metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­(tri­ethano­lamine)copper(II) sulfate monohydrate

aDepartment of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou, Fujian 363000, People's Republic of China
*Correspondence e-mail: ghx919@yahoo.com.cn

(Received 26 June 2009; accepted 6 July 2009; online 11 July 2009)

The asymmetric unit of the title compound, [Cu(C6H15NO3)(H2O)2]SO4·H2O, contains a complex cation, a sulfate anion and one uncoordinated water mol­ecule. In the complex cation, the CuII ion is coordinated by five O atoms (three of which are from the triethano­lamine ligand and two from coordinated water mol­ecules) and one N atom of the triethano­lamine ligand in a typical Jahn–Teller-distorted octa­hedral geometry. Classical inter­molecular O—H⋯O hydrogen bonds link the cation, the sulfate anion and the water mol­ecule into a two-dimensional network.

Related literature

Metal-ion-containing supra­molecular structures can be used as zeolite-like matarials (Venkataraman et al., 1995[Venkataraman, D., Gardner, G. B., Lee, S. & Moore, J. S. (1995). J. Am. Chem. Soc. 117, 11600-11601.]; Kepert & Rosseinsky, 1999[Kepert, C. J. & Rosseinsky, M. J. (1999). Chem. Commun. 1, 31-32.]), catalysts (Fujita et al., 1994[Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151-1152.]) and magnetic materials (Kahn, 1993[Kahn, O. (1993). Molecular Magnetism. New York: VCH.]). For related strutures, see: Guo et al. (2009[Guo, H.-X., Du, Z.-X. & Li, X.-Z. (2009). Acta Cryst. E65, m810-m811.]); Haukka et al. (2005[Haukka, M., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2005). Acta Cryst. E61, m2746-m2748.]); Krabbes et al. (2000[Krabbes, I., Seichter, W. & Gloe, K. (2000). Acta Cryst. C56, e178.]); Topcu et al. (2001[Topcu, Y., Andac, O., Yilmaz, V. T. & Harrison, W. T. A. (2001). Acta Cryst. E57, m82-m84.]); Ucar et al. (2004[Ucar, I., Yesilel, O. Z., Bulut, A., Icbudak, H., Olmez, H. & Kazak, C. (2004). Acta Cryst. E60, m322-m324.]). For comparative bond lengths, see: Yeşilel et al. (2004[Yeşilel, O. Z., Bulut, A., Uçar, İ., İçbudak, H., Ölmez, H. & Büyükgüngör, O. (2004). Acta Cryst. E60, m228-m230.]). İçbudak et al. (1995[İçbudak, H., Yilmaz, V. T., Howie, R. A., Andaç, Ö. & Ölmez, H. (1995). Acta Cryst. C51, 1759-1761.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C6H15NO3)(H2O)2]SO4·H2O

  • Mr = 362.84

  • Orthorhombic, P b c a

  • a = 12.502 (3) Å

  • b = 14.835 (3) Å

  • c = 15.049 (3) Å

  • V = 2791.1 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.76 mm−1

  • T = 293 K

  • 0.46 × 0.43 × 0.28 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.471, Tmax = 0.619

  • 24803 measured reflections

  • 3180 independent reflections

  • 2903 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.095

  • S = 1.01

  • 3180 reflections

  • 200 parameters

  • 14 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O8i 0.871 (9) 1.899 (13) 2.753 (3) 166 (3)
O1—H1C⋯O6ii 0.800 (10) 1.950 (11) 2.744 (2) 172 (3)
O1W—H1WB⋯O9iii 0.851 (10) 1.928 (12) 2.772 (3) 171 (4)
O2—H2C⋯O7i 0.788 (10) 1.992 (11) 2.775 (2) 172 (4)
O3—H3C⋯O6 0.810 (10) 1.822 (13) 2.609 (2) 164 (3)
O4—H4C⋯O9ii 0.825 (15) 1.932 (17) 2.750 (2) 172 (3)
O4—H4D⋯O1W 0.762 (13) 1.867 (15) 2.608 (3) 164 (3)
O5—H5D⋯O7 0.851 (16) 1.834 (18) 2.644 (2) 158 (3)
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y, z-{\script{1\over 2}}].

Data collection: SMART (Siemens, 1994[Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1994[Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many workers from a variety of scientific disciplines are interested in the crystal design and engineering of multidimensional arrays and networks containing metal ions as nodes. Metal-ion-containing supramolecular structures can be used as zeolite-like matarials (Venkataraman et al., 1995; Kepert & Rosseinsky, 1999), catalysts (Fujita et al., 1994) or magnetic materials (Kahn, 1993). Triethanolamine(TEA)is a good potential ligand to the incorporation of metals into metal-ion-containing supramolecular framework, and many compounds constructed from TEA have been reported in the last decade (Krabbes et al., 2000; Topcu et al., 2001; Ucar et al., 2004; Haukka et al., 2005;Guo et al., 2009). In this work, we employed TEA and CuSO4 for producing a novel complex, [Cu(C6H15NO3)(H2O)2].SO4.H2O(I).

A view of (I) and its numbering scheme are shown in Fig. 1. The crystal structure consists of a complex cation, one sulfate anion and one lattice water molecue. In the complex cation, the CuII ion is coordinated by five O atoms, in which three from the TEA ligand and two from coordination water molecules, and one N atom of the TEA ligand in a highly distorted octahedral configuration of the CuNO5 type, in which The Cu—O bond lengths and O—Cu—N bond angles are in the range of 1.944 (2)–2.389 (2) Å, 80.30 (7)–175.98 (7)°, respectively. and the Cu—N bond length is of 2.033 (2) Å, which is similar to that of the other related compounds(İçbudak et al., 1995; Yeşilel, et al., 2004). The neutral TEA ligand behaves as a tetradentate ligand using all the donor sites (N1, O1, O2 and O3).

In the crystal structure of (I), classical intermolecular O—H···O hydrogen bonds are observed (Table 2), which link the hydroxies, coordinated water molecues of the cation, sulfate anion and lattice water molecue into a two-dimensional hydrogen-bonded network and stabilize the crystal packing (Fig. 2).

Related literature top

Metal-ion-containing supramolecular structures can be used as zeolite-like matarials (Venkataraman et al., 1995; Kepert & Rosseinsky, 1999), catalysts (Fujita et al., 1994) and magnetic materials (Kahn, 1993). For related strutures, see: Guo et al. (2009); Haukka et al. (2005); Krabbes et al. (2000); Topcu et al. (2001); Ucar et al. (2004). Forcomparative bond lengths, see: Yeşilel et al. (2004). İçbudak et al. (1995).

Experimental top

CuSO4.5H2O (0.5002 g, 2 mmol) was dissolved in 10 ml water and the pH was adjusted to 8 with triethanolamine. Blue crystals of (I) separated from the filtered solution at room temperature overseveral days.

Refinement top

All H atoms bound to carbon were refined using a riding model with C—H = 0.97Å and Uiso(H) = 1.2Ueq(C).Three hydroxy H atoms were located in a difference map and refined with O—H distance restraints of 0.80 (1) A and with Uiso(H) = 1.5Ueq(O).The two coordinated water H atoms were located in a difference map and refined with O—H and H···H distance restraints of 0.85 (1) and 1.39 (1) Å, respectively, and with Uiso(H) = 1.2Ueq(O), while the lattice water H atoms were located in a difference map and refined with O—H and H···H distance restraints of 0.84 (1) and 1.39 (1) Å, respectively, and with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1994); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level; H-atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. View of the 2-D hydrogen-bonded network in the packing of the title compound. The packing is viewed along the a axis; O-H···O interactions are shown as dashed lines.
Diaqua(triethanolamine)copper(II) sulfate monohydrate top
Crystal data top
[Cu(C6H15NO3)(H2O)2]SO4·H2OF(000) = 1512
Mr = 362.84Dx = 1.727 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 24803 reflections
a = 12.502 (3) Åθ = 3.1–27.4°
b = 14.835 (3) ŵ = 1.76 mm1
c = 15.049 (3) ÅT = 293 K
V = 2791.1 (10) Å3Block, blue
Z = 80.46 × 0.43 × 0.28 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
3180 independent reflections
Radiation source: fine-focus sealed tube2903 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1615
Tmin = 0.471, Tmax = 0.619k = 1719
24803 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.062P)2 + 2.0253P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3180 reflectionsΔρmax = 0.66 e Å3
200 parametersΔρmin = 0.54 e Å3
14 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0166 (8)
Crystal data top
[Cu(C6H15NO3)(H2O)2]SO4·H2OV = 2791.1 (10) Å3
Mr = 362.84Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.502 (3) ŵ = 1.76 mm1
b = 14.835 (3) ÅT = 293 K
c = 15.049 (3) Å0.46 × 0.43 × 0.28 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
3180 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2903 reflections with I > 2σ(I)
Tmin = 0.471, Tmax = 0.619Rint = 0.036
24803 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03014 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.66 e Å3
3180 reflectionsΔρmin = 0.54 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.817285 (19)0.161186 (16)0.563698 (16)0.02242 (12)
N10.79877 (14)0.28534 (12)0.50841 (12)0.0263 (4)
O10.72865 (15)0.24227 (11)0.67944 (11)0.0355 (4)
H1C0.6857 (19)0.2171 (19)0.7100 (18)0.043*
O20.87331 (18)0.13070 (13)0.42137 (12)0.0449 (4)
H2C0.902 (2)0.0986 (19)0.3874 (18)0.054*
O30.96021 (12)0.20915 (11)0.59952 (11)0.0327 (4)
H3C0.992 (2)0.1803 (16)0.6366 (15)0.039*
O40.67091 (12)0.11906 (11)0.52784 (11)0.0303 (3)
H4C0.636 (2)0.0983 (19)0.5697 (12)0.036*
H4D0.668 (2)0.0999 (17)0.4809 (10)0.036*
O50.84098 (12)0.04673 (10)0.62306 (11)0.0295 (3)
H5C0.8032 (16)0.0406 (13)0.6761 (12)0.035*
H5D0.9054 (12)0.0446 (18)0.6411 (16)0.035*
O61.07432 (17)0.14707 (12)0.73118 (14)0.0482 (5)
O71.02862 (13)0.00389 (11)0.68697 (11)0.0368 (4)
O81.20422 (14)0.02931 (15)0.74339 (13)0.0488 (5)
O91.05504 (15)0.03349 (14)0.84170 (11)0.0474 (5)
C10.6991 (2)0.32729 (17)0.54436 (19)0.0353 (5)
H1A0.63760.29390.52280.042*
H1B0.69340.38860.52240.042*
C20.6971 (2)0.32862 (16)0.64443 (18)0.0368 (5)
H2A0.74540.37480.66610.044*
H2B0.62550.34320.66480.044*
C30.7865 (2)0.27310 (17)0.41066 (15)0.0374 (5)
H3A0.79080.33150.38180.045*
H3B0.71640.24800.39840.045*
C40.8714 (3)0.21142 (19)0.37171 (16)0.0453 (6)
H4A0.85510.19840.31000.054*
H4B0.94090.24050.37430.054*
C50.8955 (2)0.34057 (14)0.52931 (17)0.0334 (5)
H5A0.87420.40260.53930.040*
H5B0.94380.33950.47880.040*
C60.95341 (18)0.30592 (15)0.61051 (15)0.0323 (5)
H6A1.02430.33220.61450.039*
H6B0.91400.32090.66410.039*
S11.09031 (4)0.05082 (3)0.75083 (3)0.02484 (15)
O1W0.65014 (16)0.0231 (2)0.38367 (16)0.0664 (7)
H1WA0.6900 (18)0.002 (3)0.3429 (19)0.080*
H1WB0.5855 (10)0.012 (3)0.370 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02221 (17)0.02101 (17)0.02405 (17)0.00087 (9)0.00356 (8)0.00115 (8)
N10.0297 (9)0.0254 (8)0.0237 (8)0.0019 (7)0.0029 (6)0.0020 (7)
O10.0411 (9)0.0307 (8)0.0348 (9)0.0030 (7)0.0084 (7)0.0015 (6)
O20.0641 (13)0.0379 (10)0.0328 (9)0.0127 (9)0.0087 (8)0.0050 (7)
O30.0293 (8)0.0305 (8)0.0383 (9)0.0047 (6)0.0108 (6)0.0063 (6)
O40.0286 (8)0.0330 (9)0.0292 (8)0.0045 (6)0.0041 (6)0.0027 (6)
O50.0237 (7)0.0276 (8)0.0371 (9)0.0004 (6)0.0019 (6)0.0064 (6)
O60.0613 (12)0.0291 (8)0.0541 (11)0.0006 (8)0.0309 (10)0.0031 (8)
O70.0305 (8)0.0368 (8)0.0432 (9)0.0059 (7)0.0116 (7)0.0122 (7)
O80.0234 (8)0.0750 (13)0.0480 (11)0.0101 (9)0.0048 (7)0.0188 (10)
O90.0400 (10)0.0720 (13)0.0301 (9)0.0181 (9)0.0007 (7)0.0043 (8)
C10.0351 (12)0.0285 (11)0.0422 (13)0.0086 (9)0.0014 (10)0.0001 (9)
C20.0402 (13)0.0274 (11)0.0430 (14)0.0027 (9)0.0075 (10)0.0052 (9)
C30.0494 (13)0.0395 (12)0.0232 (10)0.0049 (11)0.0083 (10)0.0048 (9)
C40.0582 (16)0.0522 (15)0.0254 (11)0.0055 (13)0.0059 (11)0.0023 (10)
C50.0384 (13)0.0261 (10)0.0357 (12)0.0080 (9)0.0042 (10)0.0078 (8)
C60.0334 (11)0.0307 (11)0.0328 (11)0.0092 (9)0.0050 (9)0.0015 (8)
S10.0206 (3)0.0285 (3)0.0254 (3)0.00207 (19)0.00341 (16)0.00080 (18)
O1W0.0345 (10)0.1096 (19)0.0551 (13)0.0124 (12)0.0036 (9)0.0468 (13)
Geometric parameters (Å, º) top
Cu1—O51.9414 (15)O7—S11.4755 (16)
Cu1—O31.9975 (16)O8—S11.4638 (18)
Cu1—O42.0076 (16)O9—S11.4596 (18)
Cu1—N12.0343 (18)C1—C21.506 (4)
Cu1—O22.2984 (18)C1—H1A0.9700
Cu1—O12.3893 (17)C1—H1B0.9700
N1—C31.490 (3)C2—H2A0.9700
N1—C51.494 (3)C2—H2B0.9700
N1—C11.495 (3)C3—C41.519 (4)
O1—C21.440 (3)C3—H3A0.9700
O1—H1C0.800 (10)C3—H3B0.9700
O2—C41.412 (3)C4—H4A0.9700
O2—H2C0.788 (10)C4—H4B0.9700
O3—C61.448 (3)C5—C61.510 (3)
O3—H3C0.810 (10)C5—H5A0.9700
O4—H4C0.825 (15)C5—H5B0.9700
O4—H4D0.762 (13)C6—H6A0.9700
O5—H5C0.931 (14)C6—H6B0.9700
O5—H5D0.851 (16)O1W—H1WA0.871 (9)
O6—S11.4717 (18)O1W—H1WB0.851 (10)
O5—Cu1—O392.92 (7)C2—C1—H1B109.1
O5—Cu1—O489.46 (7)H1A—C1—H1B107.9
O3—Cu1—O4177.25 (7)O1—C2—C1110.46 (19)
O5—Cu1—N1175.92 (7)O1—C2—H2A109.6
O3—Cu1—N183.66 (7)C1—C2—H2A109.6
O4—Cu1—N193.91 (7)O1—C2—H2B109.6
O5—Cu1—O2102.14 (7)C1—C2—H2B109.6
O3—Cu1—O292.81 (8)H2A—C2—H2B108.1
O4—Cu1—O288.05 (8)N1—C3—C4112.50 (19)
N1—Cu1—O280.31 (7)N1—C3—H3A109.1
O5—Cu1—O1100.12 (6)C4—C3—H3A109.1
O3—Cu1—O192.23 (7)N1—C3—H3B109.1
O4—Cu1—O185.98 (7)C4—C3—H3B109.1
N1—Cu1—O177.85 (6)H3A—C3—H3B107.8
O2—Cu1—O1156.89 (6)O2—C4—C3108.6 (2)
C3—N1—C5110.95 (18)O2—C4—H4A110.0
C3—N1—C1108.82 (18)C3—C4—H4A110.0
C5—N1—C1111.76 (18)O2—C4—H4B110.0
C3—N1—Cu1107.77 (14)C3—C4—H4B110.0
C5—N1—Cu1108.55 (13)H4A—C4—H4B108.4
C1—N1—Cu1108.89 (14)N1—C5—C6111.81 (17)
C2—O1—Cu1107.96 (13)N1—C5—H5A109.3
C2—O1—H1C116 (2)C6—C5—H5A109.3
Cu1—O1—H1C120 (2)N1—C5—H5B109.3
C4—O2—Cu1108.75 (14)C6—C5—H5B109.3
C4—O2—H2C100 (3)H5A—C5—H5B107.9
Cu1—O2—H2C150 (3)O3—C6—C5105.85 (17)
C6—O3—Cu1109.37 (12)O3—C6—H6A110.6
C6—O3—H3C118 (2)C5—C6—H6A110.6
Cu1—O3—H3C116 (2)O3—C6—H6B110.6
Cu1—O4—H4C113.1 (19)C5—C6—H6B110.6
Cu1—O4—H4D114 (2)H6A—C6—H6B108.7
H4C—O4—H4D123 (2)O9—S1—O8109.10 (12)
Cu1—O5—H5C113.7 (10)O9—S1—O6108.55 (13)
Cu1—O5—H5D108.9 (18)O8—S1—O6109.17 (13)
H5C—O5—H5D101.7 (15)O9—S1—O7110.82 (11)
N1—C1—C2112.4 (2)O8—S1—O7109.80 (10)
N1—C1—H1A109.1O6—S1—O7109.38 (10)
C2—C1—H1A109.1H1WA—O1W—H1WB107.0 (15)
N1—C1—H1B109.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O8i0.87 (1)1.90 (1)2.753 (3)166 (3)
O1—H1C···O6ii0.80 (1)1.95 (1)2.744 (2)172 (3)
O1W—H1WB···O9iii0.85 (1)1.93 (1)2.772 (3)171 (4)
O2—H2C···O7i0.79 (1)1.99 (1)2.775 (2)172 (4)
O3—H3C···O60.81 (1)1.82 (1)2.609 (2)164 (3)
O4—H4C···O9ii0.83 (2)1.93 (2)2.750 (2)172 (3)
O4—H4D···O1W0.76 (1)1.87 (2)2.608 (3)164 (3)
O5—H5D···O70.85 (2)1.83 (2)2.644 (2)158 (3)
Symmetry codes: (i) x+2, y, z+1; (ii) x1/2, y, z+3/2; (iii) x+3/2, y, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C6H15NO3)(H2O)2]SO4·H2O
Mr362.84
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)12.502 (3), 14.835 (3), 15.049 (3)
V3)2791.1 (10)
Z8
Radiation typeMo Kα
µ (mm1)1.76
Crystal size (mm)0.46 × 0.43 × 0.28
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.471, 0.619
No. of measured, independent and
observed [I > 2σ(I)] reflections
24803, 3180, 2903
Rint0.036
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.095, 1.01
No. of reflections3180
No. of parameters200
No. of restraints14
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.54

Computer programs: SMART (Siemens, 1994), SAINT (Siemens, 1994), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O8i0.871 (9)1.899 (13)2.753 (3)166 (3)
O1—H1C···O6ii0.800 (10)1.950 (11)2.744 (2)172 (3)
O1W—H1WB···O9iii0.851 (10)1.928 (12)2.772 (3)171 (4)
O2—H2C···O7i0.788 (10)1.992 (11)2.775 (2)172 (4)
O3—H3C···O60.810 (10)1.822 (13)2.609 (2)164 (3)
O4—H4C···O9ii0.825 (15)1.932 (17)2.750 (2)172 (3)
O4—H4D···O1W0.762 (13)1.867 (15)2.608 (3)164 (3)
O5—H5D···O70.851 (16)1.834 (18)2.644 (2)158 (3)
Symmetry codes: (i) x+2, y, z+1; (ii) x1/2, y, z+3/2; (iii) x+3/2, y, z1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Fujian Province (2008 J0172)

References

First citationFujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151–1152.  CSD CrossRef CAS Web of Science Google Scholar
First citationGuo, H.-X., Du, Z.-X. & Li, X.-Z. (2009). Acta Cryst. E65, m810–m811.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHaukka, M., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2005). Acta Cryst. E61, m2746–m2748.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationİçbudak, H., Yilmaz, V. T., Howie, R. A., Andaç, Ö. & Ölmez, H. (1995). Acta Cryst. C51, 1759–1761.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKahn, O. (1993). Molecular Magnetism. New York: VCH.  Google Scholar
First citationKepert, C. J. & Rosseinsky, M. J. (1999). Chem. Commun. 1, 31–32.  Google Scholar
First citationKrabbes, I., Seichter, W. & Gloe, K. (2000). Acta Cryst. C56, e178.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTopcu, Y., Andac, O., Yilmaz, V. T. & Harrison, W. T. A. (2001). Acta Cryst. E57, m82–m84.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUcar, I., Yesilel, O. Z., Bulut, A., Icbudak, H., Olmez, H. & Kazak, C. (2004). Acta Cryst. E60, m322–m324.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVenkataraman, D., Gardner, G. B., Lee, S. & Moore, J. S. (1995). J. Am. Chem. Soc. 117, 11600–11601.  CrossRef CAS Web of Science Google Scholar
First citationYeşilel, O. Z., Bulut, A., Uçar, İ., İçbudak, H., Ölmez, H. & Büyükgüngör, O. (2004). Acta Cryst. E60, m228–m230.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds