organic compounds
(5R,6S)-4-Isopropyl-5-methyl-6-phenyl-3-propanoyl-2H-1,3,4-oxadiazinan-2-one
aCB 4160, Department of Chemistry, Illinois State University, Normal, IL 61790, USA
*Correspondence e-mail: Ferrence@IllinoisState.edu
The title compound, C16H22N2O3, was synthesized during the course of a study on (1R,2S)-norephedrine-derived 1,3,4-oxadiazinan-2-ones. The conformation adopted by the isopropyl group is pseudo-axial relative to the oxadiazinan core. The allylic strain contributes to this conformational arrangement.
Related literature
For related structures and background, see: Casper, Blackburn et al. (2002); Casper, Burgeson et al. (2002); Casper & Hitchcock (2003); Evans et al. (1981); Ferrence et al. (2003), Hitchcock et al. (2001); Trepanier et al. (1968). The synthesis of the title compound is described by Hitchcock et al. (2004). For ring puckering analysis, see: Boeyens (1978); Cremer & Pople (1975); Spek (2009). For non-classical hydrogen bonding, see: Steiner (1996).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2003); cell SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2009).
Supporting information
10.1107/S1600536809022363/zl2203sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809022363/zl2203Isup2.hkl
The title compound was synthesized by acylation of norephedrine derived 1,3,4-oxadiazinan-2-one using propanoyl (Hitchcock et al., 2004). Single crystals were grown by vapor diffusion of hexane into a methylene chloride solution of the title compound.
All non-H atoms were refined anisotropically without disorder. All H atoms were initially identified through difference Fourier syntheses and then removed and included in the
in the riding-model approximation with fixed individual displacement parameters [U(Hiso) = 1.2Ueq(C) or U(Hiso) = 1.5Ueq(Cmethyl)] using a riding model with Caromatic—H = 0.95 Å, Cmethyl—H = 0.98 Å, Cmethylene—H = 0.99 Å or Cmethine—H = 1.00 Å. Friedel opposites were merged.Data collection: SMART (Bruker, 2003); cell
SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2009).Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. J mol enhanced figure of the title compound. The default view shows a space-filling depiction of the asymmetric unit. Key torsion angles may be highlighted when viewing the active enhanced figure. |
C16H22N2O3 | F(000) = 624 |
Mr = 290.36 | Dx = 1.221 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 7989 reflections |
a = 6.8644 (3) Å | θ = 2.7–30.4° |
b = 10.8370 (5) Å | µ = 0.09 mm−1 |
c = 21.2348 (10) Å | T = 140 K |
V = 1579.65 (12) Å3 | Needle, colourless |
Z = 4 | 0.45 × 0.29 × 0.2 mm |
Bruker SMART APEX CCD diffractometer | 2263 independent reflections |
Radiation source: sealed tube | 2231 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
ω scans | θmax = 28.3°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS in SAINT-Plus; Bruker, 2003) | h = −9→9 |
Tmin = 0.878, Tmax = 0.983 | k = −14→14 |
16184 measured reflections | l = −28→27 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.039 | w = 1/[σ2(Fo2) + (0.0467P)2 + 0.4577P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.099 | (Δ/σ)max < 0.001 |
S = 1.18 | Δρmax = 0.32 e Å−3 |
2263 reflections | Δρmin = −0.21 e Å−3 |
190 parameters |
C16H22N2O3 | V = 1579.65 (12) Å3 |
Mr = 290.36 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 6.8644 (3) Å | µ = 0.09 mm−1 |
b = 10.8370 (5) Å | T = 140 K |
c = 21.2348 (10) Å | 0.45 × 0.29 × 0.2 mm |
Bruker SMART APEX CCD diffractometer | 2263 independent reflections |
Absorption correction: multi-scan (SADABS in SAINT-Plus; Bruker, 2003) | 2231 reflections with I > 2σ(I) |
Tmin = 0.878, Tmax = 0.983 | Rint = 0.022 |
16184 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.18 | Δρmax = 0.32 e Å−3 |
2263 reflections | Δρmin = −0.21 e Å−3 |
190 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.75439 (18) | 0.26491 (11) | 0.44189 (6) | 0.0196 (3) | |
C2 | 0.8863 (3) | 0.34214 (16) | 0.41773 (8) | 0.0188 (3) | |
N3 | 0.8136 (2) | 0.44240 (13) | 0.38381 (7) | 0.0178 (3) | |
N4 | 0.6120 (2) | 0.47290 (13) | 0.39003 (6) | 0.0166 (3) | |
C5 | 0.5006 (2) | 0.36039 (15) | 0.37440 (7) | 0.0165 (3) | |
H5 | 0.3593 | 0.3803 | 0.3796 | 0.020* | |
C6 | 0.5509 (2) | 0.25838 (16) | 0.42207 (8) | 0.0163 (3) | |
H6 | 0.4683 | 0.2717 | 0.4602 | 0.020* | |
C7 | 0.5138 (3) | 0.12801 (16) | 0.39890 (8) | 0.0187 (3) | |
C8 | 0.6638 (3) | 0.05224 (17) | 0.37881 (9) | 0.0262 (4) | |
H8 | 0.7946 | 0.0806 | 0.3807 | 0.031* | |
C9 | 0.6234 (4) | −0.06520 (19) | 0.35596 (10) | 0.0326 (5) | |
H9 | 0.7270 | −0.1166 | 0.3421 | 0.039* | |
C10 | 0.4342 (4) | −0.10773 (17) | 0.35327 (9) | 0.0320 (5) | |
H10 | 0.4073 | −0.1883 | 0.3380 | 0.038* | |
C11 | 0.2841 (3) | −0.03214 (19) | 0.37300 (10) | 0.0315 (4) | |
H11 | 0.1535 | −0.0608 | 0.3710 | 0.038* | |
C12 | 0.3230 (3) | 0.08577 (17) | 0.39586 (9) | 0.0251 (4) | |
H12 | 0.2191 | 0.1373 | 0.4094 | 0.030* | |
C13 | 0.5331 (3) | 0.32666 (16) | 0.30550 (8) | 0.0208 (3) | |
H13A | 0.4971 | 0.3968 | 0.2788 | 0.031* | |
H13B | 0.4523 | 0.2552 | 0.2946 | 0.031* | |
H13C | 0.6706 | 0.3063 | 0.2988 | 0.031* | |
C14 | 0.5736 (3) | 0.52506 (17) | 0.45405 (8) | 0.0225 (4) | |
H14 | 0.6017 | 0.4607 | 0.4865 | 0.027* | |
C15 | 0.7025 (3) | 0.63686 (18) | 0.46590 (10) | 0.0310 (4) | |
H15A | 0.8396 | 0.6123 | 0.4632 | 0.046* | |
H15B | 0.6756 | 0.6700 | 0.5079 | 0.046* | |
H15C | 0.6752 | 0.7002 | 0.4342 | 0.046* | |
C16 | 0.3600 (3) | 0.5623 (2) | 0.45843 (11) | 0.0344 (5) | |
H16B | 0.2776 | 0.4899 | 0.4511 | 0.052* | |
H16A | 0.3318 | 0.6253 | 0.4266 | 0.052* | |
H16C | 0.3334 | 0.5958 | 0.5004 | 0.052* | |
C17 | 0.9228 (2) | 0.50008 (16) | 0.33572 (8) | 0.0195 (3) | |
C18 | 0.8239 (3) | 0.60532 (17) | 0.30136 (9) | 0.0245 (4) | |
H18A | 0.7224 | 0.5718 | 0.2730 | 0.029* | |
H18B | 0.7594 | 0.6601 | 0.3323 | 0.029* | |
C19 | 0.9691 (3) | 0.6793 (2) | 0.26320 (11) | 0.0344 (5) | |
H19C | 0.9013 | 0.7465 | 0.2414 | 0.052* | |
H19B | 1.0317 | 0.6254 | 0.2322 | 0.052* | |
H19A | 1.0682 | 0.7139 | 0.2913 | 0.052* | |
O20 | 1.08450 (19) | 0.46487 (14) | 0.32269 (7) | 0.0296 (3) | |
O21 | 1.05596 (18) | 0.32428 (13) | 0.42830 (6) | 0.0266 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0168 (6) | 0.0205 (6) | 0.0214 (6) | −0.0011 (5) | −0.0033 (5) | 0.0057 (5) |
C2 | 0.0173 (7) | 0.0213 (8) | 0.0177 (7) | 0.0005 (7) | −0.0004 (6) | 0.0014 (6) |
N3 | 0.0122 (6) | 0.0190 (6) | 0.0222 (7) | 0.0004 (6) | 0.0001 (5) | 0.0033 (5) |
N4 | 0.0121 (6) | 0.0184 (6) | 0.0194 (6) | 0.0011 (5) | 0.0013 (5) | −0.0003 (5) |
C5 | 0.0144 (7) | 0.0168 (7) | 0.0183 (7) | 0.0007 (6) | −0.0004 (6) | 0.0017 (6) |
C6 | 0.0126 (7) | 0.0188 (7) | 0.0174 (7) | −0.0009 (6) | 0.0006 (6) | 0.0014 (6) |
C7 | 0.0216 (8) | 0.0183 (7) | 0.0163 (7) | −0.0009 (7) | 0.0006 (6) | 0.0015 (6) |
C8 | 0.0260 (9) | 0.0229 (8) | 0.0297 (9) | 0.0018 (8) | 0.0019 (8) | −0.0018 (7) |
C9 | 0.0420 (12) | 0.0240 (9) | 0.0318 (10) | 0.0069 (9) | 0.0038 (9) | −0.0036 (8) |
C10 | 0.0539 (13) | 0.0182 (8) | 0.0239 (9) | −0.0074 (9) | −0.0026 (9) | −0.0011 (7) |
C11 | 0.0337 (10) | 0.0287 (10) | 0.0322 (10) | −0.0126 (9) | −0.0017 (9) | 0.0020 (8) |
C12 | 0.0238 (9) | 0.0230 (8) | 0.0287 (9) | −0.0032 (8) | 0.0008 (8) | 0.0002 (7) |
C13 | 0.0223 (8) | 0.0226 (8) | 0.0176 (7) | −0.0019 (8) | −0.0014 (6) | 0.0010 (6) |
C14 | 0.0281 (9) | 0.0190 (7) | 0.0203 (8) | −0.0011 (7) | 0.0038 (7) | −0.0027 (6) |
C15 | 0.0372 (11) | 0.0242 (9) | 0.0315 (9) | −0.0071 (8) | −0.0018 (9) | −0.0061 (8) |
C16 | 0.0311 (10) | 0.0337 (10) | 0.0384 (11) | 0.0030 (9) | 0.0099 (9) | −0.0119 (9) |
C17 | 0.0172 (7) | 0.0208 (8) | 0.0206 (7) | −0.0032 (7) | 0.0000 (6) | 0.0024 (6) |
C18 | 0.0202 (8) | 0.0239 (8) | 0.0295 (9) | 0.0003 (8) | 0.0032 (7) | 0.0086 (7) |
C19 | 0.0281 (10) | 0.0326 (10) | 0.0424 (11) | −0.0031 (9) | 0.0066 (9) | 0.0167 (9) |
O20 | 0.0183 (6) | 0.0387 (8) | 0.0318 (7) | 0.0052 (6) | 0.0061 (5) | 0.0110 (6) |
O21 | 0.0160 (6) | 0.0325 (7) | 0.0314 (7) | 0.0020 (6) | −0.0018 (5) | 0.0102 (6) |
O1—C2 | 1.336 (2) | C11—H11 | 0.9500 |
O1—C6 | 1.460 (2) | C12—H12 | 0.9500 |
C2—O21 | 1.202 (2) | C13—H13A | 0.9800 |
C2—N3 | 1.396 (2) | C13—H13B | 0.9800 |
N3—C17 | 1.413 (2) | C13—H13C | 0.9800 |
N3—N4 | 1.4291 (19) | C14—C15 | 1.521 (3) |
N4—C5 | 1.477 (2) | C14—C16 | 1.523 (3) |
N4—C14 | 1.496 (2) | C14—H14 | 1.0000 |
C5—C13 | 1.524 (2) | C15—H15A | 0.9800 |
C5—C6 | 1.538 (2) | C15—H15B | 0.9800 |
C5—H5 | 1.0000 | C15—H15C | 0.9800 |
C6—C7 | 1.518 (2) | C16—H16B | 0.9800 |
C6—H6 | 1.0000 | C16—H16A | 0.9800 |
C7—C8 | 1.384 (3) | C16—H16C | 0.9800 |
C7—C12 | 1.389 (3) | C17—O20 | 1.206 (2) |
C8—C9 | 1.390 (3) | C17—C18 | 1.515 (2) |
C8—H8 | 0.9500 | C18—C19 | 1.514 (3) |
C9—C10 | 1.379 (3) | C18—H18A | 0.9900 |
C9—H9 | 0.9500 | C18—H18B | 0.9900 |
C10—C11 | 1.381 (3) | C19—H19C | 0.9800 |
C10—H10 | 0.9500 | C19—H19B | 0.9800 |
C11—C12 | 1.393 (3) | C19—H19A | 0.9800 |
C2—O1—C6 | 124.62 (13) | C5—C13—H13A | 109.5 |
O21—C2—O1 | 118.98 (16) | C5—C13—H13B | 109.5 |
O21—C2—N3 | 124.62 (16) | H13A—C13—H13B | 109.5 |
O1—C2—N3 | 116.34 (15) | C5—C13—H13C | 109.5 |
C2—N3—C17 | 121.86 (14) | H13A—C13—H13C | 109.5 |
C2—N3—N4 | 118.59 (14) | H13B—C13—H13C | 109.5 |
C17—N3—N4 | 118.58 (14) | N4—C14—C15 | 110.40 (15) |
N3—N4—C5 | 106.83 (12) | N4—C14—C16 | 108.99 (15) |
N3—N4—C14 | 110.01 (13) | C15—C14—C16 | 109.78 (16) |
C5—N4—C14 | 115.14 (13) | N4—C14—H14 | 109.2 |
N4—C5—C13 | 109.75 (13) | C15—C14—H14 | 109.2 |
N4—C5—C6 | 109.23 (13) | C16—C14—H14 | 109.2 |
C13—C5—C6 | 115.24 (14) | C14—C15—H15A | 109.5 |
N4—C5—H5 | 107.4 | C14—C15—H15B | 109.5 |
C13—C5—H5 | 107.4 | H15A—C15—H15B | 109.5 |
C6—C5—H5 | 107.4 | C14—C15—H15C | 109.5 |
O1—C6—C7 | 107.41 (14) | H15A—C15—H15C | 109.5 |
O1—C6—C5 | 111.69 (13) | H15B—C15—H15C | 109.5 |
C7—C6—C5 | 114.71 (13) | C14—C16—H16B | 109.5 |
O1—C6—H6 | 107.6 | C14—C16—H16A | 109.5 |
C7—C6—H6 | 107.6 | H16B—C16—H16A | 109.5 |
C5—C6—H6 | 107.6 | C14—C16—H16C | 109.5 |
C8—C7—C12 | 119.44 (17) | H16B—C16—H16C | 109.5 |
C8—C7—C6 | 121.81 (16) | H16A—C16—H16C | 109.5 |
C12—C7—C6 | 118.71 (15) | O20—C17—N3 | 120.94 (16) |
C7—C8—C9 | 120.16 (19) | O20—C17—C18 | 122.72 (16) |
C7—C8—H8 | 119.9 | N3—C17—C18 | 116.33 (15) |
C9—C8—H8 | 119.9 | C19—C18—C17 | 111.18 (16) |
C10—C9—C8 | 120.54 (19) | C19—C18—H18A | 109.4 |
C10—C9—H9 | 119.7 | C17—C18—H18A | 109.4 |
C8—C9—H9 | 119.7 | C19—C18—H18B | 109.4 |
C9—C10—C11 | 119.44 (18) | C17—C18—H18B | 109.4 |
C9—C10—H10 | 120.3 | H18A—C18—H18B | 108.0 |
C11—C10—H10 | 120.3 | C18—C19—H19C | 109.5 |
C10—C11—C12 | 120.46 (19) | C18—C19—H19B | 109.5 |
C10—C11—H11 | 119.8 | H19C—C19—H19B | 109.5 |
C12—C11—H11 | 119.8 | C18—C19—H19A | 109.5 |
C7—C12—C11 | 119.96 (18) | H19C—C19—H19A | 109.5 |
C7—C12—H12 | 120.0 | H19B—C19—H19A | 109.5 |
C11—C12—H12 | 120.0 | ||
C6—O1—C2—O21 | −165.68 (17) | O1—C6—C7—C12 | 160.20 (15) |
C6—O1—C2—N3 | 17.1 (2) | C5—C6—C7—C12 | −75.0 (2) |
O21—C2—N3—C17 | 29.6 (3) | C12—C7—C8—C9 | −0.2 (3) |
O1—C2—N3—C17 | −153.40 (15) | C6—C7—C8—C9 | −177.88 (17) |
O21—C2—N3—N4 | −161.87 (17) | C7—C8—C9—C10 | −0.3 (3) |
O1—C2—N3—N4 | 15.2 (2) | C8—C9—C10—C11 | 0.6 (3) |
C2—N3—N4—C5 | −55.15 (18) | C9—C10—C11—C12 | −0.4 (3) |
C17—N3—N4—C5 | 113.79 (15) | C8—C7—C12—C11 | 0.3 (3) |
C2—N3—N4—C14 | 70.48 (18) | C6—C7—C12—C11 | 178.08 (16) |
C17—N3—N4—C14 | −120.58 (16) | C10—C11—C12—C7 | 0.0 (3) |
N3—N4—C5—C13 | −64.81 (16) | N3—N4—C14—C15 | 56.73 (18) |
C14—N4—C5—C13 | 172.72 (14) | C5—N4—C14—C15 | 177.48 (15) |
N3—N4—C5—C6 | 62.43 (16) | N3—N4—C14—C16 | 177.38 (15) |
C14—N4—C5—C6 | −60.04 (17) | C5—N4—C14—C16 | −61.87 (18) |
C2—O1—C6—C7 | 120.86 (16) | C2—N3—C17—O20 | −0.7 (3) |
C2—O1—C6—C5 | −5.7 (2) | N4—N3—C17—O20 | −169.21 (16) |
N4—C5—C6—O1 | −34.68 (18) | C2—N3—C17—C18 | 178.17 (16) |
C13—C5—C6—O1 | 89.39 (17) | N4—N3—C17—C18 | 9.6 (2) |
N4—C5—C6—C7 | −157.20 (14) | O20—C17—C18—C19 | −15.4 (3) |
C13—C5—C6—C7 | −33.1 (2) | N3—C17—C18—C19 | 165.80 (17) |
O1—C6—C7—C8 | −22.1 (2) | O21—C2—C17—O20 | 23.67 (17) |
C5—C6—C7—C8 | 102.74 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O1 | 0.95 | 2.40 | 2.737 (2) | 101 |
C14—H14···O1 | 1.00 | 2.55 | 3.091 (2) | 114 |
C15—H15A···N3 | 0.98 | 2.50 | 2.839 (2) | 100 |
C5—H5···O20i | 1.00 | 2.42 | 3.263 (2) | 142 |
C16—H16B···O21i | 0.98 | 2.40 | 3.380 (3) | 175 |
C12—H12···O21i | 0.95 | 2.35 | 3.243 (2) | 156 |
C5—H5···O21i | 1.00 | 2.40 | 3.283 (2) | 147 |
C6—H6···O1ii | 1.00 | 2.58 | 3.543 (2) | 163 |
Symmetry codes: (i) x−1, y, z; (ii) x−1/2, −y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C16H22N2O3 |
Mr | 290.36 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 140 |
a, b, c (Å) | 6.8644 (3), 10.8370 (5), 21.2348 (10) |
V (Å3) | 1579.65 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.45 × 0.29 × 0.2 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS in SAINT-Plus; Bruker, 2003) |
Tmin, Tmax | 0.878, 0.983 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16184, 2263, 2231 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.099, 1.18 |
No. of reflections | 2263 |
No. of parameters | 190 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.21 |
Computer programs: SMART (Bruker, 2003), SAINT-Plus (Bruker, 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and publCIF (Westrip, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O1 | 0.95 | 2.40 | 2.737 (2) | 100.5 |
C14—H14···O1 | 1.00 | 2.55 | 3.091 (2) | 113.8 |
C15—H15A···N3 | 0.98 | 2.50 | 2.839 (2) | 99.8 |
C5—H5···O20i | 1.00 | 2.42 | 3.263 (2) | 141.5 |
C16—H16B···O21i | 0.98 | 2.40 | 3.380 (3) | 174.9 |
C12—H12···O21i | 0.95 | 2.35 | 3.243 (2) | 156.4 |
C5—H5···O21i | 1.00 | 2.40 | 3.283 (2) | 146.5 |
C6—H6···O1ii | 1.00 | 2.58 | 3.543 (2) | 162.8 |
Symmetry codes: (i) x−1, y, z; (ii) x−1/2, −y+1/2, −z+1. |
Acknowledgements
This material is based upon work supported by the US National Science Foundation (CHE-0348158)(to GMF) and the American Chemical Society Petroleum Research Fund (to SRH & GMF). GMF thanks Adam Beitelman (ISU) and Youngstown State University Structure & Chemical Instrumentation Facility's Matthias Zeller for data collection and useful discussion. The diffractometer was funded by NSF grant 0087210, Ohio Board of Regents grant CAP-491, and YSU.
References
Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320. CrossRef Web of Science Google Scholar
Bruker (2003). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Casper, D. M., Blackburn, J. R., Maroules, C. D., Brady, T., Esken, J. M., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2002). J. Org. Chem. 67, 8871-8876. Web of Science CSD CrossRef PubMed CAS Google Scholar
Casper, D. M., Burgeson, J. R., Esken, J. M., Ferrence, G. M. & Hitchcock, S. R. (2002). Org. Lett. 4, 3739-3742. Web of Science CSD CrossRef PubMed CAS Google Scholar
Casper, D. M. & Hitchcock, S. R. (2003). Tetrahedron Asymmetry, 14, 517-521. Web of Science CrossRef CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Evans, D. A., Bartolli, J. & Shih, T. L. (1981). J. Am. Chem. Soc. 103, 2127–2129. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Ferrence, G. M., Esken, J. M., Blackburn, J. R. & Hitchcock, S. R. (2003). Acta Cryst. E59, o212–o214. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hitchcock, S. R., Casper, D. M., Vaughn, J. F., Finefield, J. M., Ferrence, G. M. & Esken, J. M. (2004). J. Org. Chem. 69, 714-718. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hitchcock, S. R., Nora, G. P., Casper, D. M., Squire, M. D., Maroules, C. D., Ferrence, G. M., Szczepura, L. F. & Standard, J. M. (2001). Tetrahedron, 57, 9789-9798. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steiner, T. (1996). Cryst. Rev., 6, 1–57. CrossRef CAS Google Scholar
Trepanier, D. L., Elbe, J. N. & Harris, G. H. (1968). J. Med. Chem. 11, 357–361. CrossRef CAS PubMed Web of Science Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The production of enantiomerically pure compounds has become increasingly important in the pharmaceutical industry. The high demand for a single enantiomer of a chiral intermediate has led to a wealth of methods for asymmetric synthesis (Hitchcock et al., 2004). While asymmetric catalysis and other methods have been functional in asymmetric synthesis, the important role of chiral auxiliaries in asymmetric synthesis is patent. Oxazolidin-2-ones, chiral auxiliaries first introduced by Evans et al. (Evans et al., 1981), have been of substance in areas of alkylation reactions, pericyclic reactions, and asymmetric aldol condensation reactions. Related, 1,3,4-oxadiazinan-2-one heterocycles have received little interest since their disclosure (Trepanier et al., 1968). It was not until recently that synthetic (Hitchcock et al., 2001) and conformational studies (Casper, Burgeson et al., 2002) of 1,3,4-oxadiazinan-2-one have been thoroughly performed.
Herein we report the X-ray structure of the N3-propanoyl acylated norephedrine-derived 1,3,4-oxadiazinan-2-one. The imide carbonyls adopt a syn-periplanar orientation, with an O21—C2—C17—O20 torsion angle of 23.67 (17)°. This result is consistent with those of previously reported N3 substituted oxadiazinan-2-ones (Casper, Blackburn et al., 2002; Casper, Burgeson et al., 2002; Ferrence et al., 2003). It is believed that in the oxadiazinaneone systems the syn-periplanar conformation arises from the lone pair repulsion interaction between the N4-nitrogen lone pair and the N3-carbonyl lone pair (Casper, Blackburn et al., 2002). However, in the case of the title compound, the repulsive interactions between the N3-substituent and the N4-isopropyl could also be held accountable for the syn-periplanar orientation. In fact, ring puckering analysis using PLATON (Spek, 2009; Cremer & Pople, 1975; Boeyens, 1978) indicates θ = 62.7 (2)° and Φ = 196.9 (2)° for the O1—C2—N3—N4—C5—C6 ring, which is consistent with a formal conformational assignment close to an idealized E4 envelope with N4 being the flap apex. Such a conformation possesses a pseudo-axial C5-methyl group, a typical pseudo-equatorial C6-phenyl ring, and a typical pseudo-axial N4-iso-propyl group. The imide carbonyls, although not syn-parallel, indicate the existence of resonance delocalization due to their approximately planar conformation [torsion angle 23.67 (17)°]. Based on previous studies (Casper, Blackburn et al., 2002), the N3-substituent is held rigidly due to resonance interactions, while the N4-isopropyl group adopts a pseudoaxial orientation to relieve allylic strain on the system. Both intra- and inter-molecular non-classical H-bonding interactions exist. Those interactions shorter than 2.7 Å with a >90° D—H···A angle are shown in Table 1 (Steiner, 1996). It appears that such non-classical H-bonding interactions may constitute the dominant packing forces in this structure; however, evaluation of additional related structures will be necessary before any particular rational for these interactions is defensible.