metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m878-m879

Poly[bis­­(μ2-pyrimidine-2-carboxyl­ato-κ4O,N:O′,N′)calcium]

aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 26 June 2009; accepted 1 July 2009; online 8 July 2009)

In the crystal structure of the title polymeric complex, [Ca(C5H3N2O2)2]n, the CaII cation has site symmetry [\overline{4}]m2 and is N,O-chelated by four pyrimidine-2-carboxyl­ate anions in a square-anti­prismatic geometry. The planar pyrimidine-2-carboxyl­ate anion is located on a crystallographic special position, three C atoms have site symmetry 2mm, while the carboxyl O atom, the pyrimidine N atom and the other C atom have site symmetry m. Each pyrimidine-2-­carboxyl­ate anion bridges two CaII cations, forming polymeric sheets extending parallel to (001). ππ stacking exists between parallel pyrimidine rings [centroid–centroid distance = 3.6436 (6) Å] of adjacent polymeric sheets. Weak C—H⋯O hydrogen bonding is also observed between these sheets.

Related literature

For general background, see: Deisenhofer & Michel (1989[Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149-2170.]); Pan & Xu (2004[Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56-m58.]); Li et al. (2005[Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.]). For polymeric structures of metal complexes with the pyrimidine-2-carboxyl­ate ligand, see: Rodríguez-Diéguez et al. (2007[Rodríquez-Diéguez, A., Cano, J., Kivekas, R., Debdoudi, A. & Colacio, E. (2007). Inorg. Chem. 46, 2503-2510.], 2008[Rodríguez-Diéguez, A., Aouryaghal, H., Mota, A. J. & Colacio, E. (2008). Acta Cryst. E64, m618.]); Zhang et al. (2008a[Zhang, J.-Y., Cheng, A.-L., Yue, Q., Sun, W.-W. & Gao, E.-Q. (2008a). Chem. Commun. pp. 847-849.],b[Zhang, J.-Y., Ma, Y., Cheng, A.-L., Yue, Q., Sun, Q. & Gao, E.-Q. (2008b). Dalton Trans. pp. 2061-2066.]); Sava et al. (2008[Sava, D. F., Kravtsov, V. Ch., Nouar, F., Wojtas, L., Eubank, J. F. & Eddaoudi, M. (2008). J. Am. Chem. Soc. 130, 3768-3770.]). For mononuclear metal complexes of pyrimidine-2-carboxyl­ate, see: Antolić et al. (2000[Antolić, S., Kojić-Prodić, B. & Lovrić, J. (2000). Acta Cryst. C56, e51-e52.]); Zhang et al. (2008[Zhang, B.-Y., Yang, Q. & Nie, J.-J. (2008). Acta Cryst. E64, m7.]); Xu et al. (2008[Xu, D.-J., Zhang, B.-Y., Yang, Q. & Nie, J.-J. (2008). Acta Cryst. E64, m77.]). For Ca—N and Ca—O bond distances in N,O-chelated complexes, see: Starosta & Leciejewicz (2004[Starosta, W. & Leciejewicz, J. (2004). J. Coord. Chem. 57, 1151-1156.]).

[Scheme 1]

Experimental

Crystal data
  • [Ca(C5H3N2O2)2]

  • Mr = 286.27

  • Tetragonal, I 41 /a m d

  • a = 6.5312 (12) Å

  • c = 25.734 (3) Å

  • V = 1097.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 294 K

  • 0.22 × 0.20 × 0.14 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.85, Tmax = 0.92

  • 3191 measured reflections

  • 375 independent reflections

  • 364 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.068

  • S = 1.13

  • 375 reflections

  • 34 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Selected bond lengths (Å)

Ca—O1 2.3644 (11)
Ca—N1 2.6923 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.57 3.3689 (19) 144
Symmetry code: (i) [y+{\script{1\over 4}}, -x+{\script{5\over 4}}, z-{\script{1\over 4}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As π-π stacking between aromatic rings is correlated with the electron transfer process in some biological systems (Deisenhofer & Michel, 1989), a series metal complexes incorporating the aromatic compound has been prepared in our laboratory to investigate the nature of π-π stacking (Li et al., 2005; Pan & Xu, 2004). We report herein the crystal structure of the title compound of pyridinecarboxylate to show π-π stacking in the crystal structure.

A part of the polymeric structure of the title molecule is shown in Fig. 1. In the crystal structure, the CaII cation has site symmetry -4m2 and is N,O-chelated by four pyrimidinecarboxylate anions with the square-antiprism geometry. The Ca—N and Ca—O bond distances (Table 1) agree with those found in the N,O-chelated CaII complex (Starosta & Leciejewicz, 2004). The planar pyrimidinecarboxylate anion is located on the crystallographic special position, three C atoms have site symmetry 2 mm while the carboxyl O atom, the pirimidine N atom and the other C atom have site symmetry m. Each pyrimidinecarboxylate anion N,O-chelates two CaII cations (Antolić et al., 2000; Zhang et al., 2008; Xu et al., 2008), forming the two-dimensional polymeric sheets, similar to those found in reported compounds (Rodríguez-Diéguez et al., 2007, 2008; Zhang et al., 2008a,b; Sava et al. 2008). π-π stacking [centroid-centroid distance = 3.6436 (6) Å] exists between parallel pyrimidine rings of adjacent polymeric sheets (Fig. 2). Weak C—H···O hydrogen bonding is also observed between polymeric sheets (Table 2).

Related literature top

For general background, see: Deisenhofer & Michel (1989); Pan & Xu (2004); Li et al. (2005). For polymeric structures of pyrimidine-2-carboxylate complexes of metals, see: Rodríguez-Diéguez et al. (2007, 2008); Zhang et al. (2008a,b); Sava et al. (2008). For mononuclear metal complexes of pyrimidine-2-carboxylate, see: Antolić et al. (2000); Zhang et al. (2008); Xu et al. (2008). For Ca—N and Ca—O bond distances in N,O-chelated complexes, see: Starosta & Leciejewicz (2004).

Experimental top

2-Cyanopyrimidine (0.2 g, 2 mmol), NaOH (1.2 g, 30 mmol) and calcium chloride (0.1 g, 1 mmol) were dissolved in water (10 ml). The solution was refluxed for 3 h. After cooling to room temperature the solution was filtered. The single crystals were obtained from the filtrate after 5 d.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A part of polymeric structure of the title compound with 30% probability displacement ellipsoids for non-H atoms (arbitrary spheres for H atoms) [symmetry codes: (i) 1 - x, 3/2 - y, z; (ii) 1 - x, 1/2 - y, z; (iii) 5/4 - y, 1/4 + x, 3/4 - z; (iv) -1/4 + y, 1/4 + x, 3/4 - z; (v) x, -1 + y, z].
[Figure 2] Fig. 2. A diagram showing π-π stacking between parallel pyrimidine rings of adjacent polymeric sheets.
Poly[bis(µ2-pyrimidine-2-carboxylato- κ4O,N:O',N')calcium] top
Crystal data top
[Ca(C5H3N2O2)2]Dx = 1.732 Mg m3
Mr = 286.27Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/amdCell parameters from 1086 reflections
Hall symbol: -I 4bd 2θ = 3.2–25.0°
a = 6.5312 (12) ŵ = 0.59 mm1
c = 25.734 (3) ÅT = 294 K
V = 1097.7 (3) Å3Block, colorless
Z = 40.22 × 0.20 × 0.14 mm
F(000) = 584
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
375 independent reflections
Radiation source: fine-focus sealed tube364 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 88
Tmin = 0.85, Tmax = 0.92k = 78
3191 measured reflectionsl = 1433
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0407P)2 + 0.7773P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
375 reflectionsΔρmax = 0.22 e Å3
34 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.071 (5)
Crystal data top
[Ca(C5H3N2O2)2]Z = 4
Mr = 286.27Mo Kα radiation
Tetragonal, I41/amdµ = 0.59 mm1
a = 6.5312 (12) ÅT = 294 K
c = 25.734 (3) Å0.22 × 0.20 × 0.14 mm
V = 1097.7 (3) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
375 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
364 reflections with I > 2σ(I)
Tmin = 0.85, Tmax = 0.92Rint = 0.016
3191 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.13Δρmax = 0.22 e Å3
375 reflectionsΔρmin = 0.17 e Å3
34 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca0.50000.75000.37500.0164 (3)
N10.50000.4327 (2)0.30820 (5)0.0226 (4)
O10.50000.41994 (18)0.41274 (4)0.0292 (4)
C10.50000.25000.39085 (8)0.0197 (5)
C20.50000.25000.33146 (8)0.0188 (5)
C30.50000.4306 (3)0.25605 (6)0.0299 (4)
H30.50000.55420.23810.036*
C40.50000.25000.22845 (10)0.0319 (6)
H40.50000.25000.19230.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca0.0152 (3)0.0152 (3)0.0189 (4)0.0000.0000.000
N10.0254 (7)0.0209 (7)0.0215 (7)0.0000.0000.0026 (5)
O10.0499 (8)0.0169 (6)0.0209 (6)0.0000.0000.0015 (4)
C10.0224 (10)0.0181 (10)0.0186 (10)0.0000.0000.000
C20.0170 (9)0.0201 (10)0.0193 (10)0.0000.0000.000
C30.0345 (9)0.0326 (9)0.0226 (8)0.0000.0000.0072 (7)
C40.0337 (13)0.0438 (15)0.0184 (10)0.0000.0000.000
Geometric parameters (Å, º) top
Ca—O1i2.3644 (12)N1—C31.342 (2)
Ca—O1ii2.3644 (11)O1—C11.2447 (15)
Ca—O12.3644 (11)C1—O1iv1.2447 (15)
Ca—O1iii2.3644 (12)C1—C21.528 (3)
Ca—N1iii2.6923 (14)C2—N1iv1.3350 (16)
Ca—N12.6923 (13)C3—C41.377 (2)
Ca—N1ii2.6923 (13)C3—H30.9300
Ca—N1i2.6923 (14)C4—C3iv1.377 (2)
N1—C21.3350 (16)C4—H40.9300
O1i—Ca—O1ii99.72 (2)O1ii—Ca—N1i74.795 (18)
O1i—Ca—O199.72 (2)O1—Ca—N1i74.795 (18)
O1ii—Ca—O1131.49 (5)O1iii—Ca—N1i164.58 (4)
O1i—Ca—O1iii131.49 (5)N1iii—Ca—N1i100.65 (6)
O1ii—Ca—O1iii99.72 (2)N1—Ca—N1i114.05 (3)
O1—Ca—O1iii99.72 (2)N1ii—Ca—N1i114.05 (3)
O1i—Ca—N1iii164.58 (4)C2—N1—C3116.03 (15)
O1ii—Ca—N1iii74.795 (18)C2—N1—Ca113.69 (10)
O1—Ca—N1iii74.795 (18)C3—N1—Ca130.28 (11)
O1iii—Ca—N1iii63.93 (4)C1—O1—Ca128.83 (11)
O1i—Ca—N174.796 (18)O1—C1—O1iv126.2 (2)
O1ii—Ca—N1164.58 (4)O1—C1—C2116.91 (10)
O1—Ca—N163.93 (4)O1iv—C1—C2116.91 (10)
O1iii—Ca—N174.796 (18)N1iv—C2—N1126.74 (19)
N1iii—Ca—N1114.05 (3)N1iv—C2—C1116.63 (10)
O1i—Ca—N1ii74.796 (18)N1—C2—C1116.63 (10)
O1ii—Ca—N1ii63.93 (4)N1—C3—C4121.66 (16)
O1—Ca—N1ii164.58 (4)N1—C3—H3119.2
O1iii—Ca—N1ii74.796 (18)C4—C3—H3119.2
N1iii—Ca—N1ii114.05 (3)C3—C4—C3iv117.9 (2)
N1—Ca—N1ii100.65 (5)C3—C4—H4121.1
O1i—Ca—N1i63.93 (4)C3iv—C4—H4121.1
Symmetry codes: (i) y1/4, x+1/4, z+3/4; (ii) x+1, y+3/2, z; (iii) y+5/4, x+1/4, z+3/4; (iv) x+1, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1v0.932.573.3689 (19)144
Symmetry code: (v) y+1/4, x+5/4, z1/4.

Experimental details

Crystal data
Chemical formula[Ca(C5H3N2O2)2]
Mr286.27
Crystal system, space groupTetragonal, I41/amd
Temperature (K)294
a, c (Å)6.5312 (12), 25.734 (3)
V3)1097.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.22 × 0.20 × 0.14
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.85, 0.92
No. of measured, independent and
observed [I > 2σ(I)] reflections
3191, 375, 364
Rint0.016
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.068, 1.13
No. of reflections375
No. of parameters34
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.17

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Ca—O12.3644 (11)Ca—N12.6923 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.573.3689 (19)144
Symmetry code: (i) y+1/4, x+5/4, z1/4.
 

Acknowledgements

The work was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAntolić, S., Kojić-Prodić, B. & Lovrić, J. (2000). Acta Cryst. C56, e51–e52.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDeisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149–2170.  CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56–m58.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRodríguez-Diéguez, A., Aouryaghal, H., Mota, A. J. & Colacio, E. (2008). Acta Cryst. E64, m618.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRodríquez-Diéguez, A., Cano, J., Kivekas, R., Debdoudi, A. & Colacio, E. (2007). Inorg. Chem. 46, 2503–2510.  Web of Science PubMed Google Scholar
First citationSava, D. F., Kravtsov, V. Ch., Nouar, F., Wojtas, L., Eubank, J. F. & Eddaoudi, M. (2008). J. Am. Chem. Soc. 130, 3768–3770.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2004). J. Coord. Chem. 57, 1151–1156.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, D.-J., Zhang, B.-Y., Yang, Q. & Nie, J.-J. (2008). Acta Cryst. E64, m77.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, J.-Y., Cheng, A.-L., Yue, Q., Sun, W.-W. & Gao, E.-Q. (2008a). Chem. Commun. pp. 847–849.  Web of Science CSD CrossRef Google Scholar
First citationZhang, J.-Y., Ma, Y., Cheng, A.-L., Yue, Q., Sun, Q. & Gao, E.-Q. (2008b). Dalton Trans. pp. 2061–2066.  Web of Science CSD CrossRef Google Scholar
First citationZhang, B.-Y., Yang, Q. & Nie, J.-J. (2008). Acta Cryst. E64, m7.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m878-m879
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds