metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new polymorph of catena-poly[[tri­aqua­cadmium(II)]-μ2-pyrazine-2,3-di­carboxyl­ato]

aInstrumental Measurement and Analysis Center, Fuzhou University, Fuzhou, Fujian 350002, People's Republic of China
*Correspondence e-mail: yyh_shd@fzu.edu.cn

(Received 13 July 2009; accepted 17 July 2009; online 22 July 2009)

The title complex, [Cd(C6H2N2O4)(H2O)3]n, is a new monoclinic polymorph. The ortho­rhom­bic form has previously been reported [Ma et al. (2006[Ma, Y., He, Y.-K. & Han, Z.-B. (2006). Acta Cryst. E62, m2528-m2529.]). Acta Cryst. E62, m2528–m2529]. The Cd—N and Cd—O bond lengths range from 2.265 (3) to 2.333 (3) Å; a weak Cd—O inter­action is also present, the inter­atomic distance being 2.658 (4) Å. The CdII ions, which have a distorted penta­gonal-bipyramidal geometry, are bridged by pyrazine-2,3-dicarboxyl­ato ligands, forming a zigzag chain structure. The chains are connected by O—H⋯O hydrogen bonds into a three-dimensional framework.

Related literature

For the ortho­rhom­bic polymorph, see: Ma et al. (2006[Ma, Y., He, Y.-K. & Han, Z.-B. (2006). Acta Cryst. E62, m2528-m2529.]). For general background and related structures, see: Mao et al. (1996[Mao, L., Rettig, S. J., Thompson, R. C., Trotter, J. & Xia, S. H. (1996). Can. J. Chem. 74, 2413-2423.]); Kitaura et al. (2002[Kitaura, R., Fujimoto, K., Noro, S.-I., Kondo, M. & Kitagawa, S. (2002). Angew. Chem. Int. Ed. 41, 133-135.]); Maji et al. (2004[Maji, T. K., Uemura, K., Chang, H. C., Matsuda, R. & Kitagawa, S. (2004). Angew. Chem. Int. Ed. 43, 3269-3272.]); Yin & Liu (2007[Yin, H. & Liu, S. X. (2007). Polyhedron, 26, 3103-3111.], 2009[Yin, H. & Liu, S. X. (2009). Chin. J. Inorg. Chem. 25, 893-899.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C6H2N2O4)(H2O)3]

  • Mr = 332.54

  • Monoclinic, P 21 /n

  • a = 5.586 (6) Å

  • b = 15.748 (9) Å

  • c = 10.832 (6) Å

  • β = 93.94 (3)°

  • V = 950.5 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.32 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.18 mm

Data collection
  • Rigaku Weissenberg IP diffractometer

  • Absorption correction: multi-scan (TEXRAY; Molecular Structure Corporation, 1999[Molecular Structure Corporation (1999). TEXRAY and TEXSAN. MSC, The Woodlands, Texas, USA.]) Tmin = 0.668, Tmax = 1.000 (expected range = 0.440–0.658)

  • 5659 measured reflections

  • 2129 independent reflections

  • 1699 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.074

  • S = 1.03

  • 2129 reflections

  • 145 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—O3W 2.218 (3)
Cd1—O1 2.265 (3)
Cd1—O3i 2.294 (3)
Cd1—N1 2.334 (3)
Cd1—O2W 2.397 (4)
Cd1—O1W 2.451 (3)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O4ii 0.82 2.56 3.328 (5) 156
O2W—H2WA⋯O1iii 0.84 2.02 2.834 (5) 164
O2W—H2WB⋯N2iv 0.83 2.24 3.036 (4) 161
O3W—H3WA⋯O4iv 0.85 1.82 2.656 (6) 169
O3W—H3WB⋯O4v 0.83 2.25 2.865 (4) 132
O3W—H3WB⋯O2v 0.83 2.22 2.935 (4) 144
Symmetry codes: (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: TEXRAY (Molecular Structure Corporation, 1999[Molecular Structure Corporation (1999). TEXRAY and TEXSAN. MSC, The Woodlands, Texas, USA.]); cell refinement: TEXRAY; data reduction: TEXSAN (Molecular Structure Corporation, 1999[Molecular Structure Corporation (1999). TEXRAY and TEXSAN. MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEX (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrazine-2,3-dicarboxylic acid (pzdcH2) as a multidentate bridging ligand has been widely applied to construct polymeric coordination compounds (Mao et al.,1996; Kitaura et al., 2002). Recently, some pzdc-Cd complexes that exhibit selective gas adsorption and photoluminescence were synthesized by self assembling (Maji et al., 2004; Yin et al., 2007; Yin et al., 2009). In this work, a new polymorph of the title compound was obtained by introducing 1,2,4-triazol as the acidity modulating reagent in the reaction of pzdcH2 and Cd(II) ion.

The title compound is a one-dimensional zigzag chain structure composed of CdII ions bridged by pzdc ligands. Cd1 is coordinated by N1, O1 and O3i atoms from two pzdc ligands [symmetry code (i), -x + 1/2, y + 1/2, -z + 1/2] and three coordinated water molecules (O1W, O2W and O3W) (see Fig. 1). The corresponding bond lengths range from 2.265 (3) to 2.333 (3) Å. The Cd1 atom has a weak interaction with O4i (Cd1···O4i = 2.658 (4) Å). Overall, the geometry of Cd may be considered as a distorted pentagonal bipyramid. The title compound crystallizes in the monoclinic space group P21/n whereas the already known polymorph crystallizes in the orthorhombic space group P212121 (Ma et al., 2006). O-H···O hydrogen bonds combine the chains into a three-dimensional framework (Table 2). The neighboring Cd···Cd distance is 8.25 (1) Å.

Related literature top

For the orthorhombic polymorph, see: Ma et al. (2006). For general background and related structures, see: Mao et al. (1996); Kitaura et al. (2002); Maji et al. (2004); Yin et al. (2007, 2009).

Experimental top

By adding an aqueous solution of Cd(OAc)2 (0.1 mmol) into an aqueous solution of pzdcH2(0.1 mmol) and 1,2,4-triazol (0.1 mmol), the resulting mixture was stirred for 2 min and filtered immediately. The colorless crystals of the title compound I were isolated after slow evaporation for 3 days. Yield: ca43% based on Cd. Anal. Calcd for C6H8N2O7Cd: C, 21.65, H, 2.41, N, 8.42; found: C, 21.58, H, 2.36, N, 8.53.

Refinement top

H atoms of water molecules were located in difference Fourier maps and were then constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C). The water H atoms were refined with distance restraints of O-H 0.86 (2)Å and H-H = 1.38 (2)Å.

Computing details top

Data collection: TEXRAY (Molecular Structure Corporation, 1999); cell refinement: TEXRAY (Molecular Structure Corporation, 1999); data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound, showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity. [Symmetry code: (i) -x + 1/2, y + 1/2, -z + 1/2.]
catena-poly[[triaquacadmium(II)]-µ2-pyrazine-2,3-dicarboxylato] top
Crystal data top
[Cd(C6H2N2O4)(H2O)3]F(000) = 648
Mr = 332.54Dx = 2.324 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4538 reflections
a = 5.586 (6) Åθ = 3.2–27.5°
b = 15.748 (9) ŵ = 2.32 mm1
c = 10.832 (6) ÅT = 293 K
β = 93.94 (3)°Block, colourless
V = 950.5 (12) Å30.25 × 0.23 × 0.18 mm
Z = 4
Data collection top
Weissenberg IP
diffractometer
2129 independent reflections
Radiation source: rotor target1699 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(TEXRAY; Molecular Structure Corporation, 1999)
h = 75
Tmin = 0.668, Tmax = 1.000k = 1920
5659 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.562P]
where P = (Fo2 + 2Fc2)/3
2129 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.82 e Å3
9 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Cd(C6H2N2O4)(H2O)3]V = 950.5 (12) Å3
Mr = 332.54Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.586 (6) ŵ = 2.32 mm1
b = 15.748 (9) ÅT = 293 K
c = 10.832 (6) Å0.25 × 0.23 × 0.18 mm
β = 93.94 (3)°
Data collection top
Weissenberg IP
diffractometer
2129 independent reflections
Absorption correction: multi-scan
(TEXRAY; Molecular Structure Corporation, 1999)
1699 reflections with I > 2σ(I)
Tmin = 0.668, Tmax = 1.000Rint = 0.032
5659 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0309 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.03Δρmax = 0.82 e Å3
2129 reflectionsΔρmin = 0.53 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.07189 (6)0.372955 (14)0.31158 (2)0.02540 (10)
O10.3289 (6)0.28668 (14)0.2181 (2)0.0294 (6)
O20.4160 (6)0.15343 (17)0.1696 (2)0.0319 (7)
O30.3399 (7)0.01740 (17)0.3172 (3)0.0434 (8)
O40.1098 (7)0.00334 (19)0.1449 (3)0.0475 (9)
O1W0.2872 (7)0.34613 (18)0.5126 (2)0.0374 (7)
H1WA0.39890.37850.53180.056*
H1WB0.18870.34010.56630.056*
O2W0.2530 (6)0.37407 (15)0.1551 (3)0.0358 (7)
H2WA0.36830.34100.16400.054*
H2WB0.30710.42120.13230.054*
O3W0.1846 (8)0.4335 (2)0.4320 (3)0.0583 (11)
H3WA0.30950.45810.40130.088*
H3WB0.19450.42770.50760.088*
N10.0445 (7)0.23327 (16)0.3472 (3)0.0218 (7)
N20.1324 (7)0.06150 (18)0.3781 (3)0.0253 (7)
C10.0905 (7)0.17535 (19)0.2954 (3)0.0194 (7)
C20.0436 (7)0.0893 (2)0.3109 (3)0.0195 (7)
C30.2626 (8)0.1201 (2)0.4287 (3)0.0269 (8)
H3A0.38660.10310.47630.032*
C40.2215 (8)0.2060 (2)0.4137 (3)0.0242 (8)
H4A0.31870.24530.45050.029*
C50.2939 (8)0.2074 (2)0.2211 (3)0.0216 (7)
C60.1817 (9)0.0189 (2)0.2531 (4)0.0279 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02614 (19)0.01735 (14)0.03381 (15)0.00158 (10)0.00999 (10)0.00080 (10)
O10.029 (2)0.0203 (10)0.0414 (13)0.0017 (11)0.0180 (12)0.0012 (10)
O20.027 (2)0.0258 (12)0.0445 (15)0.0003 (11)0.0184 (13)0.0045 (11)
O30.043 (3)0.0278 (13)0.0605 (19)0.0147 (14)0.0148 (16)0.0078 (13)
O40.044 (3)0.0526 (17)0.0482 (16)0.0186 (16)0.0185 (15)0.0300 (14)
O1W0.034 (2)0.0431 (14)0.0351 (14)0.0041 (13)0.0042 (12)0.0050 (12)
O2W0.031 (2)0.0274 (12)0.0480 (15)0.0044 (12)0.0024 (13)0.0038 (11)
O3W0.053 (3)0.089 (3)0.0332 (14)0.035 (2)0.0059 (15)0.0104 (16)
N10.023 (2)0.0185 (12)0.0247 (13)0.0002 (11)0.0056 (12)0.0004 (11)
N20.026 (2)0.0217 (13)0.0280 (14)0.0012 (12)0.0035 (13)0.0010 (11)
C10.022 (2)0.0166 (14)0.0198 (14)0.0019 (13)0.0002 (13)0.0009 (12)
C20.017 (2)0.0188 (14)0.0233 (14)0.0010 (13)0.0038 (13)0.0013 (12)
C30.024 (2)0.0299 (17)0.0273 (16)0.0027 (15)0.0085 (14)0.0003 (14)
C40.022 (2)0.0262 (16)0.0253 (15)0.0031 (14)0.0095 (14)0.0030 (13)
C50.021 (2)0.0202 (14)0.0236 (14)0.0020 (14)0.0031 (14)0.0020 (13)
C60.025 (3)0.0163 (14)0.044 (2)0.0037 (15)0.0156 (17)0.0055 (15)
Geometric parameters (Å, º) top
Cd1—O3W2.218 (3)O2W—H2WB0.8324
Cd1—O12.265 (3)O3W—H3WA0.8463
Cd1—O3i2.294 (3)O3W—H3WB0.8295
Cd1—N12.334 (3)N1—C11.332 (4)
Cd1—O2W2.397 (4)N1—C41.334 (5)
Cd1—O1W2.451 (3)N2—C31.317 (5)
O1—C51.265 (4)N2—C21.337 (5)
O2—C51.245 (4)C1—C21.393 (5)
O3—C61.226 (6)C1—C51.522 (5)
O3—Cd1ii2.294 (3)C2—C61.510 (5)
O4—C61.262 (5)C3—C41.384 (5)
O1W—H1WA0.8214C3—H3A0.9300
O1W—H1WB0.8327C4—H4A0.9300
O2W—H2WA0.8385
O3W—Cd1—O1167.27 (11)Cd1—O3W—H3WB128.5
O3W—Cd1—O3i102.02 (13)H3WA—O3W—H3WB109.3
O1—Cd1—O3i90.61 (11)C1—N1—C4118.0 (3)
O3W—Cd1—N196.29 (14)C1—N1—Cd1113.8 (2)
O1—Cd1—N172.59 (11)C4—N1—Cd1128.2 (2)
O3i—Cd1—N1152.11 (10)C3—N2—C2116.5 (3)
O3W—Cd1—O2W85.67 (14)N1—C1—C2119.9 (3)
O1—Cd1—O2W99.25 (12)N1—C1—C5117.4 (3)
O3i—Cd1—O2W75.44 (12)C2—C1—C5122.6 (3)
N1—Cd1—O2W85.28 (11)N2—C2—C1122.4 (3)
O3W—Cd1—O1W81.30 (13)N2—C2—C6113.7 (3)
O1—Cd1—O1W90.37 (12)C1—C2—C6124.0 (3)
O3i—Cd1—O1W123.85 (12)N2—C3—C4122.4 (4)
N1—Cd1—O1W79.40 (11)N2—C3—H3A118.8
O2W—Cd1—O1W158.60 (11)C4—C3—H3A118.8
C5—O1—Cd1118.5 (2)N1—C4—C3120.9 (3)
C6—O3—Cd1ii100.6 (2)N1—C4—H4A119.6
Cd1—O1W—H1WA115.8C3—C4—H4A119.6
Cd1—O1W—H1WB109.4O2—C5—O1124.9 (3)
H1WA—O1W—H1WB114.9O2—C5—C1117.5 (3)
Cd1—O2W—H2WA117.7O1—C5—C1117.6 (3)
Cd1—O2W—H2WB117.3O3—C6—O4124.5 (4)
H2WA—O2W—H2WB108.8O3—C6—C2118.4 (3)
Cd1—O3W—H3WA120.9O4—C6—C2116.7 (4)
O3W—Cd1—O1—C532.7 (8)N1—C1—C2—N20.9 (6)
O3i—Cd1—O1—C5154.6 (3)C5—C1—C2—N2178.7 (3)
N1—Cd1—O1—C52.8 (3)N1—C1—C2—C6178.3 (3)
O2W—Cd1—O1—C579.2 (3)C5—C1—C2—C62.1 (6)
O1W—Cd1—O1—C581.6 (3)C2—N2—C3—C40.1 (6)
O3W—Cd1—N1—C1174.6 (3)C1—N1—C4—C30.3 (6)
O1—Cd1—N1—C10.9 (2)Cd1—N1—C4—C3178.0 (3)
O3i—Cd1—N1—C154.4 (4)N2—C3—C4—N10.5 (6)
O2W—Cd1—N1—C1100.3 (3)Cd1—O1—C5—O2177.2 (3)
O1W—Cd1—N1—C194.7 (3)Cd1—O1—C5—C14.1 (4)
O3W—Cd1—N1—C43.8 (4)N1—C1—C5—O2178.0 (3)
O1—Cd1—N1—C4177.4 (4)C2—C1—C5—O22.4 (5)
O3i—Cd1—N1—C4127.3 (3)N1—C1—C5—O13.3 (5)
O2W—Cd1—N1—C481.3 (3)C2—C1—C5—O1176.4 (4)
O1W—Cd1—N1—C483.7 (3)Cd1ii—O3—C6—O42.1 (5)
C4—N1—C1—C20.4 (5)Cd1ii—O3—C6—C2171.1 (3)
Cd1—N1—C1—C2178.9 (3)N2—C2—C6—O381.2 (5)
C4—N1—C1—C5179.2 (3)C1—C2—C6—O399.6 (5)
Cd1—N1—C1—C50.7 (4)N2—C2—C6—O492.5 (4)
C3—N2—C2—C10.6 (6)C1—C2—C6—O486.7 (5)
C3—N2—C2—C6178.6 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4iii0.822.563.328 (5)156
O2W—H2WA···O1iv0.842.022.834 (5)164
O2W—H2WB···N2v0.832.243.036 (4)161
O3W—H3WA···O4v0.851.822.656 (6)169
O3W—H3WB···O4vi0.832.252.865 (4)132
O3W—H3WB···O2vi0.832.222.935 (4)144
Symmetry codes: (iii) x+1/2, y+1/2, z+1/2; (iv) x1, y, z; (v) x1/2, y+1/2, z+1/2; (vi) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C6H2N2O4)(H2O)3]
Mr332.54
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)5.586 (6), 15.748 (9), 10.832 (6)
β (°) 93.94 (3)
V3)950.5 (12)
Z4
Radiation typeMo Kα
µ (mm1)2.32
Crystal size (mm)0.25 × 0.23 × 0.18
Data collection
DiffractometerWeissenberg IP
diffractometer
Absorption correctionMulti-scan
(TEXRAY; Molecular Structure Corporation, 1999)
Tmin, Tmax0.668, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5659, 2129, 1699
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.074, 1.03
No. of reflections2129
No. of parameters145
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 0.53

Computer programs: TEXRAY (Molecular Structure Corporation, 1999), TEXSAN (Molecular Structure Corporation, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEX (McArdle, 1995).

Selected geometric parameters (Å, º) top
Cd1—O3W2.218 (3)Cd1—N12.334 (3)
Cd1—O12.265 (3)Cd1—O2W2.397 (4)
Cd1—O3i2.294 (3)Cd1—O1W2.451 (3)
O3W—Cd1—O1167.27 (11)O3i—Cd1—O2W75.44 (12)
O3W—Cd1—O3i102.02 (13)N1—Cd1—O2W85.28 (11)
O1—Cd1—O3i90.61 (11)O3W—Cd1—O1W81.30 (13)
O3W—Cd1—N196.29 (14)O1—Cd1—O1W90.37 (12)
O1—Cd1—N172.59 (11)O3i—Cd1—O1W123.85 (12)
O3i—Cd1—N1152.11 (10)N1—Cd1—O1W79.40 (11)
O3W—Cd1—O2W85.67 (14)O2W—Cd1—O1W158.60 (11)
O1—Cd1—O2W99.25 (12)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4ii0.822.563.328 (5)156.1
O2W—H2WA···O1iii0.842.022.834 (5)164.1
O2W—H2WB···N2iv0.832.243.036 (4)161.1
O3W—H3WA···O4iv0.851.822.656 (6)168.5
O3W—H3WB···O4v0.832.252.865 (4)131.5
O3W—H3WB···O2v0.832.222.935 (4)144.0
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x1, y, z; (iv) x1/2, y+1/2, z+1/2; (v) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The author is grateful for financial support from the Key Science and Technology Project of Fijian Province, China (grant Nos. 2008Y0051 and 2007Y0062).

References

First citationKitaura, R., Fujimoto, K., Noro, S.-I., Kondo, M. & Kitagawa, S. (2002). Angew. Chem. Int. Ed. 41, 133–135.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Y., He, Y.-K. & Han, Z.-B. (2006). Acta Cryst. E62, m2528–m2529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaji, T. K., Uemura, K., Chang, H. C., Matsuda, R. & Kitagawa, S. (2004). Angew. Chem. Int. Ed. 43, 3269–3272.  Web of Science CSD CrossRef CAS Google Scholar
First citationMao, L., Rettig, S. J., Thompson, R. C., Trotter, J. & Xia, S. H. (1996). Can. J. Chem. 74, 2413–2423.  CrossRef CAS Web of Science Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationMolecular Structure Corporation (1999). TEXRAY and TEXSAN. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, H. & Liu, S. X. (2007). Polyhedron, 26, 3103–3111.  Web of Science CSD CrossRef CAS Google Scholar
First citationYin, H. & Liu, S. X. (2009). Chin. J. Inorg. Chem. 25, 893–899.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds