metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(2,2′-bi­pyridine)bis­­(4-hy­droxy­benzoato)zinc(II)

aDepartment of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 27 June 2009; accepted 1 July 2009; online 8 July 2009)

In the title complex, [Zn(C7H5O3)2(C10H8N2)(H2O)], the ZnII ion is coordinated by two 4-hydroxy­benzoate anions, one 2,2′-bipyridine mol­ecule and one water mol­ecule and displays a distorted octa­hedral geometry. One Zn—O bond [2.5300 (15) Å] is much longer than the others in the mol­ecule. In the crystal structure, the face-to-face separation of 3.547 (9) Å suggests no ππ stacking between parallel bipyridine ring systems, and an extensive O—H⋯O hydrogen-bonding network between the coordinated water molecule, the phenol group and carboxylate O atoms is present.

Related literature

For general background, see: Xu et al. (2007a[Xu, D.-J., Yang, Q., Ma, L.-J. & Nie, J.-J. (2007a). Acta Cryst. C63, m476-m478.],b[Xu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007b). Acta Cryst. C63, m622-m624.]); Li et al. (2005[Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.]). For a related structure, see: Kong et al. (2008[Kong, L.-L., Gao, S., Huo, L.-H. & Ng, S. W. (2008). Acta Cryst. E64, m422.]). For the smaller metal—O—C bond angle corresponding to the longer coordination bond, see: Li et al. (2005[Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H5O3)2(C10H8N2)(H2O)]

  • Mr = 513.79

  • Monoclinic, P 21 /c

  • a = 10.3549 (12) Å

  • b = 19.524 (3) Å

  • c = 11.5544 (18) Å

  • β = 107.97 (2)°

  • V = 2221.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 294 K

  • 0.40 × 0.32 × 0.28 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.659, Tmax = 0.724

  • 13723 measured reflections

  • 5092 independent reflections

  • 3794 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.084

  • S = 1.07

  • 5092 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected bond lengths (Å)

Zn—O1 2.5300 (15)
Zn—O2 2.0045 (14)
Zn—O4 2.0607 (14)
Zn—O7 2.1375 (15)
Zn—N1 2.0986 (18)
Zn—N2 2.1275 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1i 0.94 1.64 2.565 (2) 169
O6—H6A⋯O4ii 0.87 1.81 2.668 (2) 168
O7—H7A⋯O3iii 0.90 1.93 2.813 (2) 168
O7—H7B⋯O5 0.95 1.73 2.636 (2) 158
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As a part of our ongoing investigation on the nature of π-π stacking (Xu et al., 2007a, 2007b; Li et al., 2005), the title complex was prepared in the laboratory and its crystal structure is reported herein.

The molecular structure of the title complex is shown in Fig. 1. The ZnII cation is coordinated by two 4-hydroxybenzoate anions, one 2,2-bipyridine and one water molecules with a distorted octahedral geometry. The Zn—O1 [2.5300 (15) Å] bond is much longer than the other Zn—O bonds in the molecule (Table 1), but the smaller Zn–O2–C1 [103.38 (13)°] bond angle suggests the existence of a genuine bonding between O1 and Zn atoms (Li et al. 2005). This is similar to that in aqua-(4-hydroxybenzoato)(4-hydroxybenzoato) (1,10-phenanthroline)zinc monohydrate (Kong et al., 2008).

In the crystal structure, extensive O—H···O hydrogen bonding occurs (Table 2) and the longer face-to-face separation of 3.547 (9) Å between parallel bipyridine ligands, related by an inversion center, suggests no π-π stacking.

Related literature top

For general background, see: Xu et al. (2007a,b); Li et al. (2005). For a related structure, see: Kong et al. (2008). For the smaller metal–O–C bond angle, see: Li et al. (2005).

Experimental top

ZnCl2 (0.136 g, 1 mmol), 4-hydroxybenzoic acid (0.14 g, 1 mmol), Na2CO3 (0.053 g, 0.5 mmol) and 2,2-bipyridine (0.156 g, 1 mmol) were dissolved in a water/ethanol solution (20 ml, 2:3). The mixture was refluxed for 4 h, and then cooled to room temperature and filtered. Colorless single crystals were obtained from the filtrate after 10 d.

Refinement top

H atoms of hydroxy groups and water molecules were located in a difference Fourier map and refined as riding in their as-found relative positions, Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). The dashed line indicates the intramolecular hydrogen bonding.
Aqua(2,2'-bipyridine)bis(4-hydroxybenzoato)zinc(II) top
Crystal data top
[Zn(C7H5O3)2(C10H8N2)(H2O)]F(000) = 1056
Mr = 513.79Dx = 1.536 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8786 reflections
a = 10.3549 (12) Åθ = 2.8–25.0°
b = 19.524 (3) ŵ = 1.16 mm1
c = 11.5544 (18) ÅT = 294 K
β = 107.97 (2)°Prism, colorless
V = 2221.9 (6) Å30.40 × 0.32 × 0.28 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5092 independent reflections
Radiation source: fine-focus sealed tube3794 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 2.1°
ω scansh = 1312
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1625
Tmin = 0.659, Tmax = 0.724l = 1514
13723 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.2291P]
where P = (Fo2 + 2Fc2)/3
5092 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Zn(C7H5O3)2(C10H8N2)(H2O)]V = 2221.9 (6) Å3
Mr = 513.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.3549 (12) ŵ = 1.16 mm1
b = 19.524 (3) ÅT = 294 K
c = 11.5544 (18) Å0.40 × 0.32 × 0.28 mm
β = 107.97 (2)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5092 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3794 reflections with I > 2σ(I)
Tmin = 0.659, Tmax = 0.724Rint = 0.028
13723 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.07Δρmax = 0.39 e Å3
5092 reflectionsΔρmin = 0.31 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.72142 (2)0.523813 (12)0.76441 (2)0.03203 (9)
N10.71413 (18)0.55972 (9)0.93348 (15)0.0364 (4)
N20.50939 (18)0.52685 (8)0.74053 (16)0.0326 (4)
O10.79866 (17)0.40502 (8)0.84339 (14)0.0472 (4)
O20.72447 (15)0.44341 (7)0.65740 (13)0.0390 (4)
O30.90448 (17)0.14372 (8)0.55801 (14)0.0503 (4)
H3A0.86120.13140.47700.075*
O40.69289 (14)0.60029 (7)0.63604 (13)0.0349 (3)
O50.88734 (15)0.59867 (8)0.59074 (13)0.0419 (4)
O60.53361 (16)0.81021 (8)0.20163 (14)0.0473 (4)
H6A0.59400.83480.18160.071*
O70.93531 (15)0.53817 (7)0.80380 (14)0.0418 (4)
H7A0.97550.57460.84750.063*
H7B0.92810.55020.72270.063*
C10.7783 (2)0.39661 (10)0.73229 (19)0.0329 (5)
C20.8162 (2)0.33111 (10)0.68419 (18)0.0293 (4)
C30.8999 (2)0.28391 (10)0.76110 (18)0.0329 (5)
H30.93670.29420.84340.039*
C40.9297 (2)0.22205 (11)0.71799 (18)0.0359 (5)
H40.98710.19110.77060.043*
C50.8738 (2)0.20608 (10)0.59584 (19)0.0342 (5)
C60.7894 (2)0.25250 (11)0.51718 (19)0.0359 (5)
H60.75080.24170.43540.043*
C70.7633 (2)0.31490 (10)0.56143 (18)0.0329 (5)
H70.70930.34670.50810.040*
C80.7700 (2)0.61981 (10)0.57269 (18)0.0315 (5)
C90.7101 (2)0.67051 (10)0.47486 (18)0.0323 (5)
C100.5709 (2)0.67839 (12)0.4277 (2)0.0418 (5)
H100.51430.65160.45790.050*
C110.5143 (2)0.72511 (12)0.3370 (2)0.0442 (6)
H110.42050.72920.30590.053*
C120.5968 (2)0.76610 (11)0.29181 (19)0.0360 (5)
C130.7366 (2)0.75963 (11)0.3390 (2)0.0402 (5)
H130.79280.78750.31030.048*
C140.7924 (2)0.71194 (11)0.42857 (19)0.0386 (5)
H140.88630.70730.45850.046*
C150.8215 (3)0.56939 (13)1.0329 (2)0.0484 (6)
H150.90750.55841.02900.058*
C160.8100 (3)0.59469 (14)1.1398 (2)0.0607 (7)
H160.88660.60091.20690.073*
C170.6831 (3)0.61079 (14)1.1463 (2)0.0614 (8)
H170.67270.62861.21760.074*
C180.5722 (3)0.60022 (13)1.0462 (2)0.0532 (7)
H180.48550.61051.04920.064*
C190.5899 (2)0.57419 (10)0.9407 (2)0.0367 (5)
C200.4749 (2)0.55895 (11)0.82961 (19)0.0359 (5)
C210.3423 (3)0.57615 (13)0.8165 (2)0.0528 (6)
H210.31990.59840.87880.063*
C220.2426 (3)0.55975 (15)0.7089 (3)0.0590 (7)
H220.15260.57150.69810.071*
C230.2768 (3)0.52628 (13)0.6190 (2)0.0512 (6)
H230.21110.51420.54680.061*
C240.4112 (2)0.51086 (12)0.6382 (2)0.0424 (5)
H240.43510.48820.57700.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.03499 (15)0.02836 (14)0.03540 (15)0.00098 (10)0.01475 (11)0.00214 (10)
N10.0381 (11)0.0359 (10)0.0350 (10)0.0019 (8)0.0111 (8)0.0014 (8)
N20.0357 (10)0.0325 (10)0.0333 (9)0.0021 (7)0.0159 (8)0.0029 (8)
O10.0717 (12)0.0333 (9)0.0397 (9)0.0048 (8)0.0215 (8)0.0022 (7)
O20.0454 (9)0.0282 (8)0.0428 (9)0.0082 (7)0.0128 (7)0.0003 (7)
O30.0730 (12)0.0339 (9)0.0415 (9)0.0193 (8)0.0141 (8)0.0036 (7)
O40.0375 (8)0.0302 (8)0.0424 (8)0.0048 (6)0.0204 (7)0.0063 (6)
O50.0306 (9)0.0527 (10)0.0440 (9)0.0025 (7)0.0140 (7)0.0054 (7)
O60.0439 (10)0.0430 (9)0.0572 (10)0.0002 (7)0.0186 (8)0.0184 (8)
O70.0359 (9)0.0431 (9)0.0450 (9)0.0054 (7)0.0103 (7)0.0000 (7)
C10.0329 (11)0.0263 (11)0.0414 (12)0.0033 (9)0.0142 (10)0.0021 (9)
C20.0296 (11)0.0252 (10)0.0364 (11)0.0009 (8)0.0149 (9)0.0000 (8)
C30.0352 (12)0.0324 (11)0.0311 (11)0.0012 (9)0.0102 (9)0.0009 (9)
C40.0408 (13)0.0321 (12)0.0341 (11)0.0101 (9)0.0105 (9)0.0062 (9)
C50.0407 (13)0.0275 (11)0.0387 (12)0.0044 (9)0.0187 (10)0.0004 (9)
C60.0410 (13)0.0375 (12)0.0293 (11)0.0051 (9)0.0109 (9)0.0023 (9)
C70.0339 (12)0.0301 (11)0.0357 (12)0.0064 (9)0.0121 (9)0.0054 (9)
C80.0338 (12)0.0277 (11)0.0337 (11)0.0056 (9)0.0115 (9)0.0065 (9)
C90.0339 (12)0.0300 (11)0.0345 (11)0.0029 (9)0.0126 (9)0.0000 (9)
C100.0355 (13)0.0440 (13)0.0496 (14)0.0061 (10)0.0186 (11)0.0098 (11)
C110.0295 (12)0.0501 (14)0.0534 (14)0.0022 (10)0.0133 (10)0.0146 (11)
C120.0407 (13)0.0311 (11)0.0381 (12)0.0024 (9)0.0151 (10)0.0023 (9)
C130.0374 (13)0.0403 (13)0.0460 (14)0.0113 (10)0.0172 (10)0.0052 (10)
C140.0305 (12)0.0433 (13)0.0426 (13)0.0080 (9)0.0121 (10)0.0016 (10)
C150.0475 (15)0.0535 (16)0.0415 (14)0.0066 (11)0.0099 (11)0.0007 (12)
C160.069 (2)0.0658 (19)0.0397 (15)0.0206 (15)0.0060 (13)0.0063 (13)
C170.087 (2)0.0605 (18)0.0409 (15)0.0099 (15)0.0252 (15)0.0159 (13)
C180.0646 (18)0.0538 (16)0.0480 (15)0.0030 (13)0.0274 (13)0.0110 (12)
C190.0453 (13)0.0275 (11)0.0409 (12)0.0003 (9)0.0186 (10)0.0009 (9)
C200.0392 (13)0.0331 (12)0.0399 (12)0.0009 (9)0.0187 (10)0.0001 (10)
C210.0457 (15)0.0651 (17)0.0541 (16)0.0074 (12)0.0249 (13)0.0058 (13)
C220.0365 (14)0.075 (2)0.0681 (19)0.0054 (13)0.0194 (13)0.0037 (15)
C230.0399 (14)0.0640 (18)0.0464 (14)0.0067 (12)0.0082 (11)0.0046 (13)
C240.0448 (14)0.0463 (14)0.0377 (12)0.0075 (11)0.0151 (11)0.0042 (10)
Geometric parameters (Å, º) top
Zn—O12.5300 (15)C7—H70.9300
Zn—O22.0045 (14)C8—C91.486 (3)
Zn—O42.0607 (14)C9—C101.383 (3)
Zn—O72.1375 (15)C9—C141.396 (3)
Zn—N12.0986 (18)C10—C111.377 (3)
Zn—N22.1275 (17)C10—H100.9300
N1—C151.343 (3)C11—C121.384 (3)
N1—C191.344 (3)C11—H110.9300
N2—C241.337 (3)C12—C131.386 (3)
N2—C201.344 (3)C13—C141.379 (3)
O1—C11.246 (2)C13—H130.9300
O2—C11.264 (2)C14—H140.9300
O3—C51.364 (2)C15—C161.369 (3)
O3—H3A0.9362C15—H150.9300
O4—C81.295 (2)C16—C171.375 (4)
O5—C81.239 (2)C16—H160.9300
O6—C121.355 (2)C17—C181.371 (4)
O6—H6A0.8744C17—H170.9300
O7—H7A0.8971C18—C191.384 (3)
O7—H7B0.9465C18—H180.9300
C1—C21.494 (3)C19—C201.487 (3)
C2—C31.384 (3)C20—C211.376 (3)
C2—C71.390 (3)C21—C221.386 (4)
C3—C41.377 (3)C21—H210.9300
C3—H30.9300C22—C231.364 (4)
C4—C51.386 (3)C22—H220.9300
C4—H40.9300C23—C241.373 (3)
C5—C61.386 (3)C23—H230.9300
C6—C71.380 (3)C24—H240.9300
C6—H60.9300
O1—Zn—O256.03 (5)O5—C8—C9120.47 (18)
O1—Zn—O4152.01 (5)O4—C8—C9116.13 (18)
O1—Zn—O781.49 (6)C10—C9—C14118.02 (19)
O1—Zn—N193.94 (6)C10—C9—C8120.87 (18)
O1—Zn—N2105.73 (6)C14—C9—C8121.11 (19)
O2—Zn—O498.60 (6)C11—C10—C9121.4 (2)
O2—Zn—O791.23 (6)C11—C10—H10119.3
O2—Zn—N1147.97 (7)C9—C10—H10119.3
O2—Zn—N298.85 (6)C10—C11—C12120.2 (2)
O4—Zn—O788.12 (6)C10—C11—H11119.9
O4—Zn—N1112.93 (6)C12—C11—H11119.9
O4—Zn—N288.48 (6)O6—C12—C11116.7 (2)
N1—Zn—O795.19 (7)O6—C12—C13123.98 (19)
N1—Zn—N277.25 (7)C11—C12—C13119.3 (2)
N2—Zn—O7169.74 (6)C14—C13—C12120.1 (2)
Zn—O1—C179.34 (12)C14—C13—H13119.9
Zn—O2—C1103.38 (13)C12—C13—H13119.9
Zn—O4—C8130.04 (13)C13—C14—C9121.0 (2)
C15—N1—C19118.2 (2)C13—C14—H14119.5
C15—N1—Zn125.83 (16)C9—C14—H14119.5
C19—N1—Zn115.97 (14)N1—C15—C16122.9 (2)
C24—N2—C20118.50 (19)N1—C15—H15118.6
C24—N2—Zn125.52 (15)C16—C15—H15118.6
C20—N2—Zn114.88 (14)C15—C16—C17118.8 (2)
C5—O3—H3A117.6C15—C16—H16120.6
C12—O6—H6A109.7C17—C16—H16120.6
Zn—O7—H7A119.6C18—C17—C16119.0 (2)
Zn—O7—H7B93.5C18—C17—H17120.5
H7A—O7—H7B104.0C16—C17—H17120.5
O1—C1—O2120.60 (19)C17—C18—C19119.6 (2)
O1—C1—C2121.04 (19)C17—C18—H18120.2
O2—C1—C2118.36 (18)C19—C18—H18120.2
C3—C2—C7118.38 (18)N1—C19—C18121.4 (2)
C3—C2—C1121.02 (18)N1—C19—C20115.53 (19)
C7—C2—C1120.54 (18)C18—C19—C20123.0 (2)
C4—C3—C2121.16 (19)N2—C20—C21121.4 (2)
C4—C3—H3119.4N2—C20—C19115.06 (19)
C2—C3—H3119.4C21—C20—C19123.5 (2)
C3—C4—C5119.73 (19)C20—C21—C22119.0 (2)
C3—C4—H4120.1C20—C21—H21120.5
C5—C4—H4120.1C22—C21—H21120.5
O3—C5—C4117.50 (18)C23—C22—C21119.8 (2)
O3—C5—C6122.40 (19)C23—C22—H22120.1
C4—C5—C6120.10 (19)C21—C22—H22120.1
C7—C6—C5119.36 (19)C22—C23—C24118.1 (2)
C7—C6—H6120.3C22—C23—H23120.9
C5—C6—H6120.3C24—C23—H23120.9
C6—C7—C2121.23 (19)N2—C24—C23123.2 (2)
C6—C7—H7119.4N2—C24—H24118.4
C2—C7—H7119.4C23—C24—H24118.4
O5—C8—O4123.39 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.941.642.565 (2)169
O6—H6A···O4ii0.871.812.668 (2)168
O7—H7A···O3iii0.901.932.813 (2)168
O7—H7B···O50.951.732.636 (2)158
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+3/2, z1/2; (iii) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Zn(C7H5O3)2(C10H8N2)(H2O)]
Mr513.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)10.3549 (12), 19.524 (3), 11.5544 (18)
β (°) 107.97 (2)
V3)2221.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.40 × 0.32 × 0.28
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.659, 0.724
No. of measured, independent and
observed [I > 2σ(I)] reflections
13723, 5092, 3794
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.07
No. of reflections5092
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.31

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Zn—O12.5300 (15)Zn—O72.1375 (15)
Zn—O22.0045 (14)Zn—N12.0986 (18)
Zn—O42.0607 (14)Zn—N22.1275 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.941.642.565 (2)169
O6—H6A···O4ii0.871.812.668 (2)168
O7—H7A···O3iii0.901.932.813 (2)168
O7—H7B···O50.951.732.636 (2)158
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+3/2, z1/2; (iii) x+2, y+1/2, z+3/2.
 

Acknowledgements

The project was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKong, L.-L., Gao, S., Huo, L.-H. & Ng, S. W. (2008). Acta Cryst. E64, m422.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, D.-J., Yang, Q., Ma, L.-J. & Nie, J.-J. (2007a). Acta Cryst. C63, m476–m478.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007b). Acta Cryst. C63, m622–m624.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds