metal-organic compounds
Poly[bis(μ2-pyrimidine-2-carboxylato-κ4O,N:O′,N′)calcium]
aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn
In the 5H3N2O2)2]n, the CaII cation has m2 and is N,O-chelated by four pyrimidine-2-carboxylate anions in a square-antiprismatic geometry. The planar pyrimidine-2-carboxylate anion is located on a crystallographic special position, three C atoms have 2mm, while the carboxyl O atom, the pyrimidine N atom and the other C atom have m. Each pyrimidine-2-carboxylate anion bridges two CaII cations, forming polymeric sheets extending parallel to (001). π–π stacking exists between parallel pyrimidine rings [centroid–centroid distance = 3.6436 (6) Å] of adjacent polymeric sheets. Weak C—H⋯O hydrogen bonding is also observed between these sheets.
of the title polymeric complex, [Ca(CRelated literature
For general background, see: Deisenhofer & Michel (1989); Pan & Xu (2004); Li et al. (2005). For polymeric structures of metal complexes with the pyrimidine-2-carboxylate ligand, see: Rodríguez-Diéguez et al. (2007, 2008); Zhang et al. (2008a,b); Sava et al. (2008). For mononuclear metal complexes of pyrimidine-2-carboxylate, see: Antolić et al. (2000); Zhang et al. (2008); Xu et al. (2008). For Ca—N and Ca—O bond distances in N,O-chelated complexes, see: Starosta & Leciejewicz (2004).
Experimental
Crystal data
|
Refinement
|
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809025537/hk2721sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809025537/hk2721Isup2.hkl
2-Cyanopyrimidine (0.2 g, 2 mmol), NaOH (1.2 g, 30 mmol) and calcium chloride (0.1 g, 1 mmol) were dissolved in water (10 ml). The solution was refluxed for 3 h. After cooling to room temperature the solution was filtered. The single crystals were obtained from the filtrate after 5 d.
H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[Ca(C5H3N2O2)2] | Dx = 1.732 Mg m−3 |
Mr = 286.27 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I41/amd | Cell parameters from 1086 reflections |
Hall symbol: -I 4bd 2 | θ = 3.2–25.0° |
a = 6.5312 (12) Å | µ = 0.59 mm−1 |
c = 25.734 (3) Å | T = 294 K |
V = 1097.7 (3) Å3 | Block, colorless |
Z = 4 | 0.22 × 0.20 × 0.14 mm |
F(000) = 584 |
Rigaku R-AXIS RAPID IP diffractometer | 375 independent reflections |
Radiation source: fine-focus sealed tube | 364 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
ω scans | θmax = 27.5°, θmin = 3.2° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −8→8 |
Tmin = 0.85, Tmax = 0.92 | k = −7→8 |
3191 measured reflections | l = −14→33 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.068 | w = 1/[σ2(Fo2) + (0.0407P)2 + 0.7773P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max < 0.001 |
375 reflections | Δρmax = 0.22 e Å−3 |
34 parameters | Δρmin = −0.17 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.071 (5) |
[Ca(C5H3N2O2)2] | Z = 4 |
Mr = 286.27 | Mo Kα radiation |
Tetragonal, I41/amd | µ = 0.59 mm−1 |
a = 6.5312 (12) Å | T = 294 K |
c = 25.734 (3) Å | 0.22 × 0.20 × 0.14 mm |
V = 1097.7 (3) Å3 |
Rigaku R-AXIS RAPID IP diffractometer | 375 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 364 reflections with I > 2σ(I) |
Tmin = 0.85, Tmax = 0.92 | Rint = 0.016 |
3191 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.068 | H-atom parameters constrained |
S = 1.13 | Δρmax = 0.22 e Å−3 |
375 reflections | Δρmin = −0.17 e Å−3 |
34 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ca | 0.5000 | 0.7500 | 0.3750 | 0.0164 (3) | |
N1 | 0.5000 | 0.4327 (2) | 0.30820 (5) | 0.0226 (4) | |
O1 | 0.5000 | 0.41994 (18) | 0.41274 (4) | 0.0292 (4) | |
C1 | 0.5000 | 0.2500 | 0.39085 (8) | 0.0197 (5) | |
C2 | 0.5000 | 0.2500 | 0.33146 (8) | 0.0188 (5) | |
C3 | 0.5000 | 0.4306 (3) | 0.25605 (6) | 0.0299 (4) | |
H3 | 0.5000 | 0.5542 | 0.2381 | 0.036* | |
C4 | 0.5000 | 0.2500 | 0.22845 (10) | 0.0319 (6) | |
H4 | 0.5000 | 0.2500 | 0.1923 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ca | 0.0152 (3) | 0.0152 (3) | 0.0189 (4) | 0.000 | 0.000 | 0.000 |
N1 | 0.0254 (7) | 0.0209 (7) | 0.0215 (7) | 0.000 | 0.000 | 0.0026 (5) |
O1 | 0.0499 (8) | 0.0169 (6) | 0.0209 (6) | 0.000 | 0.000 | −0.0015 (4) |
C1 | 0.0224 (10) | 0.0181 (10) | 0.0186 (10) | 0.000 | 0.000 | 0.000 |
C2 | 0.0170 (9) | 0.0201 (10) | 0.0193 (10) | 0.000 | 0.000 | 0.000 |
C3 | 0.0345 (9) | 0.0326 (9) | 0.0226 (8) | 0.000 | 0.000 | 0.0072 (7) |
C4 | 0.0337 (13) | 0.0438 (15) | 0.0184 (10) | 0.000 | 0.000 | 0.000 |
Ca—O1i | 2.3644 (12) | N1—C3 | 1.342 (2) |
Ca—O1ii | 2.3644 (11) | O1—C1 | 1.2447 (15) |
Ca—O1 | 2.3644 (11) | C1—O1iv | 1.2447 (15) |
Ca—O1iii | 2.3644 (12) | C1—C2 | 1.528 (3) |
Ca—N1iii | 2.6923 (14) | C2—N1iv | 1.3350 (16) |
Ca—N1 | 2.6923 (13) | C3—C4 | 1.377 (2) |
Ca—N1ii | 2.6923 (13) | C3—H3 | 0.9300 |
Ca—N1i | 2.6923 (14) | C4—C3iv | 1.377 (2) |
N1—C2 | 1.3350 (16) | C4—H4 | 0.9300 |
O1i—Ca—O1ii | 99.72 (2) | O1ii—Ca—N1i | 74.795 (18) |
O1i—Ca—O1 | 99.72 (2) | O1—Ca—N1i | 74.795 (18) |
O1ii—Ca—O1 | 131.49 (5) | O1iii—Ca—N1i | 164.58 (4) |
O1i—Ca—O1iii | 131.49 (5) | N1iii—Ca—N1i | 100.65 (6) |
O1ii—Ca—O1iii | 99.72 (2) | N1—Ca—N1i | 114.05 (3) |
O1—Ca—O1iii | 99.72 (2) | N1ii—Ca—N1i | 114.05 (3) |
O1i—Ca—N1iii | 164.58 (4) | C2—N1—C3 | 116.03 (15) |
O1ii—Ca—N1iii | 74.795 (18) | C2—N1—Ca | 113.69 (10) |
O1—Ca—N1iii | 74.795 (18) | C3—N1—Ca | 130.28 (11) |
O1iii—Ca—N1iii | 63.93 (4) | C1—O1—Ca | 128.83 (11) |
O1i—Ca—N1 | 74.796 (18) | O1—C1—O1iv | 126.2 (2) |
O1ii—Ca—N1 | 164.58 (4) | O1—C1—C2 | 116.91 (10) |
O1—Ca—N1 | 63.93 (4) | O1iv—C1—C2 | 116.91 (10) |
O1iii—Ca—N1 | 74.796 (18) | N1iv—C2—N1 | 126.74 (19) |
N1iii—Ca—N1 | 114.05 (3) | N1iv—C2—C1 | 116.63 (10) |
O1i—Ca—N1ii | 74.796 (18) | N1—C2—C1 | 116.63 (10) |
O1ii—Ca—N1ii | 63.93 (4) | N1—C3—C4 | 121.66 (16) |
O1—Ca—N1ii | 164.58 (4) | N1—C3—H3 | 119.2 |
O1iii—Ca—N1ii | 74.796 (18) | C4—C3—H3 | 119.2 |
N1iii—Ca—N1ii | 114.05 (3) | C3—C4—C3iv | 117.9 (2) |
N1—Ca—N1ii | 100.65 (5) | C3—C4—H4 | 121.1 |
O1i—Ca—N1i | 63.93 (4) | C3iv—C4—H4 | 121.1 |
Symmetry codes: (i) y−1/4, x+1/4, −z+3/4; (ii) −x+1, −y+3/2, z; (iii) −y+5/4, x+1/4, −z+3/4; (iv) −x+1, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1v | 0.93 | 2.57 | 3.3689 (19) | 144 |
Symmetry code: (v) y+1/4, −x+5/4, z−1/4. |
Experimental details
Crystal data | |
Chemical formula | [Ca(C5H3N2O2)2] |
Mr | 286.27 |
Crystal system, space group | Tetragonal, I41/amd |
Temperature (K) | 294 |
a, c (Å) | 6.5312 (12), 25.734 (3) |
V (Å3) | 1097.7 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.59 |
Crystal size (mm) | 0.22 × 0.20 × 0.14 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID IP diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.85, 0.92 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3191, 375, 364 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.068, 1.13 |
No. of reflections | 375 |
No. of parameters | 34 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.17 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1i | 0.93 | 2.57 | 3.3689 (19) | 144 |
Symmetry code: (i) y+1/4, −x+5/4, z−1/4. |
Acknowledgements
The work was supported by the ZIJIN project of Zhejiang University, China.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Antolić, S., Kojić-Prodić, B. & Lovrić, J. (2000). Acta Cryst. C56, e51–e52. Web of Science CSD CrossRef IUCr Journals Google Scholar
Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149–2170. CAS PubMed Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56–m58. CSD CrossRef IUCr Journals Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Rodríguez-Diéguez, A., Aouryaghal, H., Mota, A. J. & Colacio, E. (2008). Acta Cryst. E64, m618. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rodríquez-Diéguez, A., Cano, J., Kivekas, R., Debdoudi, A. & Colacio, E. (2007). Inorg. Chem. 46, 2503–2510. Web of Science PubMed Google Scholar
Sava, D. F., Kravtsov, V. Ch., Nouar, F., Wojtas, L., Eubank, J. F. & Eddaoudi, M. (2008). J. Am. Chem. Soc. 130, 3768–3770. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Starosta, W. & Leciejewicz, J. (2004). J. Coord. Chem. 57, 1151–1156. Web of Science CSD CrossRef CAS Google Scholar
Xu, D.-J., Zhang, B.-Y., Yang, Q. & Nie, J.-J. (2008). Acta Cryst. E64, m77. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, J.-Y., Cheng, A.-L., Yue, Q., Sun, W.-W. & Gao, E.-Q. (2008a). Chem. Commun. pp. 847–849. Web of Science CSD CrossRef Google Scholar
Zhang, J.-Y., Ma, Y., Cheng, A.-L., Yue, Q., Sun, Q. & Gao, E.-Q. (2008b). Dalton Trans. pp. 2061–2066. Web of Science CSD CrossRef Google Scholar
Zhang, B.-Y., Yang, Q. & Nie, J.-J. (2008). Acta Cryst. E64, m7. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As π-π stacking between aromatic rings is correlated with the electron transfer process in some biological systems (Deisenhofer & Michel, 1989), a series metal complexes incorporating the aromatic compound has been prepared in our laboratory to investigate the nature of π-π stacking (Li et al., 2005; Pan & Xu, 2004). We report herein the crystal structure of the title compound of pyridinecarboxylate to show π-π stacking in the crystal structure.
A part of the polymeric structure of the title molecule is shown in Fig. 1. In the crystal structure, the CaII cation has site symmetry -4m2 and is N,O-chelated by four pyrimidinecarboxylate anions with the square-antiprism geometry. The Ca—N and Ca—O bond distances (Table 1) agree with those found in the N,O-chelated CaII complex (Starosta & Leciejewicz, 2004). The planar pyrimidinecarboxylate anion is located on the crystallographic special position, three C atoms have site symmetry 2 mm while the carboxyl O atom, the pirimidine N atom and the other C atom have site symmetry m. Each pyrimidinecarboxylate anion N,O-chelates two CaII cations (Antolić et al., 2000; Zhang et al., 2008; Xu et al., 2008), forming the two-dimensional polymeric sheets, similar to those found in reported compounds (Rodríguez-Diéguez et al., 2007, 2008; Zhang et al., 2008a,b; Sava et al. 2008). π-π stacking [centroid-centroid distance = 3.6436 (6) Å] exists between parallel pyrimidine rings of adjacent polymeric sheets (Fig. 2). Weak C—H···O hydrogen bonding is also observed between polymeric sheets (Table 2).