metal-organic compounds
Bis(triethanolamine)nickel(II) sulfate
aDepartment of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou, Fujian 363000, People's Republic of China, and bFujian Longyan Center for Disease Control & Prevention, Longyan, Fujian, 364000, People's Republic of China
*Correspondence e-mail: ghx919@yahoo.com.cn
The title compound, [Ni(C6H15NO3)2]SO4, contains two triethanolamine (TEA) ligands bound to an Ni2+ metal centre, which lies on a crystallographic inversion centre, and one sulfate anion located on a twofold rotation axis such that the contains one-half molecule of the cation and of the anion. The triethanolamine ligands coordinate via each axial N atom and two of the three O atoms, while the third arm of the ligand has the hydroxyl group pointing away from the metal centre. The sulfate anions are hydrogen bonded to the coordinated hydroxyl groups and also to the free arm, forming a two-dimensional supramolecular hydrogen-bonded network expanding parallel to (010).
Related literature
For background to metal-ion-containing supramolecular compounds, see: Venkataraman et al. (1995); Kepert & Rosseinsky (1999); Fujita et al. (1994). For magnetic materials, see: Kahn (1993). For other TEA compounds, see: Krabbes et al. (2000); Topcu et al. (2001); Ucar et al. (2004); Haukka et al. (2005). For similar structures, see: İçbudak et al. (1995); Yeşilel et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Siemens, 1994); cell SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809023046/pk2167sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809023046/pk2167Isup2.hkl
NiSO4.7H2O (0.5257 g, 2 mmol) was dissolved in 10 ml water and the pH was adjusted to 7 with triethanolamine. Blue crystals of separated from the filtered solution at room temperature over several days.
All H atoms bound to carbon were refined using a riding model with C—H = 0.97Å and Uiso(H) = 1.2Ueq(C). Three hydroxy H atoms were located in a difference map and included with O—H distance constraints of 0.82 Å and with Uiso(H) = 1.5Ueq(O).
Data collection: SMART (Siemens, 1994); cell
SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ni(C6H15NO3)2]SO4 | F(000) = 960 |
Mr = 453.15 | Dx = 1.676 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 8633 reflections |
a = 10.316 (2) Å | θ = 3.6–27.5° |
b = 11.234 (2) Å | µ = 1.25 mm−1 |
c = 15.498 (3) Å | T = 293 K |
β = 90.04 (3)° | Block, blue |
V = 1796.0 (6) Å3 | 0.41 × 0.21 × 0.11 mm |
Z = 4 |
Siemens SMART CCD area-detector diffractometer | 2042 independent reflections |
Radiation source: fine-focus sealed tube | 1905 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
ω scans | θmax = 27.5°, θmin = 3.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −13→13 |
Tmin = 0.741, Tmax = 0.879 | k = −14→14 |
8633 measured reflections | l = −20→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.085 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.053P)2 + 2.3273P] where P = (Fo2 + 2Fc2)/3 |
2042 reflections | (Δ/σ)max < 0.001 |
120 parameters | Δρmax = 0.66 e Å−3 |
3 restraints | Δρmin = −0.65 e Å−3 |
[Ni(C6H15NO3)2]SO4 | V = 1796.0 (6) Å3 |
Mr = 453.15 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 10.316 (2) Å | µ = 1.25 mm−1 |
b = 11.234 (2) Å | T = 293 K |
c = 15.498 (3) Å | 0.41 × 0.21 × 0.11 mm |
β = 90.04 (3)° |
Siemens SMART CCD area-detector diffractometer | 2042 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1905 reflections with I > 2σ(I) |
Tmin = 0.741, Tmax = 0.879 | Rint = 0.029 |
8633 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 3 restraints |
wR(F2) = 0.085 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.66 e Å−3 |
2042 reflections | Δρmin = −0.65 e Å−3 |
120 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.2500 | 0.7500 | 1.0000 | 0.01765 (12) | |
N1 | 0.40821 (14) | 0.71956 (14) | 0.91696 (9) | 0.0218 (3) | |
O1 | 0.15355 (12) | 0.64708 (12) | 0.90906 (8) | 0.0255 (3) | |
H1C | 0.0790 | 0.6254 | 0.8997 | 0.038* | |
O2 | 0.22752 (12) | 0.90445 (11) | 0.92788 (8) | 0.0242 (3) | |
H2C | 0.1762 | 0.9553 | 0.9113 | 0.036* | |
O3 | 0.70194 (16) | 0.79446 (17) | 0.87607 (13) | 0.0512 (5) | |
H3C | 0.7766 | 0.7847 | 0.8594 | 0.077* | |
O4 | 0.89097 (13) | 0.89514 (14) | 0.72175 (9) | 0.0351 (3) | |
O5 | 0.95708 (14) | 0.74424 (13) | 0.82252 (10) | 0.0337 (3) | |
C1 | 0.37671 (18) | 0.60337 (18) | 0.87593 (13) | 0.0303 (4) | |
H1A | 0.3897 | 0.5400 | 0.9176 | 0.036* | |
H1B | 0.4354 | 0.5898 | 0.8281 | 0.036* | |
C2 | 0.23847 (19) | 0.59917 (19) | 0.84339 (12) | 0.0317 (4) | |
H2A | 0.2307 | 0.6456 | 0.7909 | 0.038* | |
H2B | 0.2143 | 0.5176 | 0.8305 | 0.038* | |
C3 | 0.40912 (18) | 0.81992 (18) | 0.85289 (12) | 0.0293 (4) | |
H3A | 0.3573 | 0.7986 | 0.8030 | 0.035* | |
H3B | 0.4971 | 0.8347 | 0.8337 | 0.035* | |
C4 | 0.35485 (18) | 0.93041 (17) | 0.89416 (12) | 0.0288 (4) | |
H4A | 0.4114 | 0.9565 | 0.9405 | 0.035* | |
H4B | 0.3493 | 0.9938 | 0.8518 | 0.035* | |
C5 | 0.53313 (17) | 0.71242 (18) | 0.96482 (12) | 0.0265 (4) | |
H5A | 0.5251 | 0.6503 | 1.0080 | 0.032* | |
H5B | 0.5454 | 0.7870 | 0.9953 | 0.032* | |
C6 | 0.65530 (18) | 0.68791 (18) | 0.91236 (14) | 0.0321 (4) | |
H6A | 0.7212 | 0.6534 | 0.9493 | 0.039* | |
H6B | 0.6360 | 0.6314 | 0.8668 | 0.039* | |
S1 | 1.0000 | 0.82070 (6) | 0.7500 | 0.02289 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01652 (17) | 0.02186 (18) | 0.01456 (17) | 0.00161 (10) | 0.00033 (11) | 0.00006 (10) |
N1 | 0.0191 (7) | 0.0284 (7) | 0.0179 (7) | 0.0031 (6) | 0.0008 (5) | 0.0003 (6) |
O1 | 0.0212 (6) | 0.0335 (7) | 0.0218 (6) | −0.0002 (5) | −0.0017 (5) | −0.0050 (5) |
O2 | 0.0245 (6) | 0.0257 (6) | 0.0225 (6) | 0.0044 (5) | −0.0008 (5) | 0.0038 (5) |
O3 | 0.0272 (8) | 0.0572 (10) | 0.0693 (12) | 0.0037 (7) | 0.0176 (8) | 0.0185 (9) |
O4 | 0.0287 (7) | 0.0462 (8) | 0.0303 (7) | 0.0102 (6) | −0.0100 (6) | −0.0027 (6) |
O5 | 0.0230 (7) | 0.0524 (9) | 0.0258 (7) | −0.0012 (5) | 0.0023 (6) | 0.0106 (6) |
C1 | 0.0275 (9) | 0.0335 (10) | 0.0299 (9) | 0.0064 (7) | 0.0008 (7) | −0.0095 (8) |
C2 | 0.0300 (10) | 0.0393 (10) | 0.0259 (9) | 0.0030 (8) | −0.0013 (7) | −0.0127 (8) |
C3 | 0.0249 (9) | 0.0428 (11) | 0.0201 (8) | 0.0031 (7) | 0.0028 (7) | 0.0069 (7) |
C4 | 0.0265 (9) | 0.0304 (9) | 0.0294 (9) | −0.0040 (7) | −0.0016 (7) | 0.0081 (7) |
C5 | 0.0208 (8) | 0.0364 (9) | 0.0223 (8) | 0.0031 (7) | −0.0005 (7) | 0.0024 (7) |
C6 | 0.0221 (9) | 0.0359 (10) | 0.0383 (10) | 0.0063 (7) | 0.0015 (7) | −0.0019 (8) |
S1 | 0.0172 (3) | 0.0350 (3) | 0.0165 (3) | 0.000 | −0.0021 (2) | 0.000 |
Ni1—O1i | 2.0762 (13) | C1—C2 | 1.513 (3) |
Ni1—O1 | 2.0762 (13) | C1—H1A | 0.9700 |
Ni1—O2i | 2.0768 (12) | C1—H1B | 0.9700 |
Ni1—O2 | 2.0768 (12) | C2—H2A | 0.9700 |
Ni1—N1 | 2.1072 (16) | C2—H2B | 0.9700 |
Ni1—N1i | 2.1072 (16) | C3—C4 | 1.505 (3) |
N1—C1 | 1.488 (2) | C3—H3A | 0.9700 |
N1—C5 | 1.489 (2) | C3—H3B | 0.9700 |
N1—C3 | 1.502 (2) | C4—H4A | 0.9700 |
O1—C2 | 1.447 (2) | C4—H4B | 0.9700 |
O1—H1C | 0.8200 | C5—C6 | 1.525 (3) |
O2—C4 | 1.444 (2) | C5—H5A | 0.9700 |
O2—H2C | 0.8200 | C5—H5B | 0.9700 |
O3—C6 | 1.407 (3) | C6—H6A | 0.9700 |
O3—H3C | 0.8200 | C6—H6B | 0.9700 |
O4—S1 | 1.4681 (14) | S1—O4ii | 1.4681 (14) |
O5—S1 | 1.4825 (14) | S1—O5ii | 1.4825 (14) |
O1i—Ni1—O1 | 180.0 | O1—C2—H2A | 109.9 |
O1i—Ni1—O2i | 92.68 (5) | C1—C2—H2A | 109.9 |
O1—Ni1—O2i | 87.32 (5) | O1—C2—H2B | 109.9 |
O1i—Ni1—O2 | 87.32 (5) | C1—C2—H2B | 109.9 |
O1—Ni1—O2 | 92.68 (5) | H2A—C2—H2B | 108.3 |
O2i—Ni1—O2 | 180.0 | N1—C3—C4 | 109.61 (14) |
O1i—Ni1—N1 | 97.70 (6) | N1—C3—H3A | 109.7 |
O1—Ni1—N1 | 82.30 (5) | C4—C3—H3A | 109.7 |
O2i—Ni1—N1 | 96.14 (5) | N1—C3—H3B | 109.7 |
O2—Ni1—N1 | 83.86 (6) | C4—C3—H3B | 109.7 |
O1i—Ni1—N1i | 82.30 (5) | H3A—C3—H3B | 108.2 |
O1—Ni1—N1i | 97.70 (6) | O2—C4—C3 | 109.04 (15) |
O2i—Ni1—N1i | 83.86 (6) | O2—C4—H4A | 109.9 |
O2—Ni1—N1i | 96.14 (5) | C3—C4—H4A | 109.9 |
N1—Ni1—N1i | 180.0 | O2—C4—H4B | 109.9 |
C1—N1—C5 | 110.76 (15) | C3—C4—H4B | 109.9 |
C1—N1—C3 | 112.18 (14) | H4A—C4—H4B | 108.3 |
C5—N1—C3 | 111.34 (15) | N1—C5—C6 | 117.35 (15) |
C1—N1—Ni1 | 103.56 (11) | N1—C5—H5A | 108.0 |
C5—N1—Ni1 | 112.02 (11) | C6—C5—H5A | 108.0 |
C3—N1—Ni1 | 106.69 (11) | N1—C5—H5B | 108.0 |
C2—O1—Ni1 | 113.23 (10) | C6—C5—H5B | 108.0 |
C2—O1—H1C | 109.5 | H5A—C5—H5B | 107.2 |
Ni1—O1—H1C | 137.3 | O3—C6—C5 | 110.01 (16) |
C4—O2—Ni1 | 105.21 (10) | O3—C6—H6A | 109.7 |
C4—O2—H2C | 109.5 | C5—C6—H6A | 109.7 |
Ni1—O2—H2C | 145.3 | O3—C6—H6B | 109.7 |
C6—O3—H3C | 109.5 | C5—C6—H6B | 109.7 |
N1—C1—C2 | 112.04 (15) | H6A—C6—H6B | 108.2 |
N1—C1—H1A | 109.2 | O4ii—S1—O4 | 110.56 (13) |
C2—C1—H1A | 109.2 | O4ii—S1—O5 | 109.46 (8) |
N1—C1—H1B | 109.2 | O4—S1—O5 | 109.09 (9) |
C2—C1—H1B | 109.2 | O4ii—S1—O5ii | 109.09 (9) |
H1A—C1—H1B | 107.9 | O4—S1—O5ii | 109.46 (8) |
O1—C2—C1 | 108.96 (15) | O5—S1—O5ii | 109.18 (13) |
O1i—Ni1—N1—C1 | 152.13 (11) | O1i—Ni1—O2—C4 | 72.48 (11) |
O1—Ni1—N1—C1 | −27.87 (11) | O1—Ni1—O2—C4 | −107.52 (11) |
O2i—Ni1—N1—C1 | 58.58 (11) | O2i—Ni1—O2—C4 | −86 (100) |
O2—Ni1—N1—C1 | −121.42 (11) | N1—Ni1—O2—C4 | −25.56 (11) |
N1i—Ni1—N1—C1 | −20 (100) | N1i—Ni1—O2—C4 | 154.44 (11) |
O1i—Ni1—N1—C5 | 32.74 (13) | C5—N1—C1—C2 | 167.69 (16) |
O1—Ni1—N1—C5 | −147.26 (13) | C3—N1—C1—C2 | −67.2 (2) |
O2i—Ni1—N1—C5 | −60.81 (13) | Ni1—N1—C1—C2 | 47.43 (17) |
O2—Ni1—N1—C5 | 119.19 (13) | Ni1—O1—C2—C1 | 18.77 (19) |
N1i—Ni1—N1—C5 | −139 (100) | N1—C1—C2—O1 | −45.3 (2) |
O1i—Ni1—N1—C3 | −89.34 (12) | C1—N1—C3—C4 | 143.10 (16) |
O1—Ni1—N1—C3 | 90.66 (12) | C5—N1—C3—C4 | −92.14 (18) |
O2i—Ni1—N1—C3 | 177.11 (11) | Ni1—N1—C3—C4 | 30.37 (17) |
O2—Ni1—N1—C3 | −2.89 (11) | Ni1—O2—C4—C3 | 49.91 (15) |
N1i—Ni1—N1—C3 | 98 (100) | N1—C3—C4—O2 | −55.33 (19) |
O1i—Ni1—O1—C2 | 29 (100) | C1—N1—C5—C6 | 63.6 (2) |
O2i—Ni1—O1—C2 | −91.17 (12) | C3—N1—C5—C6 | −61.9 (2) |
O2—Ni1—O1—C2 | 88.83 (12) | Ni1—N1—C5—C6 | 178.71 (13) |
N1—Ni1—O1—C2 | 5.39 (12) | N1—C5—C6—O3 | 82.7 (2) |
N1i—Ni1—O1—C2 | −174.61 (12) |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+2; (ii) −x+2, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1C···O5iii | 0.82 | 2.19 | 2.663 (2) | 117 |
O2—H2C···O4iv | 0.82 | 2.28 | 2.6227 (19) | 106 |
O3—H3C···O5 | 0.82 | 2.00 | 2.818 (2) | 174 |
C3—H3B···O3 | 0.97 | 2.26 | 3.055 (3) | 139 |
Symmetry codes: (iii) x−1, y, z; (iv) −x+1, y, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C6H15NO3)2]SO4 |
Mr | 453.15 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 10.316 (2), 11.234 (2), 15.498 (3) |
β (°) | 90.04 (3) |
V (Å3) | 1796.0 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.25 |
Crystal size (mm) | 0.41 × 0.21 × 0.11 |
Data collection | |
Diffractometer | Siemens SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.741, 0.879 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8633, 2042, 1905 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.085, 1.02 |
No. of reflections | 2042 |
No. of parameters | 120 |
No. of restraints | 3 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.66, −0.65 |
Computer programs: SMART (Siemens, 1994), SAINT (Siemens, 1994), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1C···O5i | 0.82 | 2.19 | 2.663 (2) | 117.0 |
O2—H2C···O4ii | 0.82 | 2.28 | 2.6227 (19) | 105.8 |
O3—H3C···O5 | 0.82 | 2.00 | 2.818 (2) | 174.4 |
C3—H3B···O3 | 0.97 | 2.26 | 3.055 (3) | 138.8 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y, −z+3/2. |
Acknowledgements
This work was supported by the Natural Science Foundation of Fujian Province (2008 J0172)
References
Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151–1152. CSD CrossRef CAS Web of Science Google Scholar
Haukka, M., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2005). Acta Cryst. E61, m2746–m2748. Web of Science CSD CrossRef IUCr Journals Google Scholar
İçbudak, H., Yilmaz, V. T., Howie, R. A., Andaç, Ö. & Ölmez, H. (1995). Acta Cryst. C51, 1759–1761. CSD CrossRef Web of Science IUCr Journals Google Scholar
Kahn, O. (1993). In Molecular Magnetism. New York: VCH. Google Scholar
Kepert, C. J. & Rosseinsky, M. J. (1999). Chem. Commun. 1, 31–32. Google Scholar
Krabbes, I., Seichter, W. & Gloe, K. (2000). Acta Cryst. C56, e178. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Topcu, Y., Andac, O., Yilmaz, V. T. & Harrison, W. T. A. (2001). Acta Cryst. E57, m82–m84. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ucar, I., Yesilel, O. Z., Bulut, A., Icbudak, H., Olmez, H. & Kazak, C. (2004). Acta Cryst. E60, m322–m324. Web of Science CSD CrossRef IUCr Journals Google Scholar
Venkataraman, D., Gardner, G. B., Lee, S. & Moore, J. S. (1995). J. Am. Chem. Soc. 117, 11600–11601. CrossRef CAS Web of Science Google Scholar
Yeşilel, O. Z., Bulut, A., Uçar, İ., İçbudak, H., Ölmez, H. & Büyükgüngör, O. (2004). Acta Cryst. E60, m228–m230. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Many workers from a variety of scientific disciplines are interested in the crystal design and engineering of multidimensional arrays and networks containing metal ions as nodes. Metal-ion containing supramolecular structures can be used as zeolite-like materials (Venkataraman et al., 1995; Kepert & Rosseinsky, 1999), catalysts (Fujita et al., 1994) or magnetic materials (Kahn, 1993). Triethanolamine (TEA) is a good potential ligand to the incorporation of metals into metal-ion containing supramolecular framework, and many compounds constructed from TEA have been reported in the last decade (Krabbes et al., 2000; Topcu et al., 2001; Ucar et al., 2004; Haukka et al., 2005). In this work we employed TEA and NiSO4 to produce a novel complex, [Ni(C6H15NO3)2]SO4(I).
A view of the title compound and its numbering scheme are shown in Fig. 1. The crystal structure consists of a complex cation and one sulfate anion. In the cation, the NiII ion lies on a centre of symmetry, sandwiched by two bulky TEA ligands. Each TEA acts as a tridentate ligand through two of the three hydroxyl O atoms and the amine N atom, resulting in a six-coordinate NiII ion similar to those observed for the Ni complex of TEA with chloride (İçbudak et al., 1995), saccharine (Topcu et al., 2001), acetate (Krabbes et al., 2000) and squarate (Yeşilel et al., 2004).
The coordination geometry around the NiII ion is that of a distorted octahedron. The hydroxyl O atoms of two TEA ligands form the equatorial plane of the octahedral geometry, while atoms N1 and N1i are placed in axial positions (symmetry code as in Fig. 1). In the complex, Ni—O distances are in the range 2.0762 (13)–2.0768 (12)Å and the Ni—N distance is 2.1072 (16) Å, while the bond angles at Ni range from 82.30 (5)° to 97.70 (6)°.
In the crystal structure, classical intermolecular O—H···O hydrogen bonds are observed (Table 1), which link the cations and one sulfate anion into a two-dimensional hydrogen-bonded network and stabilize the crystal packing (Fig. 2). Each cation is bonded to four SO42- anions, which in turn link four cations through O—H···O hydrogen bonding interactions to form a 2-D hydrogen bonding network. In addition, there is extensive hydrogen bonding between the –CH2 and the uncoordinated hydroxyl O atoms, with C···O interatomic distances of 3.055 (3) Å.