metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m810-m811

Bis(tri­ethano­lamine)nickel(II) sulfate

aDepartment of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou, Fujian 363000, People's Republic of China, and bFujian Longyan Center for Disease Control & Prevention, Longyan, Fujian, 364000, People's Republic of China
*Correspondence e-mail: ghx919@yahoo.com.cn

(Received 29 May 2009; accepted 16 June 2009; online 20 June 2009)

The title compound, [Ni(C6H15NO3)2]SO4, contains two triethano­lamine (TEA) ligands bound to an Ni2+ metal centre, which lies on a crystallographic inversion centre, and one sulfate anion located on a twofold rotation axis such that the asymmetric unit contains one-half molecule of the cation and of the anion. The triethano­lamine ligands coordinate via each axial N atom and two of the three O atoms, while the third arm of the ligand has the hydroxyl group pointing away from the metal centre. The sulfate anions are hydrogen bonded to the coordinated hydroxyl groups and also to the free arm, forming a two-dimensional supra­molecular hydrogen-bonded network expanding parallel to (010).

Related literature

For background to metal-ion-containing supra­molecular compounds, see: Venkataraman et al. (1995[Venkataraman, D., Gardner, G. B., Lee, S. & Moore, J. S. (1995). J. Am. Chem. Soc. 117, 11600-11601.]); Kepert & Rosseinsky (1999[Kepert, C. J. & Rosseinsky, M. J. (1999). Chem. Commun. 1, 31-32.]); Fujita et al. (1994[Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151-1152.]). For magnetic materials, see: Kahn (1993[Kahn, O. (1993). In Molecular Magnetism. New York: VCH.]). For other TEA compounds, see: Krabbes et al. (2000[Krabbes, I., Seichter, W. & Gloe, K. (2000). Acta Cryst. C56, e178.]); Topcu et al. (2001[Topcu, Y., Andac, O., Yilmaz, V. T. & Harrison, W. T. A. (2001). Acta Cryst. E57, m82-m84.]); Ucar et al. (2004[Ucar, I., Yesilel, O. Z., Bulut, A., Icbudak, H., Olmez, H. & Kazak, C. (2004). Acta Cryst. E60, m322-m324.]); Haukka et al. (2005[Haukka, M., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2005). Acta Cryst. E61, m2746-m2748.]). For similar structures, see: İçbudak et al. (1995[İçbudak, H., Yilmaz, V. T., Howie, R. A., Andaç, Ö. & Ölmez, H. (1995). Acta Cryst. C51, 1759-1761.]); Yeşilel et al. (2004[Yeşilel, O. Z., Bulut, A., Uçar, İ., İçbudak, H., Ölmez, H. & Büyükgüngör, O. (2004). Acta Cryst. E60, m228-m230.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C6H15NO3)2]SO4

  • Mr = 453.15

  • Monoclinic, C 2/c

  • a = 10.316 (2) Å

  • b = 11.234 (2) Å

  • c = 15.498 (3) Å

  • β = 90.04 (3)°

  • V = 1796.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.25 mm−1

  • T = 293 K

  • 0.41 × 0.21 × 0.11 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.741, Tmax = 0.879

  • 8633 measured reflections

  • 2042 independent reflections

  • 1905 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.085

  • S = 1.02

  • 2042 reflections

  • 120 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1C⋯O5i 0.82 2.19 2.663 (2) 117
O2—H2C⋯O4ii 0.82 2.28 2.6227 (19) 106
O3—H3C⋯O5 0.82 2.00 2.818 (2) 174
C3—H3B⋯O3 0.97 2.26 3.055 (3) 139
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: SMART (Siemens, 1994[Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1994[Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many workers from a variety of scientific disciplines are interested in the crystal design and engineering of multidimensional arrays and networks containing metal ions as nodes. Metal-ion containing supramolecular structures can be used as zeolite-like materials (Venkataraman et al., 1995; Kepert & Rosseinsky, 1999), catalysts (Fujita et al., 1994) or magnetic materials (Kahn, 1993). Triethanolamine (TEA) is a good potential ligand to the incorporation of metals into metal-ion containing supramolecular framework, and many compounds constructed from TEA have been reported in the last decade (Krabbes et al., 2000; Topcu et al., 2001; Ucar et al., 2004; Haukka et al., 2005). In this work we employed TEA and NiSO4 to produce a novel complex, [Ni(C6H15NO3)2]SO4(I).

A view of the title compound and its numbering scheme are shown in Fig. 1. The crystal structure consists of a complex cation and one sulfate anion. In the cation, the NiII ion lies on a centre of symmetry, sandwiched by two bulky TEA ligands. Each TEA acts as a tridentate ligand through two of the three hydroxyl O atoms and the amine N atom, resulting in a six-coordinate NiII ion similar to those observed for the Ni complex of TEA with chloride (İçbudak et al., 1995), saccharine (Topcu et al., 2001), acetate (Krabbes et al., 2000) and squarate (Yeşilel et al., 2004).

The coordination geometry around the NiII ion is that of a distorted octahedron. The hydroxyl O atoms of two TEA ligands form the equatorial plane of the octahedral geometry, while atoms N1 and N1i are placed in axial positions (symmetry code as in Fig. 1). In the complex, Ni—O distances are in the range 2.0762 (13)–2.0768 (12)Å and the Ni—N distance is 2.1072 (16) Å, while the bond angles at Ni range from 82.30 (5)° to 97.70 (6)°.

In the crystal structure, classical intermolecular O—H···O hydrogen bonds are observed (Table 1), which link the cations and one sulfate anion into a two-dimensional hydrogen-bonded network and stabilize the crystal packing (Fig. 2). Each cation is bonded to four SO42- anions, which in turn link four cations through O—H···O hydrogen bonding interactions to form a 2-D hydrogen bonding network. In addition, there is extensive hydrogen bonding between the –CH2 and the uncoordinated hydroxyl O atoms, with C···O interatomic distances of 3.055 (3) Å.

Related literature top

For background to metal-ion-containing supramolecular compounds, see: Venkataraman et al. (1995); Kepert & Rosseinsky (1999); Fujita et al. (1994). For magnetic materials, see: Kahn (1993). For other TEA compounds, see: Krabbes et al. (2000); Topcu et al. (2001); Ucar et al. (2004); Haukka et al. (2005). For similar structures, see: İçbudak et al. (1995); Yeşilel et al. (2004).

Experimental top

NiSO4.7H2O (0.5257 g, 2 mmol) was dissolved in 10 ml water and the pH was adjusted to 7 with triethanolamine. Blue crystals of separated from the filtered solution at room temperature over several days.

Refinement top

All H atoms bound to carbon were refined using a riding model with C—H = 0.97Å and Uiso(H) = 1.2Ueq(C). Three hydroxy H atoms were located in a difference map and included with O—H distance constraints of 0.82 Å and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1994); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the structure showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level; H-atoms are shown as small spheres of arbitrary radius. (Symmetry codes: i: -x+1/2, -y+3/2,-z+2; ii: -x+2, y, -z+3/2)
[Figure 2] Fig. 2. View of the 2-D hydrogen-bonded network in the packing of the title compound. The packing is viewed along the b axis; O-H···O and C—H···O interactions are shown as dashed lines.
Bis(triethanolamine)nickel(II) sulfate top
Crystal data top
[Ni(C6H15NO3)2]SO4F(000) = 960
Mr = 453.15Dx = 1.676 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8633 reflections
a = 10.316 (2) Åθ = 3.6–27.5°
b = 11.234 (2) ŵ = 1.25 mm1
c = 15.498 (3) ÅT = 293 K
β = 90.04 (3)°Block, blue
V = 1796.0 (6) Å30.41 × 0.21 × 0.11 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
2042 independent reflections
Radiation source: fine-focus sealed tube1905 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.741, Tmax = 0.879k = 1414
8633 measured reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.053P)2 + 2.3273P]
where P = (Fo2 + 2Fc2)/3
2042 reflections(Δ/σ)max < 0.001
120 parametersΔρmax = 0.66 e Å3
3 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Ni(C6H15NO3)2]SO4V = 1796.0 (6) Å3
Mr = 453.15Z = 4
Monoclinic, C2/cMo Kα radiation
a = 10.316 (2) ŵ = 1.25 mm1
b = 11.234 (2) ÅT = 293 K
c = 15.498 (3) Å0.41 × 0.21 × 0.11 mm
β = 90.04 (3)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2042 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1905 reflections with I > 2σ(I)
Tmin = 0.741, Tmax = 0.879Rint = 0.029
8633 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0303 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.02Δρmax = 0.66 e Å3
2042 reflectionsΔρmin = 0.65 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.25000.75001.00000.01765 (12)
N10.40821 (14)0.71956 (14)0.91696 (9)0.0218 (3)
O10.15355 (12)0.64708 (12)0.90906 (8)0.0255 (3)
H1C0.07900.62540.89970.038*
O20.22752 (12)0.90445 (11)0.92788 (8)0.0242 (3)
H2C0.17620.95530.91130.036*
O30.70194 (16)0.79446 (17)0.87607 (13)0.0512 (5)
H3C0.77660.78470.85940.077*
O40.89097 (13)0.89514 (14)0.72175 (9)0.0351 (3)
O50.95708 (14)0.74424 (13)0.82252 (10)0.0337 (3)
C10.37671 (18)0.60337 (18)0.87593 (13)0.0303 (4)
H1A0.38970.54000.91760.036*
H1B0.43540.58980.82810.036*
C20.23847 (19)0.59917 (19)0.84339 (12)0.0317 (4)
H2A0.23070.64560.79090.038*
H2B0.21430.51760.83050.038*
C30.40912 (18)0.81992 (18)0.85289 (12)0.0293 (4)
H3A0.35730.79860.80300.035*
H3B0.49710.83470.83370.035*
C40.35485 (18)0.93041 (17)0.89416 (12)0.0288 (4)
H4A0.41140.95650.94050.035*
H4B0.34930.99380.85180.035*
C50.53313 (17)0.71242 (18)0.96482 (12)0.0265 (4)
H5A0.52510.65031.00800.032*
H5B0.54540.78700.99530.032*
C60.65530 (18)0.68791 (18)0.91236 (14)0.0321 (4)
H6A0.72120.65340.94930.039*
H6B0.63600.63140.86680.039*
S11.00000.82070 (6)0.75000.02289 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01652 (17)0.02186 (18)0.01456 (17)0.00161 (10)0.00033 (11)0.00006 (10)
N10.0191 (7)0.0284 (7)0.0179 (7)0.0031 (6)0.0008 (5)0.0003 (6)
O10.0212 (6)0.0335 (7)0.0218 (6)0.0002 (5)0.0017 (5)0.0050 (5)
O20.0245 (6)0.0257 (6)0.0225 (6)0.0044 (5)0.0008 (5)0.0038 (5)
O30.0272 (8)0.0572 (10)0.0693 (12)0.0037 (7)0.0176 (8)0.0185 (9)
O40.0287 (7)0.0462 (8)0.0303 (7)0.0102 (6)0.0100 (6)0.0027 (6)
O50.0230 (7)0.0524 (9)0.0258 (7)0.0012 (5)0.0023 (6)0.0106 (6)
C10.0275 (9)0.0335 (10)0.0299 (9)0.0064 (7)0.0008 (7)0.0095 (8)
C20.0300 (10)0.0393 (10)0.0259 (9)0.0030 (8)0.0013 (7)0.0127 (8)
C30.0249 (9)0.0428 (11)0.0201 (8)0.0031 (7)0.0028 (7)0.0069 (7)
C40.0265 (9)0.0304 (9)0.0294 (9)0.0040 (7)0.0016 (7)0.0081 (7)
C50.0208 (8)0.0364 (9)0.0223 (8)0.0031 (7)0.0005 (7)0.0024 (7)
C60.0221 (9)0.0359 (10)0.0383 (10)0.0063 (7)0.0015 (7)0.0019 (8)
S10.0172 (3)0.0350 (3)0.0165 (3)0.0000.0021 (2)0.000
Geometric parameters (Å, º) top
Ni1—O1i2.0762 (13)C1—C21.513 (3)
Ni1—O12.0762 (13)C1—H1A0.9700
Ni1—O2i2.0768 (12)C1—H1B0.9700
Ni1—O22.0768 (12)C2—H2A0.9700
Ni1—N12.1072 (16)C2—H2B0.9700
Ni1—N1i2.1072 (16)C3—C41.505 (3)
N1—C11.488 (2)C3—H3A0.9700
N1—C51.489 (2)C3—H3B0.9700
N1—C31.502 (2)C4—H4A0.9700
O1—C21.447 (2)C4—H4B0.9700
O1—H1C0.8200C5—C61.525 (3)
O2—C41.444 (2)C5—H5A0.9700
O2—H2C0.8200C5—H5B0.9700
O3—C61.407 (3)C6—H6A0.9700
O3—H3C0.8200C6—H6B0.9700
O4—S11.4681 (14)S1—O4ii1.4681 (14)
O5—S11.4825 (14)S1—O5ii1.4825 (14)
O1i—Ni1—O1180.0O1—C2—H2A109.9
O1i—Ni1—O2i92.68 (5)C1—C2—H2A109.9
O1—Ni1—O2i87.32 (5)O1—C2—H2B109.9
O1i—Ni1—O287.32 (5)C1—C2—H2B109.9
O1—Ni1—O292.68 (5)H2A—C2—H2B108.3
O2i—Ni1—O2180.0N1—C3—C4109.61 (14)
O1i—Ni1—N197.70 (6)N1—C3—H3A109.7
O1—Ni1—N182.30 (5)C4—C3—H3A109.7
O2i—Ni1—N196.14 (5)N1—C3—H3B109.7
O2—Ni1—N183.86 (6)C4—C3—H3B109.7
O1i—Ni1—N1i82.30 (5)H3A—C3—H3B108.2
O1—Ni1—N1i97.70 (6)O2—C4—C3109.04 (15)
O2i—Ni1—N1i83.86 (6)O2—C4—H4A109.9
O2—Ni1—N1i96.14 (5)C3—C4—H4A109.9
N1—Ni1—N1i180.0O2—C4—H4B109.9
C1—N1—C5110.76 (15)C3—C4—H4B109.9
C1—N1—C3112.18 (14)H4A—C4—H4B108.3
C5—N1—C3111.34 (15)N1—C5—C6117.35 (15)
C1—N1—Ni1103.56 (11)N1—C5—H5A108.0
C5—N1—Ni1112.02 (11)C6—C5—H5A108.0
C3—N1—Ni1106.69 (11)N1—C5—H5B108.0
C2—O1—Ni1113.23 (10)C6—C5—H5B108.0
C2—O1—H1C109.5H5A—C5—H5B107.2
Ni1—O1—H1C137.3O3—C6—C5110.01 (16)
C4—O2—Ni1105.21 (10)O3—C6—H6A109.7
C4—O2—H2C109.5C5—C6—H6A109.7
Ni1—O2—H2C145.3O3—C6—H6B109.7
C6—O3—H3C109.5C5—C6—H6B109.7
N1—C1—C2112.04 (15)H6A—C6—H6B108.2
N1—C1—H1A109.2O4ii—S1—O4110.56 (13)
C2—C1—H1A109.2O4ii—S1—O5109.46 (8)
N1—C1—H1B109.2O4—S1—O5109.09 (9)
C2—C1—H1B109.2O4ii—S1—O5ii109.09 (9)
H1A—C1—H1B107.9O4—S1—O5ii109.46 (8)
O1—C2—C1108.96 (15)O5—S1—O5ii109.18 (13)
O1i—Ni1—N1—C1152.13 (11)O1i—Ni1—O2—C472.48 (11)
O1—Ni1—N1—C127.87 (11)O1—Ni1—O2—C4107.52 (11)
O2i—Ni1—N1—C158.58 (11)O2i—Ni1—O2—C486 (100)
O2—Ni1—N1—C1121.42 (11)N1—Ni1—O2—C425.56 (11)
N1i—Ni1—N1—C120 (100)N1i—Ni1—O2—C4154.44 (11)
O1i—Ni1—N1—C532.74 (13)C5—N1—C1—C2167.69 (16)
O1—Ni1—N1—C5147.26 (13)C3—N1—C1—C267.2 (2)
O2i—Ni1—N1—C560.81 (13)Ni1—N1—C1—C247.43 (17)
O2—Ni1—N1—C5119.19 (13)Ni1—O1—C2—C118.77 (19)
N1i—Ni1—N1—C5139 (100)N1—C1—C2—O145.3 (2)
O1i—Ni1—N1—C389.34 (12)C1—N1—C3—C4143.10 (16)
O1—Ni1—N1—C390.66 (12)C5—N1—C3—C492.14 (18)
O2i—Ni1—N1—C3177.11 (11)Ni1—N1—C3—C430.37 (17)
O2—Ni1—N1—C32.89 (11)Ni1—O2—C4—C349.91 (15)
N1i—Ni1—N1—C398 (100)N1—C3—C4—O255.33 (19)
O1i—Ni1—O1—C229 (100)C1—N1—C5—C663.6 (2)
O2i—Ni1—O1—C291.17 (12)C3—N1—C5—C661.9 (2)
O2—Ni1—O1—C288.83 (12)Ni1—N1—C5—C6178.71 (13)
N1—Ni1—O1—C25.39 (12)N1—C5—C6—O382.7 (2)
N1i—Ni1—O1—C2174.61 (12)
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···O5iii0.822.192.663 (2)117
O2—H2C···O4iv0.822.282.6227 (19)106
O3—H3C···O50.822.002.818 (2)174
C3—H3B···O30.972.263.055 (3)139
Symmetry codes: (iii) x1, y, z; (iv) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Ni(C6H15NO3)2]SO4
Mr453.15
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)10.316 (2), 11.234 (2), 15.498 (3)
β (°) 90.04 (3)
V3)1796.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.25
Crystal size (mm)0.41 × 0.21 × 0.11
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.741, 0.879
No. of measured, independent and
observed [I > 2σ(I)] reflections
8633, 2042, 1905
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.085, 1.02
No. of reflections2042
No. of parameters120
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.65

Computer programs: SMART (Siemens, 1994), SAINT (Siemens, 1994), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···O5i0.822.192.663 (2)117.0
O2—H2C···O4ii0.822.282.6227 (19)105.8
O3—H3C···O50.822.002.818 (2)174.4
C3—H3B···O30.972.263.055 (3)138.8
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+3/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Fujian Province (2008 J0172)

References

First citationFujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151–1152.  CSD CrossRef CAS Web of Science Google Scholar
First citationHaukka, M., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2005). Acta Cryst. E61, m2746–m2748.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationİçbudak, H., Yilmaz, V. T., Howie, R. A., Andaç, Ö. & Ölmez, H. (1995). Acta Cryst. C51, 1759–1761.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKahn, O. (1993). In Molecular Magnetism. New York: VCH.  Google Scholar
First citationKepert, C. J. & Rosseinsky, M. J. (1999). Chem. Commun. 1, 31–32.  Google Scholar
First citationKrabbes, I., Seichter, W. & Gloe, K. (2000). Acta Cryst. C56, e178.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTopcu, Y., Andac, O., Yilmaz, V. T. & Harrison, W. T. A. (2001). Acta Cryst. E57, m82–m84.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUcar, I., Yesilel, O. Z., Bulut, A., Icbudak, H., Olmez, H. & Kazak, C. (2004). Acta Cryst. E60, m322–m324.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVenkataraman, D., Gardner, G. B., Lee, S. & Moore, J. S. (1995). J. Am. Chem. Soc. 117, 11600–11601.  CrossRef CAS Web of Science Google Scholar
First citationYeşilel, O. Z., Bulut, A., Uçar, İ., İçbudak, H., Ölmez, H. & Büyükgüngör, O. (2004). Acta Cryst. E60, m228–m230.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m810-m811
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds