metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m747-m748

catena-Poly[[[di­aqua­bis­[4-(di­ethyl­amino)benzoato-κO]manganese(II)]-μ-aqua] dihydrate]

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, cDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and dDepartment of Chemistry, Kafkas University, 63100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 15 May 2009; accepted 3 June 2009; online 6 June 2009)

In the crystal structure of the title complex, {[Mn(C11H14NO2)2(H2O)3]·2H2O}n, the two independent MnII atoms are located on a centre of symmetry and coordinated by two 4-(diethyl­amino)benzoate (DEAB) anions and two water mol­ecules in the basal plane while another water mol­ecule bridges the Mn atoms in the apical directions, forming polymeric chains. The dihedral angles between the carboxyl­ate groups and the adjacent benzene rings are 11.33 (13) and 10.90 (9)° and the benzene rings are oriented at a dihedral angle of 67.88 (6)°. The uncoordinated water mol­ecules link the carboxyl­ate groups and coordinated water mol­ecules via O—H⋯O hydrogen bonding. Weak C—H⋯π inter­actions are also found in the crystal structure.

Related literature

For the applications of transition metal complexes with biochemical mol­ecules in biological systems, see: Antolini et al. (1982[Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]). Benzoic acid derivatives such as 4-amino­benzoic acid are used extensively as bifunctional organic ligands in coordination chemistry due to their various coordination modes, see: Chen & Chen (2002[Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13-21.]); Amiraslanov et al. (1979[Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075-1080.]); Hauptmann et al. (2000[Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169-172.]). In pellagra disease, niacin deficiency leads to loss of copper from the body with high serum and urinary copper levels (Krishnamachari, 1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). The nicotinic acid derivative N,N-Diethyl­nicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For structure–function–coordination relationships of the aryl­carboxyl­ate ion in MnII complexes of benzoic acid derivatives, see: Shnulin et al. (1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]); Antsyshkina et al. (1980[Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098-1103.]); Adiwidjaja et al. (1978[Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079-3083.]); Catterick et al. (1974[Catterick, J., Hursthouse, M. B., New, D. B. & Thorhton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843-844.]); Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Hökelek et al. (1995[Hökelek, T., Necefoğlu, H. & Balcı (1995). Acta Cryst. C51, 2020-2023.], 2007[Hökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561-m2562.], 2008[Hökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m505-m506.]); Hökelek & Necefoğlu (1996[Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128-1131.], 1997[Hökelek, T. & Necefoğlu, H. (1997). Acta Cryst. C53, 187-189.], 1998[Hökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242-1244.], 2007[Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821-m823.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C11H14NO2)2(H2O)3]·2H2O

  • Mr = 529.48

  • Monoclinic, P 21 /n

  • a = 8.1585 (2) Å

  • b = 11.2907 (2) Å

  • c = 27.8738 (3) Å

  • β = 95.644 (2)°

  • V = 2555.15 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 100 K

  • 0.50 × 0.20 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.870, Tmax = 0.920

  • 22676 measured reflections

  • 6299 independent reflections

  • 4556 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.091

  • S = 1.02

  • 6299 reflections

  • 354 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—O2 2.1071 (14)
Mn1—O5 2.1932 (14)
Mn1—O6 2.2725 (13)
Mn2—O4 2.1120 (13)
Mn2—O6 2.2594 (13)
Mn2—O7 2.1835 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯O8 0.97 (2) 1.77 (2) 2.738 (2) 177 (2)
O5—H52⋯O4iii 0.902 (17) 1.846 (17) 2.7457 (19) 175 (3)
O6—H61⋯O3 0.929 (17) 1.778 (19) 2.651 (2) 156 (2)
O6—H62⋯O1i 0.896 (18) 1.76 (2) 2.608 (2) 156 (3)
O7—H71⋯O9i 0.97 (2) 1.77 (2) 2.739 (2) 177.0 (2)
O7—H72⋯O2ii 0.893 (18) 1.850 (18) 2.733 (2) 170 (3)
O8—H82⋯O3 0.96 (3) 1.77 (3) 2.694 (2) 160 (3)
O9—H91⋯O1 0.927 (19) 1.80 (2) 2.692 (2) 160 (3)
C6—H6⋯Cg2 0.93 2.91 3.764 (2) 154
C19—H19ACg2iv 0.97 2.90 3.830 (2) 162
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+2, -y, -z; (iii) x-1, y, z; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg2 is the centroid of the C13–C18 ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Transition metal complexes with biochemical molecules show interesting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982). Some benzoic acid derivatives, such as 4-aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes (Chen & Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000). Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974). The nicotinic acid derivative N,N-Diethylnicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972).

The structure-function-coordination relationships of the arylcarboxylate ion in MnII complexes of benzoic acid derivatives may also change depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the pH and temperature of synthesis (Shnulin et al., 1981; Antsyshkina et al., 1980; Adiwidjaja et al., 1978). When pyridine and its derivatives are used instead of water molecules, the structure is completely different (Catterick et al., 1974).

The structure determination of the title compound, (I), a polymeric manganese complex with four 4-diethylaminobenzoate (DEAB) ligands and five coordinated and two uncoordinated water molecules, was undertaken in order to determine the properties of the ligands and also to compare the results obtained with those reported previously.

In the polymeric title complex, (I), each Mn atom is located on a centre of symmetry, and surrounded by two DEAB and four water molecules. The DEAB ligands are monodentate and a water molecule bridges the two Mn atoms (Fig. 1). The four O atoms (O2, O2', O5, O5' and O4, O4', O7, O7' atoms) in the equatorial planes around each Mn atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the symmetry related O atoms of the bridging water molecule (O6, O6' and O6'') in the axial positions (Table 1 and Fig. 1).

The near equality of the C1—O1 [1.263 (2) Å], C1—O2 [1.279 (2) Å], C12—O3 [1.263 (2) Å] and C12—O4 [1.278 (2) Å], bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds, and may be compared with the corresponding distances: 1.256 (6) and 1.245 (6) Å in [Mn(DENA)2(C7H4ClO2)2(H2O)2], (II) (Hökelek et al., 2008), 1.265 (6) and 1.275 (6) Å in [Mn(C9H10NO2)2(H2O)4]. 2(H2O), (III) (Hökelek & Necefoğlu, 2007), 1.260 (4) and 1.252 (4) Å in [Zn(DENA)2(C7H4FO2)2(H2O)2],(IV) (Hökelek et al., 2007), 1.259 (9) and 1.273 (9) Å in Cu2(DENA)2(C6H5COO)4, (V) (Hökelek et al., 1995), 1.279 (4) and 1.246 (4) Å in [Zn2(DENA)2(C7H5O3)4]. 2H2O, (VI) (Hökelek & Necefoğlu, 1996), 1.251 (6) and 1.254 (7) Å in [Co(DENA)2(C7H5O3)2(H2O)2], (VII) (Hökelek & Necefoğlu, 1997) and 1.254 (2) and 1.251 (2) Å in [Co(NA)2(C7H4NO4)2(H2O)2], (VIII) (Hökelek & Necefoğlu, 1998).

In (I), the average Mn—O bond length is 2.1880 (14) Å and the Mn atoms are displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O3/C12/O4) by -0.857 (1) Å and 1.004 (1) Å, respectively. The dihedral angles between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C13—C18) are 11.33 (13)° and 10.90 (9)°, respectively, while those between rings A and B are A/B = 67.88 (6)°. Intramolecular O—H···O hydrogen bonds (Table 2) link the uncoordinated water molecules to the carboxylate groups and coordinated water molecules (Fig. 1).

In the crystal structure, strong intra- and intermolecular O—H···O hydrogen bonds (Table 2) link the molecules into a supramolecular structure, in which they may be effective in the stabilization of the structure. There also exist two weak C—H···π interactions (Table 2).

Related literature top

For the applications of transition metal complexes with biochemical molecules in biological systems, see: Antolini et al. (1982). Benzoic acid derivatives such as 4-aminobenzoic acid are used extensively as bifunctional organic ligands in coordination chemistry due to their varietious coordination modes, see: Chen & Chen (2002); Amiraslanov et al. (1979); Hauptmann et al. (2000). In pellagra disease, niacin deficiency leads to loss of copper from the body with high serum and urinary copper levels (Krishnamachari, 1974). The nicotinic acid derivative N,N-Diethylnicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972). For structure–function–coordination relationships of the arylcarboxylate ion in MnII complexes of benzoic acid derivatives, see: Shnulin et al. (1981); Antsyshkina et al. (1980); Adiwidjaja et al. (1978); Catterick et al. (1974); Bigoli et al. (1972). For related structures, see: Hökelek et al. (1995, 2007, 2008); Hökelek & Necefoğlu (1996, 1997, 1998, 2007). Cg2 is the centroid of the C13–C18 ring.

Experimental top

The title compound was prepared by the reaction of MnSO4.H2O (0.85 g, 5 mmol) in H2O (50 ml) and NA (1.22 g, 10 mmol) in H2O (50 ml) with sodium p-dimethylaminobenzoate (2.16 g, 10 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving single crystals.

Refinement top

H atoms of water molecules were located in difference Fourier maps and refined isotropically, with restrains of O5—H51 = 0.970 (16), O5—H52 = 0.903 (17), O6—H61 = 0.931 (16), O6—H62 = 0.896 (18), O7—H71 = 0.973 (16), O7—H72 = 0.894 (17), O8—H81 = 0.895 (17), O8—H82 = 0.957 (19), O9—H91 = 0.930 (17), O9—H92 = 0.90 (2) Å and H51—O5—H52 = 105 (2), H61—O6—H62 = 106 (2), H71—O7—H72 = 106 (2), H81—O8—H82 = 105 (3) and H91—O9—H92 = 105 (3)°. The remaining H atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. Primed atoms are generated by the symmetry operators: (') 1 - x, -y, -z, ('') 2 - x, -y, -z.
catena-Poly[[[diaquabis[4-(diethylamino)benzoato- κO]manganese(II)]-µ-aqua] dihydrate] top
Crystal data top
[Mn(C11H14NO2)2(H2O)3]·2H2OF(000) = 1124
Mr = 529.48Dx = 1.376 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6515 reflections
a = 8.1585 (2) Åθ = 2.3–28.0°
b = 11.2907 (2) ŵ = 0.57 mm1
c = 27.8738 (3) ÅT = 100 K
β = 95.644 (2)°Block, yellow
V = 2555.15 (8) Å30.50 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6299 independent reflections
Radiation source: fine-focus sealed tube4556 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 28.4°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 910
Tmin = 0.870, Tmax = 0.920k = 1115
22676 measured reflectionsl = 3735
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0367P)2 + 1.1841P]
where P = (Fo2 + 2Fc2)/3
6299 reflections(Δ/σ)max < 0.001
354 parametersΔρmax = 0.66 e Å3
15 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Mn(C11H14NO2)2(H2O)3]·2H2OV = 2555.15 (8) Å3
Mr = 529.48Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1585 (2) ŵ = 0.57 mm1
b = 11.2907 (2) ÅT = 100 K
c = 27.8738 (3) Å0.50 × 0.20 × 0.15 mm
β = 95.644 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6299 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4556 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.920Rint = 0.035
22676 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03815 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.66 e Å3
6299 reflectionsΔρmin = 0.41 e Å3
354 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.00000.00000.01208 (10)
Mn21.00000.00000.00000.01215 (10)
O10.32484 (17)0.26988 (12)0.00330 (5)0.0168 (3)
O20.56738 (16)0.17869 (12)0.01144 (5)0.0184 (3)
O30.86399 (16)0.04378 (12)0.10998 (5)0.0162 (3)
O41.08825 (16)0.05210 (13)0.07062 (5)0.0167 (3)
O50.41531 (17)0.00670 (13)0.07223 (5)0.0192 (3)
H510.474 (3)0.037 (2)0.0985 (8)0.045 (8)*
H520.308 (2)0.011 (2)0.0734 (10)0.047 (8)*
O60.75988 (16)0.05770 (13)0.02674 (5)0.0134 (3)
H610.790 (3)0.043 (2)0.0592 (6)0.037 (7)*
H620.742 (3)0.1359 (16)0.0247 (10)0.057 (9)*
O71.11543 (18)0.17328 (13)0.01223 (5)0.0188 (3)
H711.062 (3)0.2483 (18)0.0034 (9)0.050 (8)*
H721.221 (2)0.182 (3)0.0070 (10)0.055 (9)*
O80.5861 (2)0.10881 (17)0.14777 (6)0.0313 (4)
H810.568 (4)0.1863 (17)0.1430 (13)0.094 (14)*
H820.697 (3)0.096 (3)0.1402 (14)0.098 (13)*
O90.03985 (19)0.38092 (14)0.01543 (7)0.0276 (4)
H910.148 (2)0.360 (3)0.0120 (11)0.070 (10)*
H920.035 (6)0.390 (5)0.0472 (8)0.20 (3)*
N10.7834 (2)0.64050 (15)0.13131 (6)0.0173 (4)
N21.2766 (2)0.45986 (16)0.22433 (6)0.0190 (4)
C10.4744 (2)0.26580 (17)0.01995 (7)0.0147 (4)
C20.5485 (2)0.36230 (17)0.05081 (7)0.0134 (4)
C30.4689 (2)0.47050 (18)0.05580 (7)0.0150 (4)
H30.36330.48130.04060.018*
C40.5434 (2)0.56160 (18)0.08273 (7)0.0151 (4)
H40.48690.63240.08560.018*
C50.7046 (2)0.54916 (18)0.10611 (7)0.0148 (4)
C60.7801 (2)0.43779 (18)0.10262 (7)0.0181 (4)
H60.88340.42450.11890.022*
C70.7036 (2)0.34842 (18)0.07551 (7)0.0161 (4)
H70.75740.27620.07360.019*
C80.7200 (3)0.76135 (18)0.12893 (7)0.0187 (4)
H8A0.81150.81610.12850.022*
H8B0.64970.77150.09910.022*
C90.6227 (3)0.7917 (2)0.17097 (8)0.0276 (5)
H9A0.59550.87450.16990.041*
H9B0.52340.74570.16890.041*
H9C0.68780.77430.20070.041*
C100.9497 (3)0.62677 (19)0.15495 (8)0.0212 (5)
H10A0.96690.68420.18090.025*
H10B0.96060.54840.16910.025*
C111.0821 (3)0.6433 (2)0.12076 (9)0.0298 (5)
H11A1.18880.63440.13820.045*
H11B1.06840.58490.09570.045*
H11C1.07270.72100.10680.045*
C121.0033 (2)0.08717 (17)0.10404 (7)0.0135 (4)
C131.0729 (2)0.18313 (17)0.13585 (6)0.0126 (4)
C141.0042 (2)0.21580 (17)0.17791 (6)0.0131 (4)
H140.91070.17660.18610.016*
C151.0717 (2)0.30486 (18)0.20755 (7)0.0152 (4)
H151.02370.32360.23550.018*
C161.2121 (2)0.36804 (17)0.19621 (7)0.0152 (4)
C171.2802 (2)0.33497 (18)0.15330 (7)0.0163 (4)
H171.37290.37430.14450.020*
C181.2114 (2)0.24579 (17)0.12450 (7)0.0147 (4)
H181.25860.22650.09650.018*
C191.2123 (3)0.48833 (19)0.27032 (7)0.0230 (5)
H19A1.24180.56930.27900.028*
H19B1.09310.48350.26620.028*
C201.2764 (3)0.4072 (2)0.31101 (8)0.0293 (5)
H20A1.22270.42540.33930.044*
H20B1.25420.32640.30180.044*
H20C1.39310.41820.31780.044*
C211.4284 (3)0.51786 (19)0.21392 (8)0.0223 (5)
H21A1.42470.52990.17940.027*
H21B1.43300.59540.22900.027*
C221.5858 (3)0.4513 (2)0.23068 (9)0.0343 (6)
H22A1.67870.49330.22060.051*
H22B1.59640.44530.26520.051*
H22C1.58150.37330.21690.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0105 (2)0.0107 (2)0.01513 (19)0.00024 (17)0.00158 (15)0.00282 (17)
Mn20.0106 (2)0.0136 (2)0.01241 (19)0.00140 (17)0.00160 (15)0.00314 (17)
O10.0156 (7)0.0125 (8)0.0219 (7)0.0011 (6)0.0006 (6)0.0018 (6)
O20.0145 (7)0.0122 (8)0.0294 (8)0.0013 (6)0.0073 (6)0.0067 (6)
O30.0157 (7)0.0159 (8)0.0172 (7)0.0028 (6)0.0028 (6)0.0034 (6)
O40.0148 (7)0.0202 (8)0.0151 (7)0.0004 (6)0.0017 (5)0.0059 (6)
O50.0142 (7)0.0260 (9)0.0175 (7)0.0000 (7)0.0023 (6)0.0031 (6)
O60.0131 (7)0.0132 (8)0.0139 (7)0.0011 (6)0.0008 (5)0.0016 (6)
O70.0146 (8)0.0148 (8)0.0278 (8)0.0007 (6)0.0053 (6)0.0022 (6)
O80.0217 (9)0.0393 (12)0.0325 (9)0.0029 (8)0.0008 (7)0.0125 (8)
O90.0172 (8)0.0201 (9)0.0458 (10)0.0001 (7)0.0056 (7)0.0033 (8)
N10.0199 (9)0.0104 (9)0.0210 (9)0.0007 (7)0.0011 (7)0.0030 (7)
N20.0240 (9)0.0180 (9)0.0155 (8)0.0083 (8)0.0043 (7)0.0051 (7)
C10.0194 (10)0.0109 (11)0.0146 (9)0.0014 (8)0.0069 (8)0.0004 (8)
C20.0152 (10)0.0114 (10)0.0144 (9)0.0035 (8)0.0048 (8)0.0006 (8)
C30.0147 (10)0.0155 (11)0.0152 (9)0.0021 (8)0.0036 (8)0.0006 (8)
C40.0177 (10)0.0118 (11)0.0164 (9)0.0006 (8)0.0044 (8)0.0006 (8)
C50.0195 (10)0.0130 (10)0.0126 (9)0.0026 (8)0.0043 (8)0.0005 (8)
C60.0152 (10)0.0171 (12)0.0212 (10)0.0004 (9)0.0016 (8)0.0014 (8)
C70.0185 (10)0.0106 (10)0.0194 (10)0.0013 (8)0.0034 (8)0.0008 (8)
C80.0238 (11)0.0104 (11)0.0218 (10)0.0042 (9)0.0017 (9)0.0014 (8)
C90.0349 (13)0.0199 (13)0.0294 (12)0.0011 (10)0.0104 (10)0.0038 (10)
C100.0221 (11)0.0165 (12)0.0234 (10)0.0015 (9)0.0050 (9)0.0044 (9)
C110.0230 (12)0.0307 (14)0.0354 (13)0.0032 (10)0.0021 (10)0.0035 (11)
C120.0147 (10)0.0114 (10)0.0138 (9)0.0025 (8)0.0012 (7)0.0011 (7)
C130.0146 (10)0.0105 (10)0.0120 (9)0.0013 (8)0.0020 (7)0.0001 (7)
C140.0147 (10)0.0106 (10)0.0141 (9)0.0005 (8)0.0008 (7)0.0011 (7)
C150.0199 (10)0.0152 (11)0.0108 (9)0.0016 (8)0.0028 (8)0.0002 (8)
C160.0202 (11)0.0121 (11)0.0130 (9)0.0021 (8)0.0007 (8)0.0012 (8)
C170.0170 (10)0.0172 (11)0.0150 (9)0.0036 (8)0.0029 (8)0.0008 (8)
C180.0168 (10)0.0168 (11)0.0108 (9)0.0003 (8)0.0025 (7)0.0019 (7)
C190.0281 (12)0.0221 (13)0.0193 (10)0.0117 (10)0.0040 (9)0.0082 (9)
C200.0313 (13)0.0348 (15)0.0218 (11)0.0047 (11)0.0018 (10)0.0026 (10)
C210.0275 (12)0.0201 (13)0.0196 (10)0.0105 (9)0.0039 (9)0.0043 (9)
C220.0265 (13)0.0452 (16)0.0318 (13)0.0062 (12)0.0059 (10)0.0009 (12)
Geometric parameters (Å, º) top
Mn1—O22.1071 (14)C6—C51.408 (3)
Mn1—O2i2.1071 (14)C6—C71.373 (3)
Mn1—O52.1932 (14)C6—H60.9300
Mn1—O5i2.1932 (14)C7—H70.9300
Mn1—O62.2725 (13)C8—C91.518 (3)
Mn1—O6i2.2725 (13)C8—H8A0.9700
Mn2—O42.1120 (13)C8—H8B0.9700
Mn2—O4ii2.1120 (13)C9—H9A0.9600
Mn2—O62.2594 (13)C9—H9B0.9600
Mn2—O6ii2.2594 (13)C9—H9C0.9600
Mn2—O72.1835 (14)C10—C111.520 (3)
Mn2—O7ii2.1835 (14)C10—H10A0.9700
O1—C11.263 (2)C10—H10B0.9700
O2—C11.279 (2)C11—H11A0.9600
O3—C121.263 (2)C11—H11B0.9600
O4—C121.278 (2)C11—H11C0.9600
O5—H510.970 (16)C12—C131.478 (3)
O5—H520.903 (17)C13—C181.396 (3)
O6—H610.931 (16)C14—C131.398 (3)
O6—H620.896 (18)C14—C151.381 (3)
O7—H710.973 (16)C14—H140.9300
O7—H720.894 (17)C15—H150.9300
O8—H810.895 (17)C16—C151.412 (3)
O8—H820.957 (19)C16—C171.417 (3)
O9—H910.930 (17)C17—C181.373 (3)
O9—H920.90 (2)C17—H170.9300
N1—C51.372 (2)C18—H180.9300
N1—C81.458 (3)C19—C201.511 (3)
N1—C101.457 (3)C19—H19A0.9700
N2—C161.373 (2)C19—H19B0.9700
N2—C191.468 (2)C20—H20A0.9600
N2—C211.455 (3)C20—H20B0.9600
C1—C21.480 (3)C20—H20C0.9600
C2—C31.397 (3)C21—C221.521 (3)
C2—C71.389 (3)C21—H21A0.9700
C3—H30.9300C21—H21B0.9700
C4—C31.379 (3)C22—H22A0.9600
C4—C51.416 (3)C22—H22B0.9600
C4—H40.9300C22—H22C0.9600
O2i—Mn1—O2180.00 (11)C6—C7—C2122.17 (19)
O2i—Mn1—O590.28 (5)C6—C7—H7118.9
O2—Mn1—O589.72 (5)N1—C8—C9112.74 (17)
O2i—Mn1—O5i89.72 (5)N1—C8—H8A109.0
O2—Mn1—O5i90.28 (5)N1—C8—H8B109.0
O2i—Mn1—O689.78 (5)C9—C8—H8A109.0
O2—Mn1—O690.22 (5)C9—C8—H8B109.0
O2—Mn1—O6i89.78 (5)H8A—C8—H8B107.8
O2i—Mn1—O6i90.22 (5)C8—C9—H9A109.5
O5—Mn1—O5i180.00 (7)C8—C9—H9B109.5
O5—Mn1—O693.27 (5)C8—C9—H9C109.5
O5i—Mn1—O686.73 (5)H9A—C9—H9B109.5
O5—Mn1—O6i86.73 (5)H9A—C9—H9C109.5
O5i—Mn1—O6i93.27 (5)H9B—C9—H9C109.5
O6—Mn1—O6i180.00 (10)N1—C10—C11113.00 (18)
O4—Mn2—O4ii180.00 (8)N1—C10—H10A109.0
O4—Mn2—O6ii90.00 (5)N1—C10—H10B109.0
O4ii—Mn2—O6ii90.00 (5)C11—C10—H10A109.0
O4—Mn2—O690.00 (5)C11—C10—H10B109.0
O4ii—Mn2—O690.00 (5)H10A—C10—H10B107.8
O4—Mn2—O790.10 (5)C10—C11—H11A109.5
O4ii—Mn2—O789.90 (5)C10—C11—H11B109.5
O4—Mn2—O7ii89.90 (5)C10—C11—H11C109.5
O4ii—Mn2—O7ii90.10 (5)H11A—C11—H11B109.5
O6ii—Mn2—O6180.00 (6)H11A—C11—H11C109.5
O7—Mn2—O7ii180.00 (8)H11B—C11—H11C109.5
O7—Mn2—O6ii86.29 (5)O3—C12—O4122.35 (18)
O7ii—Mn2—O6ii93.71 (5)O3—C12—C13120.23 (17)
O7—Mn2—O693.71 (5)O4—C12—C13117.42 (17)
O7ii—Mn2—O686.29 (5)C14—C13—C12122.31 (17)
C1—O2—Mn1127.87 (12)C18—C13—C12120.51 (17)
C12—O4—Mn2127.31 (12)C18—C13—C14117.18 (17)
Mn1—O5—H51120.1 (16)C13—C14—H14119.2
Mn1—O5—H52114.8 (18)C15—C14—C13121.64 (18)
H52—O5—H51105 (2)C15—C14—H14119.2
Mn1—O6—H61114.7 (15)C14—C15—C16121.24 (18)
Mn1—O6—H6297.0 (18)C14—C15—H15119.4
Mn2—O6—Mn1128.35 (6)C16—C15—H15119.4
Mn2—O6—H6196.4 (15)N2—C16—C15121.84 (17)
Mn2—O6—H62113.8 (19)N2—C16—C17121.39 (18)
H61—O6—H62106 (2)C15—C16—C17116.73 (18)
Mn2—O7—H71124.4 (16)C18—C17—C16121.00 (18)
Mn2—O7—H72118.9 (19)C18—C17—H17119.5
H72—O7—H71106 (2)C16—C17—H17119.5
H81—O8—H82105 (3)C17—C18—C13122.20 (18)
H91—O9—H92105 (3)C17—C18—H18118.9
C5—N1—C8122.25 (17)C13—C18—H18118.9
C5—N1—C10121.36 (17)N2—C19—C20113.32 (18)
C10—N1—C8115.50 (16)N2—C19—H19A108.9
C16—N2—C19120.96 (16)N2—C19—H19B108.9
C16—N2—C21120.77 (16)C20—C19—H19A108.9
C21—N2—C19117.38 (16)C20—C19—H19B108.9
O1—C1—O2121.96 (18)H19A—C19—H19B107.7
O1—C1—C2120.75 (17)C19—C20—H20A109.5
O2—C1—C2117.28 (17)C19—C20—H20B109.5
C3—C2—C1122.32 (17)C19—C20—H20C109.5
C7—C2—C1120.34 (18)H20A—C20—H20B109.5
C7—C2—C3117.33 (18)H20A—C20—H20C109.5
C2—C3—H3119.3H20B—C20—H20C109.5
C4—C3—C2121.48 (18)N2—C21—C22115.19 (19)
C4—C3—H3119.3N2—C21—H21A108.5
C3—C4—C5121.09 (19)N2—C21—H21B108.5
C3—C4—H4119.5C22—C21—H21A108.5
C5—C4—H4119.5C22—C21—H21B108.5
N1—C5—C4121.91 (18)H21A—C21—H21B107.5
N1—C5—C6121.37 (18)C21—C22—H22A109.5
C6—C5—C4116.72 (18)C21—C22—H22B109.5
C5—C6—H6119.5C21—C22—H22C109.5
C7—C6—C5121.07 (18)H22A—C22—H22B109.5
C7—C6—H6119.5H22A—C22—H22C109.5
C2—C7—H7118.9H22B—C22—H22C109.5
O5—Mn1—O2—C160.63 (16)C16—N2—C19—C2079.2 (2)
O5i—Mn1—O2—C1119.37 (16)C21—N2—C19—C2090.1 (2)
O6—Mn1—O2—C1153.90 (16)C16—N2—C21—C2278.8 (2)
O6i—Mn1—O2—C126.10 (16)C19—N2—C21—C2290.5 (2)
O2i—Mn1—O6—Mn2125.04 (8)O1—C1—C2—C312.0 (3)
O2—Mn1—O6—Mn254.96 (8)O1—C1—C2—C7169.14 (18)
O5—Mn1—O6—Mn2144.69 (8)O2—C1—C2—C3168.63 (17)
O5i—Mn1—O6—Mn235.31 (8)O2—C1—C2—C710.2 (3)
O6ii—Mn2—O4—C12151.88 (16)C1—C2—C3—C4176.60 (18)
O6—Mn2—O4—C1228.12 (16)C7—C2—C3—C42.3 (3)
O7—Mn2—O4—C12121.83 (16)C1—C2—C7—C6176.75 (18)
O7ii—Mn2—O4—C1258.17 (16)C3—C2—C7—C62.2 (3)
O4—Mn2—O6—Mn1124.77 (8)C5—C4—C3—C20.5 (3)
O4ii—Mn2—O6—Mn155.23 (8)C3—C4—C5—N1177.13 (18)
O7—Mn2—O6—Mn1145.13 (8)C3—C4—C5—C63.4 (3)
O7ii—Mn2—O6—Mn134.87 (8)C7—C6—C5—N1176.98 (18)
Mn1—O2—C1—O131.0 (3)C7—C6—C5—C43.5 (3)
Mn1—O2—C1—C2148.33 (13)C5—C6—C7—C20.8 (3)
Mn2—O4—C12—O336.7 (3)O3—C12—C13—C1411.0 (3)
Mn2—O4—C12—C13142.49 (14)O3—C12—C13—C18168.54 (18)
C8—N1—C5—C410.9 (3)O4—C12—C13—C14169.77 (17)
C8—N1—C5—C6169.68 (18)O4—C12—C13—C1810.7 (3)
C10—N1—C5—C4179.60 (18)C12—C13—C18—C17179.60 (18)
C10—N1—C5—C60.9 (3)C14—C13—C18—C170.8 (3)
C5—N1—C8—C997.7 (2)C15—C14—C13—C12179.32 (18)
C10—N1—C8—C992.9 (2)C15—C14—C13—C181.1 (3)
C5—N1—C10—C1182.3 (2)C13—C14—C15—C160.9 (3)
C8—N1—C10—C1187.2 (2)N2—C16—C15—C14177.38 (18)
C19—N2—C16—C17175.89 (19)C17—C16—C15—C140.4 (3)
C19—N2—C16—C156.5 (3)N2—C16—C17—C18177.68 (19)
C21—N2—C16—C15175.42 (19)C15—C16—C17—C180.1 (3)
C21—N2—C16—C176.9 (3)C16—C17—C18—C130.3 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O80.97 (2)1.77 (2)2.738 (2)177 (2)
O5—H52···O4iii0.90 (2)1.85 (2)2.7457 (19)175 (3)
O6—H61···O30.93 (2)1.78 (2)2.651 (2)156 (2)
O6—H62···O1i0.90 (2)1.76 (2)2.608 (2)156 (3)
O7—H71···O9i0.97 (2)1.77 (2)2.739 (2)177 (1)
O7—H72···O2ii0.89 (2)1.85 (2)2.733 (2)170 (3)
O8—H82···O30.96 (3)1.77 (3)2.694 (2)160 (3)
O9—H91···O10.93 (2)1.80 (2)2.692 (2)160 (3)
C6—H6···Cg20.932.913.764 (2)154
C19—H19A···Cg2iv0.972.903.830 (2)162
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z; (iii) x1, y, z; (iv) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C11H14NO2)2(H2O)3]·2H2O
Mr529.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.1585 (2), 11.2907 (2), 27.8738 (3)
β (°) 95.644 (2)
V3)2555.15 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.50 × 0.20 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.870, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
22676, 6299, 4556
Rint0.035
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.091, 1.02
No. of reflections6299
No. of parameters354
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.41

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Mn1—O22.1071 (14)Mn2—O42.1120 (13)
Mn1—O52.1932 (14)Mn2—O62.2594 (13)
Mn1—O62.2725 (13)Mn2—O72.1835 (14)
O2i—Mn1—O590.28 (5)O4—Mn2—O690.00 (5)
O2—Mn1—O589.72 (5)O4—Mn2—O790.10 (5)
O2i—Mn1—O689.78 (5)O4ii—Mn2—O789.90 (5)
O2—Mn1—O690.22 (5)O7—Mn2—O693.71 (5)
O5—Mn1—O693.27 (5)O7ii—Mn2—O686.29 (5)
O5i—Mn1—O686.73 (5)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O80.97 (2)1.77 (2)2.738 (2)177 (2)
O5—H52···O4iii0.902 (17)1.846 (17)2.7457 (19)175 (3)
O6—H61···O30.929 (17)1.778 (19)2.651 (2)156 (2)
O6—H62···O1i0.896 (18)1.76 (2)2.608 (2)156 (3)
O7—H71···O9i0.97 (2)1.77 (2)2.739 (2)177.0 (2)
O7—H72···O2ii0.893 (18)1.850 (18)2.733 (2)170 (3)
O8—H82···O30.96 (3)1.77 (3)2.694 (2)160 (3)
O9—H91···O10.927 (19)1.80 (2)2.692 (2)160 (3)
C6—H6···Cg20.932.913.764 (2)154
C19—H19A···Cg2iv0.972.903.830 (2)162
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z; (iii) x1, y, z; (iv) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.

References

First citationAdiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAmiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075–1080.  CAS Google Scholar
First citationAntolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationAntsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103.  Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCatterick, J., Hursthouse, M. B., New, D. B. & Thorhton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844.  CrossRef Web of Science Google Scholar
First citationChen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169–172.  CAS Google Scholar
First citationHökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561–m2562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m505–m506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128–1131.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1997). Acta Cryst. C53, 187–189.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242–1244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821–m823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Necefoğlu, H. & Balcı (1995). Acta Cryst. C51, 2020–2023.  Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m747-m748
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds