0.0094 (11)0.0190 (11)0.0002 (8)0.0004 (9)0.0009 (9)
C170.0113 (10)0.0097 (11)0.0103 (10)0.0021 (8)0.0018 (8)0.0004 (8)
C180.0102 (10)0.0116 (11)0.0131 (10)0.0008 (8)0.0006 (8)0.0004 (8)
C190.0141 (11)0.0079 (11)0.0136 (10)0.0015 (8)0.0001 (8)0.0009 (8)
C200.0220 (13)0.0149 (12)0.0148 (11)0.0026 (9)0.0013 (9)0.0029 (9)
C210.0171 (13)0.0168 (13)0.0372 (16)0.0029 (10)0.0089 (11)0.0057 (11)
C220.056 (2)0.043 (2)0.0170 (14)0.0158 (16)0.0132 (14)0.0017 (13)
C230.057 (2)0.0350 (18)0.0164 (13)0.0177 (16)0.0076 (13)0.0072 (12)
C240.0120 (11)0.0103 (11)0.0127 (10)0.0013 (8)0.0004 (8)0.0023 (8)
Geometric parameters (Å, º) top
Zn1—O12.0353 (17)C7—C61.381 (3)
Zn1—O32.1328 (17)C7—H70.9300
Zn1—O42.2584 (17)C9—C81.475 (3)
Zn1—O62.1393 (17)C9—C101.394 (3)
Zn1—O72.0647 (17)C9—C141.395 (3)
Zn1—N12.1307 (19)C10—C111.376 (4)
Zn1—C82.545 (2)C10—H100.9300
O1—C11.265 (3)C11—H110.9300
O2—C11.265 (3)C12—C111.410 (4)
O3—C81.278 (3)C13—C121.410 (4)
O4—C81.271 (3)C13—H130.9300
O5—C241.240 (3)C14—C131.378 (4)
O6—H610.891 (17)C14—H140.9300
O6—H620.879 (19)C15—C161.389 (3)
O7—H710.89 (3)C15—H150.9300
O7—H720.875 (18)C16—C171.386 (3)
N1—C151.340 (3)C16—H160.9300
N1—C191.345 (3)C18—C171.392 (3)
N2—H210.89 (3)C18—C191.382 (3)
N2—H220.89 (3)C18—H180.9300
N3—C51.412 (3)C19—H190.9300
N3—C201.463 (3)C20—H20A0.9600
N3—C211.458 (3)C20—H20B0.9600
N4—C121.368 (3)C20—H20C0.9600
N4—C221.448 (4)C21—H21A0.9600
N4—C231.449 (4)C21—H21B0.9600
C1—C21.495 (3)C21—H21C0.9600
C3—C21.391 (3)C22—H22A0.9600
C3—C41.389 (3)C22—H22B0.9600
C3—H30.9300C22—H22C0.9600
C4—C51.398 (3)C23—H23A0.9600
C4—H40.9300C23—H23B0.9600
C5—C61.404 (3)C23—H23C0.9600
C6—H60.9300C24—N21.325 (3)
C7—C21.396 (3)C24—C171.505 (3)
O1—Zn1—O3158.68 (7)C10—C9—C8121.4 (2)
O1—Zn1—O499.43 (6)C10—C9—C14117.7 (2)
O1—Zn1—O691.08 (7)C14—C9—C8120.9 (2)
O1—Zn1—O7106.57 (7)C9—C10—H10119.2
O1—Zn1—N189.59 (7)C11—C10—C9121.6 (2)
O3—Zn1—O460.03 (6)C11—C10—H10119.2
O3—Zn1—O693.40 (7)C10—C11—C12120.8 (3)
O6—Zn1—O487.44 (6)C10—C11—H11119.6
O7—Zn1—O394.72 (7)C12—C11—H11119.6
O7—Zn1—O4151.55 (7)N4—C12—C11121.4 (3)
O7—Zn1—O680.80 (7)N4—C12—C13121.2 (3)
O7—Zn1—N189.90 (7)C11—C12—C13117.4 (2)
N1—Zn1—O389.40 (7)C12—C13—H13119.6
N1—Zn1—O4101.82 (7)C14—C13—C12120.8 (2)
N1—Zn1—O6170.47 (7)C14—C13—H13119.6
C1—O1—Zn1128.40 (15)C9—C14—H14119.2
C8—O3—Zn193.10 (14)C13—C14—C9121.6 (3)
C8—O4—Zn187.63 (13)C13—C14—H14119.2
Zn1—O6—H6198 (2)N1—C15—C16122.8 (2)
Zn1—O6—H62111 (2)N1—C15—H15118.6
H61—O6—H62106 (3)C16—C15—H15118.6
Zn1—O7—H71119 (2)C15—C16—H16120.6
Zn1—O7—H72130 (2)C17—C16—C15118.9 (2)
H72—O7—H71106 (2)C17—C16—H16120.6
C15—N1—Zn1123.02 (16)C16—C17—C18118.7 (2)
C15—N1—C19117.8 (2)C16—C17—C24122.9 (2)
C19—N1—Zn1119.03 (16)C18—C17—C24118.3 (2)
C24—N2—H21116 (2)C17—C18—H18120.7
C24—N2—H22126 (2)C19—C18—C17118.6 (2)
H22—N2—H21118 (3)C19—C18—H18120.7
C5—N3—C21116.7 (2)N1—C19—C18123.1 (2)
C5—N3—C20116.3 (2)N1—C19—H19118.4
C21—N3—C20112.2 (2)C18—C19—H19118.4
C12—N4—C22120.3 (3)N3—C20—H20A109.5
C12—N4—C23120.4 (3)N3—C20—H20B109.5
C22—N4—C23119.1 (2)N3—C20—H20C109.5
O1—C1—O2123.7 (2)H20A—C20—H20B109.5
O1—C1—C2117.7 (2)H20A—C20—H20C109.5
O2—C1—C2118.5 (2)H20B—C20—H20C109.5
C3—C2—C1121.0 (2)N3—C21—H21A109.5
C3—C2—C7117.9 (2)N3—C21—H21B109.5
C7—C2—C1121.2 (2)N3—C21—H21C109.5
C2—C3—H3119.4H21A—C21—H21B109.5
C4—C3—C2121.3 (2)H21A—C21—H21C109.5
C4—C3—H3119.4H21B—C21—H21C109.5
C3—C4—C5120.9 (2)N4—C22—H22A109.5
C3—C4—H4119.6N4—C22—H22B109.5
C5—C4—H4119.6N4—C22—H22C109.5
C4—C5—N3122.0 (2)H22A—C22—H22B109.5
C4—C5—C6117.7 (2)H22A—C22—H22C109.5
C6—C5—N3120.2 (2)H22B—C22—H22C109.5
C5—C6—H6119.5N4—C23—H23A109.5
C7—C6—C5121.0 (2)N4—C23—H23B109.5
C7—C6—H6119.5N4—C23—H23C109.5
C2—C7—H7119.3H23A—C23—H23B109.5
C6—C7—C2121.3 (2)H23A—C23—H23C109.5
C6—C7—H7119.3H23B—C23—H23C109.5
O3—C8—C9119.8 (2)O5—C24—N2123.0 (2)
O4—C8—O3119.2 (2)O5—C24—C17119.1 (2)
O4—C8—C9121.0 (2)N2—C24—C17117.9 (2)
O3—Zn1—O1—C171.5 (3)C23—N4—C12—C13173.5 (3)
O4—Zn1—O1—C156.9 (2)O1—C1—C2—C3174.7 (2)
O6—Zn1—O1—C130.69 (19)O1—C1—C2—C73.5 (3)
O7—Zn1—O1—C1111.42 (19)O2—C1—C2—C36.0 (3)
N1—Zn1—O1—C1158.81 (19)O2—C1—C2—C7175.8 (2)
O1—Zn1—O3—C816.4 (2)C4—C3—C2—C1178.5 (2)
O4—Zn1—O3—C80.36 (12)C4—C3—C2—C70.3 (3)
O6—Zn1—O3—C885.43 (13)C2—C3—C4—C50.0 (4)
O7—Zn1—O3—C8166.47 (13)C3—C4—C5—N3176.2 (2)
N1—Zn1—O3—C8103.68 (13)C3—C4—C5—C60.2 (3)
O1—Zn1—O4—C8173.56 (13)N3—C5—C6—C7175.8 (2)
O3—Zn1—O4—C80.36 (12)C4—C5—C6—C70.7 (3)
O6—Zn1—O4—C895.77 (13)C6—C7—C2—C1179.0 (2)
O7—Zn1—O4—C830.5 (2)C6—C7—C2—C30.8 (3)
N1—Zn1—O4—C881.99 (13)C2—C7—C6—C51.0 (4)
O1—Zn1—N1—C1522.18 (18)C10—C9—C8—O30.2 (3)
O1—Zn1—N1—C19153.57 (17)C10—C9—C8—O4179.2 (2)
O3—Zn1—N1—C15136.52 (18)C14—C9—C8—O3179.1 (2)
O3—Zn1—N1—C1947.73 (17)C14—C9—C8—O40.1 (3)
O4—Zn1—N1—C19106.89 (17)C8—C9—C10—C11178.9 (2)
O4—Zn1—N1—C1577.36 (18)C14—C9—C10—C110.4 (4)
O7—Zn1—N1—C15128.76 (18)C8—C9—C14—C13178.0 (2)
O7—Zn1—N1—C1946.99 (17)C10—C9—C14—C131.3 (4)
Zn1—O1—C1—O219.5 (3)C9—C10—C11—C121.1 (4)
Zn1—O1—C1—C2161.36 (15)N4—C12—C11—C10178.1 (3)
Zn1—O3—C8—O40.6 (2)C13—C12—C11—C101.7 (4)
Zn1—O3—C8—C9179.65 (18)C14—C13—C12—N4179.0 (2)
Zn1—O4—C8—O30.6 (2)C14—C13—C12—C110.8 (4)
Zn1—O4—C8—C9179.61 (19)C9—C14—C13—C120.8 (4)
Zn1—N1—C15—C16175.38 (17)N1—C15—C16—C171.3 (4)
C19—N1—C15—C160.4 (3)C15—C16—C17—C181.2 (3)
Zn1—N1—C19—C18173.64 (17)C15—C16—C17—C24175.2 (2)
C15—N1—C19—C182.3 (3)C19—C18—C17—C160.5 (3)
C20—N3—C5—C4146.3 (2)C19—C18—C17—C24177.2 (2)
C20—N3—C5—C637.4 (3)C17—C18—C19—N12.4 (3)
C21—N3—C5—C410.4 (3)O5—C24—C17—C16150.0 (2)
C21—N3—C5—C6173.4 (2)O5—C24—C17—C1826.5 (3)
C22—N4—C12—C11178.3 (3)N2—C24—C17—C1630.0 (3)
C22—N4—C12—C131.5 (4)N2—C24—C17—C18153.5 (2)
C23—N4—C12—C116.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O4i0.89 (3)2.15 (3)3.034 (3)174 (3)
N2—H22···O3ii0.89 (3)1.95 (3)2.820 (3)164 (3)
O6—H61···O20.89 (3)1.79 (3)2.646 (2)161 (3)
O6—H62···O5iii0.88 (3)1.88 (3)2.749 (2)169 (3)
O7—H71···N3iv0.89 (3)2.01 (3)2.863 (3)162 (3)
O7—H72···O2v0.87 (3)1.80 (3)2.667 (2)171 (3)
C22—H22A···Cg3vi0.962.743.567 (3)145
C23—H23C···Cg2vii0.962.863.644 (3)140
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z; (iii) x+1, y1, z; (iv) x1, y1, z; (v) x1, y, z; (vi) x+1, y+1, z; (vii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C9H10NO2)2(C6H6N2O)(H2O)2]
Mr551.91
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.8616 (2), 8.0947 (3), 22.4953 (4)
α, β, γ (°)90.683 (2), 92.838 (2), 93.313 (3)
V3)1245.69 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.57 × 0.27 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.720, 0.810
No. of measured, independent and
observed [I > 2σ(I)] reflections
21315, 6053, 5647
Rint0.021
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.078, 1.29
No. of reflections6053
No. of parameters353
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.99

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Zn1—O12.0353 (17)Zn1—O62.1393 (17)
Zn1—O32.1328 (17)Zn1—O72.0647 (17)
Zn1—O42.2584 (17)Zn1—N12.1307 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O4i0.89 (3)2.15 (3)3.034 (3)174 (3)
N2—H22···O3ii0.89 (3)1.95 (3)2.820 (3)164 (3)
O6—H61···O20.89 (3)1.79 (3)2.646 (2)161 (3)
O6—H62···O5iii0.88 (3)1.88 (3)2.749 (2)169 (3)
O7—H71···N3iv0.89 (3)2.01 (3)2.863 (3)162 (3)
O7—H72···O2v0.87 (3)1.80 (3)2.667 (2)171 (3)
C22—H22A···Cg3vi0.962.743.567 (3)145
C23—H23C···Cg2vii0.962.863.644 (3)140
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z; (iii) x+1, y1, z; (iv) x1, y1, z; (v) x1, y, z; (vi) x+1, y+1, z; (vii) x+1, y, z.
 

Acknowledgements

The authors are indebted to Anadolu University and Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.

References

First citationAdiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAmiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075–1080.  CAS Google Scholar
First citationAntolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationAntsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103.  Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCatterick, J., Hursthouse, M. B., New, D. B. & Thorhton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844.  CrossRef Web of Science Google Scholar
First citationChen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGreenaway, F. T., Pezeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67–71.  CSD CrossRef CAS Web of Science Google Scholar
First citationHauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169–172.  CAS Google Scholar
First citationHökelek, T., Budak, K. & Necefoğlu, H. (1997). Acta Cryst. C53, 1049–1051.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561–m2562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m505–m506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128–1131.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1997). Acta Cryst. C53, 187–189.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821–m823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020–2023.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages m651-m652
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds