inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The iron phosphate CaFe3(PO4)3O

aFaculté des Sciences de Monastir, 5019, Monastir, Tunisia.
*Correspondence e-mail: mourad_hidouri@yahoo.fr

(Received 6 May 2009; accepted 17 July 2009; online 22 July 2009)

A new iron phosphate, calcium triiron(III) tris­(phosphate) oxide, CaFe3(PO4)3O, has been isolated and shown to exhibit a three-dimensional structure built by FeO6 octa­hedra, FeO5 trigonal bipyramids and PO4 tetra­hedra. The FeOx (x = 5, 6) polyhedra are linked through common corners and edges, forming [Fe6O28] chains with branches running along [010]. Adjacent chains are connected by the phosphate groups via common corners and edges, giving rise to a three-dimensional framework analogous to those of the previously reported SrFe3(PO4)3O and Bi0.4Fe3(PO4)3O structures, in which the Ca2+ cations occupy a single symmetry non-equivalent cavity.

Related literature

The inter­est in iron phosphates has increased following the discovery of LiFePO4 with olivine-type structure, which is the most promising electrode material for Li-ion batteries, see: Padhi et al. (1997[Padhi, A., Nanjundaswamy, K. & Goodenough, J. (1997). J. Electrochem. Soc. 144, 1188-1194.]). The title compound is isostructural to the iron phosphates Bi0.4Fe3(PO4)3 (Benabad et al., 2000[Benabad, A., Bakhous, K., Cherkaoui, F. & Holt, E. M. (2000). Acta Cryst. C56, 1292-1293.]) and SrFe3(PO4)3O (Morozov et al., 2003[Morozov, V. A., Pokholok, K. V., Lazoryak, B. I., Malakho, A. P., Lachgar, A., Lebedev, O. I. & Tendeloo, G. V. (2003). J Solid State Chem. 170, 411-417.]). For ionic radii, see: Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). For P—O distances in orthophosphate groups, see: Baur (1974[Baur, W. H. (1974). Acta Cryst. B30, 1195-1215.]). For Ca—O distances in heptacoordinated Ca2+ ions in Ca3(PO4)2, see: Mathew et al. (1977[Mathew, M., Schroeder, L. W., Dickens, B. & Brown, W. E. (1977). Acta Cryst. B33, 1325-1333.]). For Fe—O distances for five-coordinated Fe3+ ions in NaCaFe3(PO4)4, see: Hidouri et al. (2003[Hidouri, M., Lajmi, B., Wattiaux, A., Fournes, L., Darriet, J. & Amara, M. B. (2003). J. Alloys Compd, 358, 36-41.]).The valences of the cations were calculated using the Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) method.

Experimental

Crystal data
  • CaFe3(PO4)3O

  • Mr = 508.54

  • Monoclinic, P 21 /m

  • a = 7.521 (2) Å

  • b = 6.330 (2) Å

  • c = 10.160 (2) Å

  • β = 100.03 (2)°

  • V = 476.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.63 mm−1

  • T = 293 K

  • 0.36 × 0.22 × 0.22 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.193, Tmax = 0.293

  • 2072 measured reflections

  • 1493 independent reflections

  • 1412 reflections with I > 2σ(I)

  • Rint = 0.035

  • 2 standard reflections frequency: 120 min intensity decay: 6.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.088

  • S = 1.12

  • 1493 reflections

  • 113 parameters

  • Δρmax = 0.63 e Å−3

  • Δρmin = −1.59 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Iron phosphates are extensively studied for their rich structural chemistry owing to the possible occurrence of both +2 and +3 oxidation states for iron and the tendecy of its coordination polyhedra to form with the phosphate groups a variety of frameworks. Such adaptative crystal chemistry provides new and exciting aventures in the exploration of the intrinsic relationship between structure and composition. The interest in these materials is further accentuated since the discovery of LiFePO4 with olivine-type structure the most promising electrode material for Li-ion batteries (Padhi et al., 1997).

As a part of a systematic exploration of the A2O—MO—Fe2O3—P2O5 (A = alkali metal, M = divalent cation) in a search of new iron phosphates with interesting structures and subsequently intriguing properties, we describe here the structure of CaFe3(PO4)3O, extracted from a mixture of nominal composition LiCaFe3(PO4)4. This compound is isostructural to the previously reported iron phosphates Bi0.4Fe3(PO4)3 (Benabad et al., 2000) and SrFe3(PO4)3O (Morozov et al., 2003). Its structure, shown in figure 1, is built from a three-dimensional arrangement based on two crystallographically distinct FeO6 octahedra, one symmetry non equivalent FeO5 polyhedron and three symmetry distinct PO4 tetrahedra. The Fe polyhedra form [Fe6O28] chains with branches running along the [010] direction. In such chains (Fig. 2), each Fe(1)O6 octahedron shares two opposite edges with two equivalent octahedra, one of the equatorial oxo-ligands forming each of the common edges being also shared with one Fe(2)O6 octahedron. The latter is corner-linked with one one Fe(2)O5 polyhedron to form the branches of the chain. The conntection of these chains is ensured by the phosphate tetrahedra in such a way that each PO4 connects two adjacent chains either by sharing one edge with one chain and one corner with the other (P(1)O4) or by sharing three corners with a same chain and the fourth with the other (P(2)O4 and P(3)O4). The three-dimensional framework constructed in this way delimits a single symmetry non equivalent cavity occupied by the Ca2+ cations.

The FeO6 octahedra are both highly distorted as indicated by the Fe—O distances ranging from 1.986 (2) to 2.114 (2) Å for Fe(1)O6 and from 1.870 (2) to 2.183 (3) Å for Fe(2)O6 with average values of 2.037 (2) Å and 2.019 (3) Å, respectively, close to that 2.03 Å, predicted by Shannon for octahedral Fe3+ ions (Shannon, 1976). The FeO5 polyhedron is also very distorted with Fe—O distances ranging from 1.872 (4) to 1.986 (2) Å. The mean distance of 1.940 (4) Å is consistent with those 1.946 Å and 1.956 Å, observed for five-coordinated Fe3+ ions in NaCaFe3(PO4)4 (Hidouri et al., 2003). The PO4 tetrahedra have P—O distances in the range 1.513 (3)–1.561 (3) Å with an overall distance of 1.535 (3) Å, close to that 1.537 calculated for the monophosphate groups (Baur, 1974). The Ca2+ cations occupy a single non equivalent site delimited by the Fe/P/O network. Its environement (Fig.3) is consisted by seven oxygen atoms with four Ca—O distances included between 2.391 (3) and 2.514 (2) Å showing the CaO7 polyhedron to be highly distorted. The mean Ca—O distance of 2.462 (2) Å is in the range of those previously reported for heptacoordinated Ca2+ ions in Ca3(PO4)2 (Mathew et al., 1977). The valences of all the cations were calculated using the Brown & Altermatt method (Brown & Altermatt, 1985). The calculated values of 1.85, 2.86, 3.10, 3.09, 4.94, 5.03 and 5.02 for Ca, Fe(1), Fe(2), Fe(3), P(1), P(2) and P(3), respectively are consistent with their respective oxidation numbers of 2.0, 3.0, 3.0, 3.0, 5.0, 5.0 and 5.0.

The structural similarity between the title compound and the iron phosphates SrFe3(PO4)3O and Bi0.4Fe3(PO4)3O shows the great flexibility of the [Fe3P3O13] framework which seems to accomodate various cations. Further invstigation of the chemical stablity of this structural type by including other cations would be of interest.

Related literature top

The interest iron phosphates has increased following the discovery of LiFePO4 with olivine-type structure, which is the most promising electrode material for Li-ion batteries, see: Padhi et al. (1997). The title compound is isostructural to the iron phosphates Bi0.4Fe3(PO4)3 (Benabad et al., 2000) and SrFe3(PO4)3O (Morozov et al., 2003). For ionic radii, see: Shannon (1976). For P—O distances in monophosphate groups, see: Baur (1974). For Ca—O distances in heptacoordinated Ca2+ ions in Ca3(PO4)2, see: Mathew et al. (1977). For Fe—O distances for five-coordinated Fe3+ ions in NaCaFe3(PO4)4, see: Hidouri et al. (2003). The valences of the cations were calculated using the Brown & Altermatt (1985) method.

Experimental top

Single crystals of the title compound were isolated during an attempt to crystallize LiCaFe3(PO4)4 in a flux of lithium dimolybdate Li2Mo2O7 in an atomic ratio, P: Mo = 8:1. Appropriate amounts of LiNO3, CaCO3, Fe(NO3)3.9H2O, (NH4)2HPO4 and MoO3 were firstly dissolved in nitric acid and the solution obtained was dried for 24 h at 353 K. After grinding in an agate mortar to ensure its best homogeneity, the dry residue was heated in a platinum crucible to 673 K for 24 h in order to remove the decomposition products: NO2, NH3 and H2O. The sample was then reground, melted at 1173 K for 1 h and subsequently cooled at a 10 °.h-1 rate to 673 K after which the furnace was turned off. The final product was washed with warm water in order to dissolve the flux. From the mixture, dark brown and irregularely shaped crystals of CaFe3(PO4)3O were extracted.

Refinement top

The Fe and Ca atoms were loctaed by direct methods and the remaining atoms were found by successive difference Fourier maps. All atomic positions were refined with anisotrop displacement parameterers.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : The CaFe3(PO4)3O structure as projected along the [010] direction.
[Figure 2] Fig. 2. : A view of the [Fe6O28] chain running along the [010] direction.
[Figure 3] Fig. 3. : The environment of the Ca2+ cations showing the anisotropic atomic displacements.
calcium triiron(III) tris(phosphate) oxide top
Crystal data top
CaFe3(PO4)3OF(000) = 494
Mr = 508.54Dx = 3.546 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 25 reflections
a = 7.521 (2) Åθ = 8.9–12.5°
b = 6.330 (2) ŵ = 5.63 mm1
c = 10.160 (2) ÅT = 293 K
β = 100.03 (2)°Prism, brown
V = 476.3 (2) Å30.36 × 0.22 × 0.22 mm
Z = 2
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
1412 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 29.9°, θmin = 2.0°
ω/2θ scansh = 110
Absorption correction: ψ scan
(North et al., 1968)
k = 18
Tmin = 0.193, Tmax = 0.293l = 1414
2072 measured reflections2 standard reflections every 120 min
1493 independent reflections intensity decay: 6.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.6592P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max < 0.001
S = 1.12Δρmax = 0.63 e Å3
1493 reflectionsΔρmin = 1.59 e Å3
113 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.173 (7)
Crystal data top
CaFe3(PO4)3OV = 476.3 (2) Å3
Mr = 508.54Z = 2
Monoclinic, P21/mMo Kα radiation
a = 7.521 (2) ŵ = 5.63 mm1
b = 6.330 (2) ÅT = 293 K
c = 10.160 (2) Å0.36 × 0.22 × 0.22 mm
β = 100.03 (2)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
1412 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.035
Tmin = 0.193, Tmax = 0.2932 standard reflections every 120 min
2072 measured reflections intensity decay: 6.0%
1493 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031113 parameters
wR(F2) = 0.0880 restraints
S = 1.12Δρmax = 0.63 e Å3
1493 reflectionsΔρmin = 1.59 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca0.66161 (10)0.25000.19595 (7)0.00891 (18)
Fe10.00000.50000.00000.00627 (16)
Fe20.64926 (7)0.75000.20179 (5)0.00561 (16)
Fe30.21388 (7)0.75000.43643 (5)0.00684 (16)
P10.31703 (11)0.75000.11247 (8)0.0052 (2)
O110.5087 (3)0.75000.0310 (2)0.0081 (5)
O120.3598 (3)0.75000.2566 (3)0.0080 (5)
O130.2107 (2)0.5489 (3)0.09386 (18)0.0083 (3)
P20.26341 (12)0.25000.23940 (9)0.0054 (2)
O210.0855 (3)0.25000.1340 (3)0.0084 (5)
O220.2123 (4)0.25000.3770 (3)0.0130 (5)
O230.3790 (2)0.4390 (3)0.21363 (18)0.0091 (3)
P30.21762 (12)0.75000.48890 (9)0.0064 (2)
O310.0256 (4)0.75000.4084 (3)0.0140 (5)
O320.3513 (4)0.75000.3933 (3)0.0119 (5)
O330.2479 (3)1.0599 (3)0.41460 (18)0.0116 (4)
O0.8765 (3)0.75000.0924 (2)0.0070 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca0.0108 (3)0.0090 (3)0.0072 (3)0.0000.0024 (2)0.000
Fe10.0075 (2)0.0054 (2)0.0068 (3)0.00023 (16)0.00379 (17)0.00011 (17)
Fe20.0066 (3)0.0050 (3)0.0057 (2)0.0000.00243 (17)0.000
Fe30.0111 (3)0.0060 (3)0.0036 (3)0.0000.00167 (18)0.000
P10.0065 (4)0.0052 (4)0.0045 (4)0.0000.0028 (3)0.000
O110.0075 (11)0.0106 (12)0.0066 (11)0.0000.0019 (9)0.000
O120.0096 (11)0.0097 (12)0.0058 (10)0.0000.0042 (8)0.000
O130.0089 (7)0.0075 (8)0.0096 (8)0.0013 (6)0.0048 (6)0.0000 (6)
P20.0077 (4)0.0049 (4)0.0038 (4)0.0000.0019 (3)0.000
O210.0099 (11)0.0089 (11)0.0065 (10)0.0000.0011 (9)0.000
O220.0189 (13)0.0164 (13)0.0047 (11)0.0000.0050 (9)0.000
O230.0106 (8)0.0055 (7)0.0114 (8)0.0007 (6)0.0028 (6)0.0005 (6)
P30.0103 (4)0.0053 (4)0.0044 (4)0.0000.0032 (3)0.000
O310.0114 (12)0.0208 (14)0.0093 (12)0.0000.0005 (9)0.000
O320.0135 (12)0.0167 (13)0.0070 (11)0.0000.0057 (9)0.000
O330.0213 (9)0.0059 (7)0.0078 (8)0.0006 (7)0.0031 (7)0.0016 (6)
O0.0065 (10)0.0070 (11)0.0068 (10)0.0000.0005 (8)0.000
Geometric parameters (Å, º) top
Ca—O11i2.391 (3)Fe3—O331.986 (2)
Ca—O13ii2.434 (2)Fe3—O33xii1.986 (2)
Ca—O13iii2.434 (2)P1—O131.532 (2)
Ca—O232.473 (3)P1—O13xii1.532 (2)
Ca—O23iv2.473 (3)P1—O111.532 (3)
Ca—O33v2.514 (2)P1—O121.554 (3)
Ca—O33vi2.514 (2)P1—Caix3.2878 (10)
Ca—P23.102 (4)P1—Caxiii3.2878 (10)
Ca—P3vii3.1724 (16)O11—Cai2.391 (3)
Ca—P1ii3.2878 (10)O13—Caix2.434 (2)
Ca—P1v3.2878 (10)P2—O221.513 (3)
Fe1—Oviii1.9860 (17)P2—O23iv1.528 (2)
Fe1—Oii1.9860 (17)P2—O231.528 (2)
Fe1—O132.011 (2)P2—O211.561 (3)
Fe1—O13i2.011 (2)O21—Fe1xiv2.1135 (18)
Fe1—O21i2.1135 (18)O22—Fe3xi1.894 (3)
Fe1—O212.1135 (18)O23—Fe2ii1.981 (2)
Fe2—O1.870 (3)P3—O321.515 (3)
Fe2—O32ix1.945 (3)P3—O311.530 (3)
Fe2—O23ix1.981 (2)P3—O33xv1.544 (2)
Fe2—O23x1.981 (2)P3—O33xvi1.544 (2)
Fe2—O122.151 (4)P3—Cavii3.1724 (16)
Fe2—O112.183 (3)O32—Fe2ii1.945 (3)
Fe2—P12.803 (3)O33—P3xvi1.544 (2)
Fe3—O311.872 (4)O33—Caxiii2.514 (2)
Fe3—O22xi1.894 (3)O—Fe1xvii1.9860 (17)
Fe3—O121.960 (3)O—Fe1ix1.9860 (17)
O11i—Ca—O13ii75.42 (7)O—Fe2—P1125.58 (10)
O11i—Ca—O13iii75.42 (7)O32ix—Fe2—P1118.50 (10)
O13ii—Ca—O13iii102.03 (10)O23ix—Fe2—P185.83 (5)
O11i—Ca—O2378.17 (9)O23x—Fe2—P185.83 (5)
O13ii—Ca—O2393.59 (8)O31—Fe3—O22xi108.28 (14)
O13iii—Ca—O23144.58 (7)O31—Fe3—O12104.83 (13)
O11i—Ca—O23iv78.17 (9)O22xi—Fe3—O12146.89 (12)
O13ii—Ca—O23iv144.58 (7)O31—Fe3—O3395.26 (6)
O13iii—Ca—O23iv93.59 (8)O22xi—Fe3—O3395.17 (6)
O23—Ca—O23iv57.88 (11)O12—Fe3—O3381.70 (6)
O11i—Ca—O33v149.65 (5)O31—Fe3—O33xii95.26 (6)
O13ii—Ca—O33v133.04 (8)O22xi—Fe3—O33xii95.17 (6)
O13iii—Ca—O33v86.46 (7)O12—Fe3—O33xii81.70 (6)
O23—Ca—O33v105.74 (8)O33—Fe3—O33xii162.15 (12)
O23iv—Ca—O33v78.93 (9)O13—P1—O13xii112.33 (16)
O11i—Ca—O33vi149.65 (5)O13—P1—O11113.29 (9)
O13ii—Ca—O33vi86.46 (7)O13xii—P1—O11113.29 (9)
O13iii—Ca—O33vi133.04 (8)O13—P1—O12108.34 (9)
O23—Ca—O33vi78.93 (9)O13xii—P1—O12108.34 (9)
O23iv—Ca—O33vi105.74 (8)O11—P1—O12100.34 (15)
O33v—Ca—O33vi57.20 (9)O13—P1—Fe2123.62 (8)
O11i—Ca—P279.81 (9)O13xii—P1—Fe2123.62 (8)
O13ii—Ca—P2121.53 (5)O11—P1—Fe250.73 (11)
O13iii—Ca—P2121.53 (5)O12—P1—Fe249.61 (11)
O33v—Ca—P289.64 (8)O13—P1—Caix44.13 (8)
O33vi—Ca—P289.64 (8)O13xii—P1—Caix151.82 (9)
O11i—Ca—P3vii168.11 (7)O11—P1—Caix93.19 (4)
O13ii—Ca—P3vii111.42 (6)O12—P1—Caix74.294 (19)
O13iii—Ca—P3vii111.42 (6)Fe2—P1—Caix80.22 (2)
O23—Ca—P3vii91.45 (7)O13—P1—Caxiii151.82 (9)
O23iv—Ca—P3vii91.45 (7)O13xii—P1—Caxiii44.13 (8)
P2—Ca—P3vii88.29 (7)O11—P1—Caxiii93.19 (4)
O11i—Ca—P1ii77.77 (2)O12—P1—Caxiii74.294 (19)
O13ii—Ca—P1ii25.99 (5)Fe2—P1—Caxiii80.22 (2)
O13iii—Ca—P1ii126.71 (6)Caix—P1—Caxiii148.58 (4)
O23—Ca—P1ii68.54 (6)P1—O11—Fe296.36 (14)
O23iv—Ca—P1ii124.46 (6)P1—O11—Cai140.38 (15)
O33v—Ca—P1ii132.14 (5)Fe2—O11—Cai123.26 (13)
O33vi—Ca—P1ii75.48 (5)P1—O12—Fe3134.77 (17)
P2—Ca—P1ii97.38 (2)P1—O12—Fe297.02 (14)
P3vii—Ca—P1ii104.01 (2)Fe3—O12—Fe2128.22 (14)
O11i—Ca—P1v77.77 (2)P1—O13—Fe1131.13 (12)
O13ii—Ca—P1v126.71 (6)P1—O13—Caix109.88 (10)
O23—Ca—P1v124.46 (6)Fe1—O13—Caix118.97 (9)
O23iv—Ca—P1v68.54 (6)O22—P2—O23iv113.70 (10)
O33v—Ca—P1v75.48 (5)O22—P2—O23113.70 (10)
O33vi—Ca—P1v132.14 (5)O23iv—P2—O23103.06 (16)
P2—Ca—P1v97.38 (2)O22—P2—O21107.95 (17)
P3vii—Ca—P1v104.01 (2)O23iv—P2—O21109.13 (10)
P1ii—Ca—P1v148.58 (4)O23—P2—O21109.13 (10)
Oviii—Fe1—Oii180.0O22—P2—Ca122.57 (13)
Oviii—Fe1—O1390.27 (10)O23iv—P2—Ca51.94 (8)
Oii—Fe1—O1389.73 (10)O23—P2—Ca51.94 (8)
Oviii—Fe1—O13i89.73 (10)O21—P2—Ca129.47 (12)
Oii—Fe1—O13i90.27 (10)P2—O21—Fe1124.75 (8)
O13—Fe1—O13i180.0P2—O21—Fe1xiv124.75 (8)
Oviii—Fe1—O21i103.14 (9)Fe1—O21—Fe1xiv96.97 (11)
Oii—Fe1—O21i76.86 (9)P2—O22—Fe3xi165.2 (2)
O13—Fe1—O21i90.79 (9)P2—O23—Fe2ii136.88 (12)
O13i—Fe1—O21i89.21 (9)P2—O23—Ca98.94 (11)
Oviii—Fe1—O2176.86 (9)Fe2ii—O23—Ca124.12 (9)
Oii—Fe1—O21103.14 (9)O32—P3—O31109.09 (17)
O13—Fe1—O2189.21 (9)O32—P3—O33xv111.49 (11)
O13i—Fe1—O2190.79 (9)O31—P3—O33xv111.12 (11)
O21i—Fe1—O21180.0O32—P3—O33xvi111.49 (11)
O—Fe2—O32ix115.92 (13)O31—P3—O33xvi111.12 (11)
O—Fe2—O23ix96.52 (5)O33xv—P3—O33xvi102.43 (16)
O32ix—Fe2—O23ix87.58 (6)O32—P3—Cavii122.83 (13)
O—Fe2—O23x96.52 (5)O31—P3—Cavii128.08 (12)
O32ix—Fe2—O23x87.58 (6)O33xv—P3—Cavii51.28 (8)
O23ix—Fe2—O23x166.93 (11)O33xvi—P3—Cavii51.28 (8)
O—Fe2—O12158.95 (11)P3—O31—Fe3139.66 (19)
O32ix—Fe2—O1285.13 (12)P3—O32—Fe2ii139.08 (19)
O23ix—Fe2—O1283.75 (5)P3xvi—O33—Fe3134.20 (12)
O23x—Fe2—O1283.75 (5)P3xvi—O33—Caxiii100.10 (10)
O—Fe2—O1192.67 (12)Fe3—O33—Caxiii125.55 (9)
O32ix—Fe2—O11151.41 (11)Fe2—O—Fe1xvii125.79 (7)
O23ix—Fe2—O1189.23 (6)Fe2—O—Fe1ix125.79 (7)
O23x—Fe2—O1189.23 (6)Fe1xvii—O—Fe1ix105.66 (12)
O12—Fe2—O1166.28 (11)
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x+1, y1/2, z; (iv) x, y1/2, z; (v) x+1, y+1, z; (vi) x+1, y3/2, z; (vii) x+1, y1, z+1; (viii) x1, y1, z; (ix) x1, y, z; (x) x1, y3/2, z; (xi) x, y1, z+1; (xii) x, y3/2, z; (xiii) x1, y1, z; (xiv) x, y+1/2, z; (xv) x, y+1/2, z+1; (xvi) x, y2, z+1; (xvii) x1, y1/2, z.

Experimental details

Crystal data
Chemical formulaCaFe3(PO4)3O
Mr508.54
Crystal system, space groupMonoclinic, P21/m
Temperature (K)293
a, b, c (Å)7.521 (2), 6.330 (2), 10.160 (2)
β (°) 100.03 (2)
V3)476.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)5.63
Crystal size (mm)0.36 × 0.22 × 0.22
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.193, 0.293
No. of measured, independent and
observed [I > 2σ(I)] reflections
2072, 1493, 1412
Rint0.035
(sin θ/λ)max1)0.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.088, 1.12
No. of reflections1493
No. of parameters113
Δρmax, Δρmin (e Å3)0.63, 1.59

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1998), WinGX (Farrugia, 1999).

 

References

First citationBaur, W. H. (1974). Acta Cryst. B30, 1195–1215.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBenabad, A., Bakhous, K., Cherkaoui, F. & Holt, E. M. (2000). Acta Cryst. C56, 1292–1293.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHidouri, M., Lajmi, B., Wattiaux, A., Fournes, L., Darriet, J. & Amara, M. B. (2003). J. Alloys Compd, 358, 36–41.  Web of Science CrossRef CAS Google Scholar
First citationMathew, M., Schroeder, L. W., Dickens, B. & Brown, W. E. (1977). Acta Cryst. B33, 1325–1333.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMorozov, V. A., Pokholok, K. V., Lazoryak, B. I., Malakho, A. P., Lachgar, A., Lebedev, O. I. & Tendeloo, G. V. (2003). J Solid State Chem. 170, 411–417.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPadhi, A., Nanjundaswamy, K. & Goodenough, J. (1997). J. Electrochem. Soc. 144, 1188–1194.  CrossRef CAS Web of Science Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds