metal-organic compounds
Diaqua(triethanolamine)copper(II) sulfate monohydrate
aDepartment of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou, Fujian 363000, People's Republic of China
*Correspondence e-mail: ghx919@yahoo.com.cn
The 6H15NO3)(H2O)2]SO4·H2O, contains a complex cation, a sulfate anion and one uncoordinated water molecule. In the complex cation, the CuII ion is coordinated by five O atoms (three of which are from the triethanolamine ligand and two from coordinated water molecules) and one N atom of the triethanolamine ligand in a typical Jahn–Teller-distorted octahedral geometry. Classical intermolecular O—H⋯O hydrogen bonds link the cation, the sulfate anion and the water molecule into a two-dimensional network.
of the title compound, [Cu(CRelated literature
Metal-ion-containing supramolecular structures can be used as zeolite-like matarials (Venkataraman et al., 1995; Kepert & Rosseinsky, 1999), catalysts (Fujita et al., 1994) and magnetic materials (Kahn, 1993). For related strutures, see: Guo et al. (2009); Haukka et al. (2005); Krabbes et al. (2000); Topcu et al. (2001); Ucar et al. (2004). For comparative bond lengths, see: Yeşilel et al. (2004). İçbudak et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Siemens, 1994); cell SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809026166/fj2232sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809026166/fj2232Isup2.hkl
CuSO4.5H2O (0.5002 g, 2 mmol) was dissolved in 10 ml water and the pH was adjusted to 8 with triethanolamine. Blue crystals of (I) separated from the filtered solution at room temperature overseveral days.
All H atoms bound to carbon were refined using a riding model with C—H = 0.97Å and Uiso(H) = 1.2Ueq(C).Three hydroxy H atoms were located in a difference map and refined with O—H distance restraints of 0.80 (1) A and with Uiso(H) = 1.5Ueq(O).The two coordinated water H atoms were located in a difference map and refined with O—H and H···H distance restraints of 0.85 (1) and 1.39 (1) Å, respectively, and with Uiso(H) = 1.2Ueq(O), while the lattice water H atoms were located in a difference map and refined with O—H and H···H distance restraints of 0.84 (1) and 1.39 (1) Å, respectively, and with Uiso(H) = 1.2Ueq(O).
Data collection: SMART (Siemens, 1994); cell
SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. View of the structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level; H-atoms are shown as small spheres of arbitrary radius. | |
Fig. 2. View of the 2-D hydrogen-bonded network in the packing of the title compound. The packing is viewed along the a axis; O-H···O interactions are shown as dashed lines. |
[Cu(C6H15NO3)(H2O)2]SO4·H2O | F(000) = 1512 |
Mr = 362.84 | Dx = 1.727 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 24803 reflections |
a = 12.502 (3) Å | θ = 3.1–27.4° |
b = 14.835 (3) Å | µ = 1.76 mm−1 |
c = 15.049 (3) Å | T = 293 K |
V = 2791.1 (10) Å3 | Block, blue |
Z = 8 | 0.46 × 0.43 × 0.28 mm |
Siemens SMART CCD area-detector diffractometer | 3180 independent reflections |
Radiation source: fine-focus sealed tube | 2903 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
ω scans | θmax = 27.4°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −16→15 |
Tmin = 0.471, Tmax = 0.619 | k = −17→19 |
24803 measured reflections | l = −19→19 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.095 | w = 1/[σ2(Fo2) + (0.062P)2 + 2.0253P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
3180 reflections | Δρmax = 0.66 e Å−3 |
200 parameters | Δρmin = −0.54 e Å−3 |
14 restraints | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0166 (8) |
[Cu(C6H15NO3)(H2O)2]SO4·H2O | V = 2791.1 (10) Å3 |
Mr = 362.84 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 12.502 (3) Å | µ = 1.76 mm−1 |
b = 14.835 (3) Å | T = 293 K |
c = 15.049 (3) Å | 0.46 × 0.43 × 0.28 mm |
Siemens SMART CCD area-detector diffractometer | 3180 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2903 reflections with I > 2σ(I) |
Tmin = 0.471, Tmax = 0.619 | Rint = 0.036 |
24803 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 14 restraints |
wR(F2) = 0.095 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.66 e Å−3 |
3180 reflections | Δρmin = −0.54 e Å−3 |
200 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.817285 (19) | 0.161186 (16) | 0.563698 (16) | 0.02242 (12) | |
N1 | 0.79877 (14) | 0.28534 (12) | 0.50841 (12) | 0.0263 (4) | |
O1 | 0.72865 (15) | 0.24227 (11) | 0.67944 (11) | 0.0355 (4) | |
H1C | 0.6857 (19) | 0.2171 (19) | 0.7100 (18) | 0.043* | |
O2 | 0.87331 (18) | 0.13070 (13) | 0.42137 (12) | 0.0449 (4) | |
H2C | 0.902 (2) | 0.0986 (19) | 0.3874 (18) | 0.054* | |
O3 | 0.96021 (12) | 0.20915 (11) | 0.59952 (11) | 0.0327 (4) | |
H3C | 0.992 (2) | 0.1803 (16) | 0.6366 (15) | 0.039* | |
O4 | 0.67091 (12) | 0.11906 (11) | 0.52784 (11) | 0.0303 (3) | |
H4C | 0.636 (2) | 0.0983 (19) | 0.5697 (12) | 0.036* | |
H4D | 0.668 (2) | 0.0999 (17) | 0.4809 (10) | 0.036* | |
O5 | 0.84098 (12) | 0.04673 (10) | 0.62306 (11) | 0.0295 (3) | |
H5C | 0.8032 (16) | 0.0406 (13) | 0.6761 (12) | 0.035* | |
H5D | 0.9054 (12) | 0.0446 (18) | 0.6411 (16) | 0.035* | |
O6 | 1.07432 (17) | 0.14707 (12) | 0.73118 (14) | 0.0482 (5) | |
O7 | 1.02862 (13) | −0.00389 (11) | 0.68697 (11) | 0.0368 (4) | |
O8 | 1.20422 (14) | 0.02931 (15) | 0.74339 (13) | 0.0488 (5) | |
O9 | 1.05504 (15) | 0.03349 (14) | 0.84170 (11) | 0.0474 (5) | |
C1 | 0.6991 (2) | 0.32729 (17) | 0.54436 (19) | 0.0353 (5) | |
H1A | 0.6376 | 0.2939 | 0.5228 | 0.042* | |
H1B | 0.6934 | 0.3886 | 0.5224 | 0.042* | |
C2 | 0.6971 (2) | 0.32862 (16) | 0.64443 (18) | 0.0368 (5) | |
H2A | 0.7454 | 0.3748 | 0.6661 | 0.044* | |
H2B | 0.6255 | 0.3432 | 0.6648 | 0.044* | |
C3 | 0.7865 (2) | 0.27310 (17) | 0.41066 (15) | 0.0374 (5) | |
H3A | 0.7908 | 0.3315 | 0.3818 | 0.045* | |
H3B | 0.7164 | 0.2480 | 0.3984 | 0.045* | |
C4 | 0.8714 (3) | 0.21142 (19) | 0.37171 (16) | 0.0453 (6) | |
H4A | 0.8551 | 0.1984 | 0.3100 | 0.054* | |
H4B | 0.9409 | 0.2405 | 0.3743 | 0.054* | |
C5 | 0.8955 (2) | 0.34057 (14) | 0.52931 (17) | 0.0334 (5) | |
H5A | 0.8742 | 0.4026 | 0.5393 | 0.040* | |
H5B | 0.9438 | 0.3395 | 0.4788 | 0.040* | |
C6 | 0.95341 (18) | 0.30592 (15) | 0.61051 (15) | 0.0323 (5) | |
H6A | 1.0243 | 0.3322 | 0.6145 | 0.039* | |
H6B | 0.9140 | 0.3209 | 0.6641 | 0.039* | |
S1 | 1.09031 (4) | 0.05082 (3) | 0.75083 (3) | 0.02484 (15) | |
O1W | 0.65014 (16) | 0.0231 (2) | 0.38367 (16) | 0.0664 (7) | |
H1WA | 0.6900 (18) | −0.002 (3) | 0.3429 (19) | 0.080* | |
H1WB | 0.5855 (10) | 0.012 (3) | 0.370 (2) | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02221 (17) | 0.02101 (17) | 0.02405 (17) | −0.00087 (9) | −0.00356 (8) | 0.00115 (8) |
N1 | 0.0297 (9) | 0.0254 (8) | 0.0237 (8) | 0.0019 (7) | −0.0029 (6) | 0.0020 (7) |
O1 | 0.0411 (9) | 0.0307 (8) | 0.0348 (9) | −0.0030 (7) | 0.0084 (7) | 0.0015 (6) |
O2 | 0.0641 (13) | 0.0379 (10) | 0.0328 (9) | 0.0127 (9) | 0.0087 (8) | −0.0050 (7) |
O3 | 0.0293 (8) | 0.0305 (8) | 0.0383 (9) | −0.0047 (6) | −0.0108 (6) | 0.0063 (6) |
O4 | 0.0286 (8) | 0.0330 (9) | 0.0292 (8) | −0.0045 (6) | −0.0041 (6) | −0.0027 (6) |
O5 | 0.0237 (7) | 0.0276 (8) | 0.0371 (9) | 0.0004 (6) | −0.0019 (6) | 0.0064 (6) |
O6 | 0.0613 (12) | 0.0291 (8) | 0.0541 (11) | −0.0006 (8) | −0.0309 (10) | 0.0031 (8) |
O7 | 0.0305 (8) | 0.0368 (8) | 0.0432 (9) | 0.0059 (7) | −0.0116 (7) | −0.0122 (7) |
O8 | 0.0234 (8) | 0.0750 (13) | 0.0480 (11) | 0.0101 (9) | −0.0048 (7) | −0.0188 (10) |
O9 | 0.0400 (10) | 0.0720 (13) | 0.0301 (9) | −0.0181 (9) | 0.0007 (7) | 0.0043 (8) |
C1 | 0.0351 (12) | 0.0285 (11) | 0.0422 (13) | 0.0086 (9) | −0.0014 (10) | −0.0001 (9) |
C2 | 0.0402 (13) | 0.0274 (11) | 0.0430 (14) | 0.0027 (9) | 0.0075 (10) | −0.0052 (9) |
C3 | 0.0494 (13) | 0.0395 (12) | 0.0232 (10) | 0.0049 (11) | −0.0083 (10) | 0.0048 (9) |
C4 | 0.0582 (16) | 0.0522 (15) | 0.0254 (11) | 0.0055 (13) | 0.0059 (11) | 0.0023 (10) |
C5 | 0.0384 (13) | 0.0261 (10) | 0.0357 (12) | −0.0080 (9) | −0.0042 (10) | 0.0078 (8) |
C6 | 0.0334 (11) | 0.0307 (11) | 0.0328 (11) | −0.0092 (9) | −0.0050 (9) | 0.0015 (8) |
S1 | 0.0206 (3) | 0.0285 (3) | 0.0254 (3) | 0.00207 (19) | −0.00341 (16) | −0.00080 (18) |
O1W | 0.0345 (10) | 0.1096 (19) | 0.0551 (13) | −0.0124 (12) | 0.0036 (9) | −0.0468 (13) |
Cu1—O5 | 1.9414 (15) | O7—S1 | 1.4755 (16) |
Cu1—O3 | 1.9975 (16) | O8—S1 | 1.4638 (18) |
Cu1—O4 | 2.0076 (16) | O9—S1 | 1.4596 (18) |
Cu1—N1 | 2.0343 (18) | C1—C2 | 1.506 (4) |
Cu1—O2 | 2.2984 (18) | C1—H1A | 0.9700 |
Cu1—O1 | 2.3893 (17) | C1—H1B | 0.9700 |
N1—C3 | 1.490 (3) | C2—H2A | 0.9700 |
N1—C5 | 1.494 (3) | C2—H2B | 0.9700 |
N1—C1 | 1.495 (3) | C3—C4 | 1.519 (4) |
O1—C2 | 1.440 (3) | C3—H3A | 0.9700 |
O1—H1C | 0.800 (10) | C3—H3B | 0.9700 |
O2—C4 | 1.412 (3) | C4—H4A | 0.9700 |
O2—H2C | 0.788 (10) | C4—H4B | 0.9700 |
O3—C6 | 1.448 (3) | C5—C6 | 1.510 (3) |
O3—H3C | 0.810 (10) | C5—H5A | 0.9700 |
O4—H4C | 0.825 (15) | C5—H5B | 0.9700 |
O4—H4D | 0.762 (13) | C6—H6A | 0.9700 |
O5—H5C | 0.931 (14) | C6—H6B | 0.9700 |
O5—H5D | 0.851 (16) | O1W—H1WA | 0.871 (9) |
O6—S1 | 1.4717 (18) | O1W—H1WB | 0.851 (10) |
O5—Cu1—O3 | 92.92 (7) | C2—C1—H1B | 109.1 |
O5—Cu1—O4 | 89.46 (7) | H1A—C1—H1B | 107.9 |
O3—Cu1—O4 | 177.25 (7) | O1—C2—C1 | 110.46 (19) |
O5—Cu1—N1 | 175.92 (7) | O1—C2—H2A | 109.6 |
O3—Cu1—N1 | 83.66 (7) | C1—C2—H2A | 109.6 |
O4—Cu1—N1 | 93.91 (7) | O1—C2—H2B | 109.6 |
O5—Cu1—O2 | 102.14 (7) | C1—C2—H2B | 109.6 |
O3—Cu1—O2 | 92.81 (8) | H2A—C2—H2B | 108.1 |
O4—Cu1—O2 | 88.05 (8) | N1—C3—C4 | 112.50 (19) |
N1—Cu1—O2 | 80.31 (7) | N1—C3—H3A | 109.1 |
O5—Cu1—O1 | 100.12 (6) | C4—C3—H3A | 109.1 |
O3—Cu1—O1 | 92.23 (7) | N1—C3—H3B | 109.1 |
O4—Cu1—O1 | 85.98 (7) | C4—C3—H3B | 109.1 |
N1—Cu1—O1 | 77.85 (6) | H3A—C3—H3B | 107.8 |
O2—Cu1—O1 | 156.89 (6) | O2—C4—C3 | 108.6 (2) |
C3—N1—C5 | 110.95 (18) | O2—C4—H4A | 110.0 |
C3—N1—C1 | 108.82 (18) | C3—C4—H4A | 110.0 |
C5—N1—C1 | 111.76 (18) | O2—C4—H4B | 110.0 |
C3—N1—Cu1 | 107.77 (14) | C3—C4—H4B | 110.0 |
C5—N1—Cu1 | 108.55 (13) | H4A—C4—H4B | 108.4 |
C1—N1—Cu1 | 108.89 (14) | N1—C5—C6 | 111.81 (17) |
C2—O1—Cu1 | 107.96 (13) | N1—C5—H5A | 109.3 |
C2—O1—H1C | 116 (2) | C6—C5—H5A | 109.3 |
Cu1—O1—H1C | 120 (2) | N1—C5—H5B | 109.3 |
C4—O2—Cu1 | 108.75 (14) | C6—C5—H5B | 109.3 |
C4—O2—H2C | 100 (3) | H5A—C5—H5B | 107.9 |
Cu1—O2—H2C | 150 (3) | O3—C6—C5 | 105.85 (17) |
C6—O3—Cu1 | 109.37 (12) | O3—C6—H6A | 110.6 |
C6—O3—H3C | 118 (2) | C5—C6—H6A | 110.6 |
Cu1—O3—H3C | 116 (2) | O3—C6—H6B | 110.6 |
Cu1—O4—H4C | 113.1 (19) | C5—C6—H6B | 110.6 |
Cu1—O4—H4D | 114 (2) | H6A—C6—H6B | 108.7 |
H4C—O4—H4D | 123 (2) | O9—S1—O8 | 109.10 (12) |
Cu1—O5—H5C | 113.7 (10) | O9—S1—O6 | 108.55 (13) |
Cu1—O5—H5D | 108.9 (18) | O8—S1—O6 | 109.17 (13) |
H5C—O5—H5D | 101.7 (15) | O9—S1—O7 | 110.82 (11) |
N1—C1—C2 | 112.4 (2) | O8—S1—O7 | 109.80 (10) |
N1—C1—H1A | 109.1 | O6—S1—O7 | 109.38 (10) |
C2—C1—H1A | 109.1 | H1WA—O1W—H1WB | 107.0 (15) |
N1—C1—H1B | 109.1 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O8i | 0.87 (1) | 1.90 (1) | 2.753 (3) | 166 (3) |
O1—H1C···O6ii | 0.80 (1) | 1.95 (1) | 2.744 (2) | 172 (3) |
O1W—H1WB···O9iii | 0.85 (1) | 1.93 (1) | 2.772 (3) | 171 (4) |
O2—H2C···O7i | 0.79 (1) | 1.99 (1) | 2.775 (2) | 172 (4) |
O3—H3C···O6 | 0.81 (1) | 1.82 (1) | 2.609 (2) | 164 (3) |
O4—H4C···O9ii | 0.83 (2) | 1.93 (2) | 2.750 (2) | 172 (3) |
O4—H4D···O1W | 0.76 (1) | 1.87 (2) | 2.608 (3) | 164 (3) |
O5—H5D···O7 | 0.85 (2) | 1.83 (2) | 2.644 (2) | 158 (3) |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) x−1/2, y, −z+3/2; (iii) −x+3/2, −y, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C6H15NO3)(H2O)2]SO4·H2O |
Mr | 362.84 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 293 |
a, b, c (Å) | 12.502 (3), 14.835 (3), 15.049 (3) |
V (Å3) | 2791.1 (10) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 1.76 |
Crystal size (mm) | 0.46 × 0.43 × 0.28 |
Data collection | |
Diffractometer | Siemens SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.471, 0.619 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 24803, 3180, 2903 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.095, 1.01 |
No. of reflections | 3180 |
No. of parameters | 200 |
No. of restraints | 14 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.66, −0.54 |
Computer programs: SMART (Siemens, 1994), SAINT (Siemens, 1994), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O8i | 0.871 (9) | 1.899 (13) | 2.753 (3) | 166 (3) |
O1—H1C···O6ii | 0.800 (10) | 1.950 (11) | 2.744 (2) | 172 (3) |
O1W—H1WB···O9iii | 0.851 (10) | 1.928 (12) | 2.772 (3) | 171 (4) |
O2—H2C···O7i | 0.788 (10) | 1.992 (11) | 2.775 (2) | 172 (4) |
O3—H3C···O6 | 0.810 (10) | 1.822 (13) | 2.609 (2) | 164 (3) |
O4—H4C···O9ii | 0.825 (15) | 1.932 (17) | 2.750 (2) | 172 (3) |
O4—H4D···O1W | 0.762 (13) | 1.867 (15) | 2.608 (3) | 164 (3) |
O5—H5D···O7 | 0.851 (16) | 1.834 (18) | 2.644 (2) | 158 (3) |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) x−1/2, y, −z+3/2; (iii) −x+3/2, −y, z−1/2. |
Acknowledgements
This work was supported by the Natural Science Foundation of Fujian Province (2008 J0172)
References
Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151–1152. CSD CrossRef CAS Web of Science Google Scholar
Guo, H.-X., Du, Z.-X. & Li, X.-Z. (2009). Acta Cryst. E65, m810–m811. Web of Science CSD CrossRef IUCr Journals Google Scholar
Haukka, M., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2005). Acta Cryst. E61, m2746–m2748. Web of Science CSD CrossRef IUCr Journals Google Scholar
İçbudak, H., Yilmaz, V. T., Howie, R. A., Andaç, Ö. & Ölmez, H. (1995). Acta Cryst. C51, 1759–1761. CSD CrossRef Web of Science IUCr Journals Google Scholar
Kahn, O. (1993). Molecular Magnetism. New York: VCH. Google Scholar
Kepert, C. J. & Rosseinsky, M. J. (1999). Chem. Commun. 1, 31–32. Google Scholar
Krabbes, I., Seichter, W. & Gloe, K. (2000). Acta Cryst. C56, e178. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Topcu, Y., Andac, O., Yilmaz, V. T. & Harrison, W. T. A. (2001). Acta Cryst. E57, m82–m84. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ucar, I., Yesilel, O. Z., Bulut, A., Icbudak, H., Olmez, H. & Kazak, C. (2004). Acta Cryst. E60, m322–m324. Web of Science CSD CrossRef IUCr Journals Google Scholar
Venkataraman, D., Gardner, G. B., Lee, S. & Moore, J. S. (1995). J. Am. Chem. Soc. 117, 11600–11601. CrossRef CAS Web of Science Google Scholar
Yeşilel, O. Z., Bulut, A., Uçar, İ., İçbudak, H., Ölmez, H. & Büyükgüngör, O. (2004). Acta Cryst. E60, m228–m230. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Many workers from a variety of scientific disciplines are interested in the crystal design and engineering of multidimensional arrays and networks containing metal ions as nodes. Metal-ion-containing supramolecular structures can be used as zeolite-like matarials (Venkataraman et al., 1995; Kepert & Rosseinsky, 1999), catalysts (Fujita et al., 1994) or magnetic materials (Kahn, 1993). Triethanolamine(TEA)is a good potential ligand to the incorporation of metals into metal-ion-containing supramolecular framework, and many compounds constructed from TEA have been reported in the last decade (Krabbes et al., 2000; Topcu et al., 2001; Ucar et al., 2004; Haukka et al., 2005;Guo et al., 2009). In this work, we employed TEA and CuSO4 for producing a novel complex, [Cu(C6H15NO3)(H2O)2].SO4.H2O(I).
A view of (I) and its numbering scheme are shown in Fig. 1. The crystal structure consists of a complex cation, one sulfate anion and one lattice water molecue. In the complex cation, the CuII ion is coordinated by five O atoms, in which three from the TEA ligand and two from coordination water molecules, and one N atom of the TEA ligand in a highly distorted octahedral configuration of the CuNO5 type, in which The Cu—O bond lengths and O—Cu—N bond angles are in the range of 1.944 (2)–2.389 (2) Å, 80.30 (7)–175.98 (7)°, respectively. and the Cu—N bond length is of 2.033 (2) Å, which is similar to that of the other related compounds(İçbudak et al., 1995; Yeşilel, et al., 2004). The neutral TEA ligand behaves as a tetradentate ligand using all the donor sites (N1, O1, O2 and O3).
In the crystal structure of (I), classical intermolecular O—H···O hydrogen bonds are observed (Table 2), which link the hydroxies, coordinated water molecues of the cation, sulfate anion and lattice water molecue into a two-dimensional hydrogen-bonded network and stabilize the crystal packing (Fig. 2).