metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m975-m976

Bis[4-(4-pyridyl)pyridinium] μ-4,4′-bi­pyridine-bis­­[tetra­aqua­(4,4′-bi­pyridine)manganese(II)] bis­­(5-sulfonato­benzene-1,3-di­carboxyl­ate) 4,4′-bi­pyridine solvate penta­deca­hydrate

aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 16 July 2009; accepted 17 July 2009; online 22 July 2009)

The crystal structure of the title compound, (C10H9N2)2[Mn2(C10H8N2)3(H2O)8](C8H3O7S)2·C10H8N2·15H2O, consists of dinuclear MnII complex cations, sulfonato­benzene­dicarboxyl­ate trianions, 4-(4-pyridyl)pyridinium cations, uncoordin­ated 4,4′-bipyridine and uncoordinated water mol­ecules. One 4,4′-bipyridine mol­ecule bridges two Mn atoms, forming a centrosymmetric dinuclear complex; the mid-point of the C—C bond linking the pyridine rings of the bridging ligand is located on an inversion center. Each MnII atom is coordinated by four water and two 4,4′-bipyridine mol­ecules in a distorted octa­hedral geometry. The MnII atom deviates by 0.591 (5) and 0.209 (2) Å from the mean planes of the coordinated pyridine rings. In the 4-(4-pyridyl)pyridinium cation, the two pyridine rings are twisted with respect to each other, making dihedral angle of 34.78 (17)°. The uncoordinated bipyridine mol­ecule is also centrosymmetric. One of uncoordinated water mol­ecules has site symmetry 2, and the other uncoordinated water mol­ecule is located close to an inversion center and its one H atom is disordered equally over two sites. Extensive ππ stacking between pyridine rings is observed and an extensive hydrogen-bonding network of the types N—H⋯N, O—H⋯N and O—H⋯O is present.

Related literature

For the nature of π-π stacking, see: Deisenhofer & Michel (1989[Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149-2170.]); Xu et al. (2007[Xu, D.-J., Yang, Q., Ma, L.-J. & Nie, J.-J. (2007). Acta Cryst. C63, m476-m478.]); Li et al. (2005[Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.]). For non-coplanar 4,4′-bipyridine or 4,4′-bipyridinium, see: Bowes et al. (2003[Bowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 277-286.]); Pedireddi & PrakashaReddy (2003[Pedireddi, V. R. & PrakashaReddy, J. (2003). Tetrahedron Lett. 44, 6679-6681.]); Charmant et al. (2003[Charmant, J. P. H., Norman, N. C., Orpen, A. G. & Starbuck, J. (2003). Acta Cryst. E59, m1000-m1001.]); Madhu & Das (2004[Madhu, V. & Das, S. K. (2004). Polyhedron, 23, 1235-1242.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H9N2)2[Mn2(C10H8N2)3(H2O)8](C8H3O7S)2·C10H8N2·15H2O

  • Mr = 1949.70

  • Monoclinic, C 2/c

  • a = 45.393 (13) Å

  • b = 10.946 (3) Å

  • c = 19.641 (6) Å

  • β = 112.704 (9)°

  • V = 9003 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 294 K

  • 0.30 × 0.22 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.84, Tmax = 0.92

  • 50211 measured reflections

  • 8729 independent reflections

  • 6521 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.157

  • S = 1.03

  • 8729 reflections

  • 582 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Selected bond lengths (Å)

Mn—N1 2.323 (2)
Mn—N3 2.311 (2)
Mn—O1 2.158 (2)
Mn—O2 2.156 (2)
Mn—O3 2.178 (2)
Mn—O4 2.192 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯N6 0.96 1.79 2.725 (4) 163
O1—H1C⋯N5i 0.95 1.86 2.809 (4) 173
O1—H1D⋯O6ii 0.95 1.81 2.731 (3) 165
O2—H2C⋯O5ii 0.81 1.95 2.735 (3) 163
O2—H2D⋯O8iii 0.89 1.81 2.691 (3) 169
O3—H3C⋯N2iv 0.90 1.86 2.742 (4) 168
O3—H3D⋯O10 0.95 1.81 2.754 (3) 169
O4—H4C⋯O11 0.95 1.88 2.805 (4) 164
O4—H4D⋯O1W 0.87 1.85 2.706 (3) 166
O1W—H1A⋯O5 0.94 1.87 2.815 (3) 177
O1W—H1B⋯O7v 0.97 1.77 2.719 (3) 166
O2W—H2A⋯O4Wvi 0.95 2.07 2.822 (6) 135
O2W—H2B⋯O7 0.92 1.99 2.903 (4) 175
O3W—H3A⋯O2W 0.95 1.79 2.694 (5) 157
O3W—H3B⋯O9 0.96 1.88 2.831 (4) 170
O4W—H4A⋯O11 0.89 2.15 2.946 (5) 148
O4W—H4B1⋯O4Wvii 0.94 2.02 2.900 (8) 156
O5W—H5A⋯O8 0.94 1.92 2.772 (6) 149
O5W—H5B⋯O6Wviii 0.93 1.94 2.771 (9) 147
O6W—H6A⋯O6 0.99 1.81 2.768 (6) 162
O6W—H6B⋯O7Wviii 0.94 1.73 2.358 (12) 121
O7W—H7A⋯O5 0.91 2.23 3.124 (10) 166
O7W—H7B⋯O5Wix 0.90 1.76 2.291 (11) 115
O8W—H8A⋯O9 0.91 2.00 2.871 (7) 159
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [x, -y, z-{\script{1\over 2}}]; (iv) -x, -y+1, -z; (v) x, y+1, z; (vi) x, y-1, z; (vii) [-x, y, -z+{\script{1\over 2}}]; (viii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ix) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 3
A summary of the distances and angles between partially overlapped pyridine rings (Å, °)

Ring (I) Ring (J) Angle Perp(I) Perp(J) CgCg
N1-pyridine N2i-pyridine 8.29 3.404 3.491 3.691 (2)
N2-pyridine N6ii-pyridine 5.33 3.403 3.391 3.794 (2)
N3-pyridine N5iii-pyridine 10.91 3.260 3.477 3.751 (2)
N5-pyridine N5i-pyridine 0.00 3.544 3.544 3.547 (2)
Symmetry codes: (i) -x, 1-y, -z; (ii) -x, 2-y, -z; (iii) [{\script{1\over 2}}-x, {\script{3\over 2}}-y, 1-z]. Notes: Angle: dihedral angle between ring (I) and ring (J). Perp(I) is the perpendicular distance of centroid of ring (I) on ring (J). Perp(J) is the perpendicular distance of centroid of ring (J) on ring (I). CgCg is the distance between centroids of ring (I) and ring (J).

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The π-π stacking between aromatic rings has attracted our much attention because it is correlated with the electron transfer process in some biological systems (Deisenhofer & Michel, 1989). As a part of our ongoing investigation on the nature of π-π stacking (Xu et al., 2007; Li et al., 2005), the title compound incorporating 4–4'bipyridine was prepared in the laboratory and its crystal structure is reported here.

The crystal structure of the title compound consists of dinuclear MnII complex cations, sulfobenzendicarboxylate anions, 4-(4-pyridyl)pyridinium cations, uncoordinated 4,4'-bipyridine and lattice water molecules.

The dinuclear MnII complex cation is centrosymmetric. Each Mn atom is coordinated by four water and two bipyridine molecules with a distorted octahedral geometry (Table 1). The bridge bipyridine ligand links two Mn atoms to form the dinuclear complex. The mid-point of C—C bond linking pyridine rings of the bridge ligand is located on an inversion center. The Mn atom is not coplanar with the coordinated pyridine rings but deviated from the pyridine planes by -0.591 (5) and 0.209 (2) Å, respectively.

The sulfobenzendicarboxylate anion is not coordinated to the Mn atom but links with the complex via O—H···O hydrogen bonding (Table 1). A 4-(4-pyridyl)pyridinium cation occurs in the asymmetric unit of the crystal structure to balance the charge. In the pyridinium cation two pyridine rings are twisted to each other with a dihedral angle of 34.78 (17)°, similar to those found in the crystal structures containing 4,4'-bipyridine (Bowes et al., 2003; Pedireddi & PrakashaReddy, 2003) or 4,4'-pyridinium cation (Charmant et al., 2003; Madhu & Das, 2004).

In the crystal structure there are uncoordinated bipyridine and water molecules. The uncoordinated bipyridine molecule is centrosymmetric with the mid-point of C28—C28i bond located in an inversion center [symmetry code: (i) -x, 2 - y, -z]. One of lattice water molecules has site symmetry 2, and the other lattice water molecule is located close to an inversion center and its one H atom is equally disordered over two sites.

The extensive hydrogen bonding network is present in the crystal structure (Table 2). The partially overlapped arrangement between pyridine rings is observed in the crystal structure (Fig. 2). The shorter centroid-to-centroid distances (Table 3) suggest the existence of extensive π-π stacking between pyridine rings.

Related literature top

For the nature of π-π stacking, see: Deisenhofer & Michel (1989); Xu et al. (2007); Li et al. (2005). For non-coplanar 4,4'-bipyridine or 4,4'-bipyridinium, see: Bowes et al. (2003); Pedireddi & PrakashaReddy (2003); Charmant et al. (2003); Madhu & Das (2004).

Experimental top

Reagents and solvent were used as purchased without further purification. 4,4'-Bipyridine (0.16 g, 1 mmol), Na2CO3 (0.11 g, 1 mmol), sodium 1-sulfo-benzene-3,5-dicarboxylate (0.25 g, 1 mmol) and MnCl2.4H2O (0.20 g, 1 mmol) were dissolved in ethanol-water (10 ml, 1:4). The mixture was transferred into a Teflon-lined stainless steel vessel (25 ml). The autoclave was sealed and heated at 403 K for 3 d. After cooling to room temperature the mixture was filtered. Single crystals of the title compound were obtained from the filtrate after one day.

Refinement top

H atom bonded to N atom was located in a difference Fourier map and refined as riding in as-found relative position, Uiso(H) = 1.5Ueq(N). Water H atoms were placed in chemical sensible positions and refined in riding mode, among which the H4B was equally disordered over two sites, Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 40% probability displacement ellipsoids for non-H atoms (arbitrary spheres for H atoms) [symmetry codes: (i) -x, 2 - y, -z; (ii) 1/2 - x, 1/2 - y, 1 - z].
[Figure 2] Fig. 2. The unit cell packing diagram showing the partially overlapped arrangement between pyridine rings. H atoms have been omitted for clarity.
Bis[4-(4-pyridyl)pyridinium] µ-4,4'-bipyridine-bis[tetraaqua(4,4'-bipyridine)manganese(II)] bis(5-sulfonatobenzene-1,3-dicarboxylate) 4,4'-bipyridine solvate pentadecahydrate top
Crystal data top
(C10H9N2)2[Mn2(C10H8N2)3(H2O)8](C8H3O7S)2·C10H8N2·15H2OF(000) = 4080
Mr = 1949.70Dx = 1.438 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9036 reflections
a = 45.393 (13) Åθ = 1.8–25.0°
b = 10.946 (3) ŵ = 0.42 mm1
c = 19.641 (6) ÅT = 294 K
β = 112.704 (9)°Prism, yellow
V = 9003 (5) Å30.30 × 0.22 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
8729 independent reflections
Radiation source: fine-focus sealed tube6521 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω scansθmax = 26.0°, θmin = 1.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 5554
Tmin = 0.84, Tmax = 0.92k = 1312
50211 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0798P)2 + 12.578P]
where P = (Fo2 + 2Fc2)/3
8729 reflections(Δ/σ)max = 0.003
582 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
(C10H9N2)2[Mn2(C10H8N2)3(H2O)8](C8H3O7S)2·C10H8N2·15H2OV = 9003 (5) Å3
Mr = 1949.70Z = 4
Monoclinic, C2/cMo Kα radiation
a = 45.393 (13) ŵ = 0.42 mm1
b = 10.946 (3) ÅT = 294 K
c = 19.641 (6) Å0.30 × 0.22 × 0.20 mm
β = 112.704 (9)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
8729 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
6521 reflections with I > 2σ(I)
Tmin = 0.84, Tmax = 0.92Rint = 0.054
50211 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0798P)2 + 12.578P]
where P = (Fo2 + 2Fc2)/3
8729 reflectionsΔρmax = 0.41 e Å3
582 parametersΔρmin = 0.70 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn0.138711 (10)0.44260 (4)0.25751 (2)0.03510 (14)
S10.077589 (19)0.17856 (7)0.36556 (4)0.0411 (2)
N10.09707 (6)0.5538 (2)0.17267 (14)0.0435 (6)
N20.05514 (7)0.7148 (3)0.09856 (16)0.0534 (7)
N30.18000 (6)0.3382 (2)0.34637 (13)0.0385 (6)
N40.13043 (7)0.9442 (3)0.27057 (15)0.0543 (7)
H4N0.11250.95050.22430.081*
N50.27811 (7)0.8985 (3)0.57216 (17)0.0593 (8)
N60.07271 (6)0.9608 (3)0.15572 (15)0.0510 (7)
O10.16744 (5)0.60471 (19)0.29572 (11)0.0489 (5)
H1C0.18500.60810.34200.073*
H1D0.17350.64650.26100.073*
O20.15987 (5)0.41069 (19)0.17792 (11)0.0442 (5)
H2C0.16600.46710.16030.066*
H2D0.15840.34260.15240.066*
O30.11111 (5)0.27534 (19)0.22073 (11)0.0457 (5)
H3C0.09320.26770.18020.069*
H3D0.10410.23810.25570.069*
O40.11748 (5)0.4668 (2)0.33971 (11)0.0485 (5)
H4C0.10000.42180.34200.073*
H4D0.12420.50110.38310.073*
O50.16741 (6)0.38646 (19)0.60499 (12)0.0535 (6)
O60.17704 (6)0.2475 (2)0.69415 (12)0.0604 (6)
O70.12394 (6)0.2362 (2)0.50527 (14)0.0624 (7)
O80.15990 (6)0.1909 (2)0.61660 (14)0.0616 (7)
O90.04841 (6)0.1151 (2)0.35750 (13)0.0613 (7)
O100.09064 (6)0.1395 (2)0.31214 (12)0.0592 (6)
O110.07449 (6)0.3107 (2)0.36789 (13)0.0566 (6)
O1W0.14542 (7)0.5424 (2)0.48152 (13)0.0640 (7)
H1A0.15220.48810.52190.096*
H1B0.14000.61980.49800.096*
O2W0.07443 (8)0.2903 (3)0.36216 (18)0.0979 (10)
H2A0.06610.36340.37350.147*
H2B0.08980.26830.40680.147*
O3W0.02684 (10)0.1253 (3)0.3116 (2)0.1214 (13)
H3A0.04370.18090.31670.182*
H3B0.03380.04540.33230.182*
O4W0.02979 (10)0.5171 (3)0.3142 (3)0.1261 (14)
H4A0.03720.44160.31550.189*
H4B10.00900.53440.28050.189*0.50
H4B20.03070.55870.27790.189*0.50
O5W0.22098 (10)0.1454 (6)0.7192 (3)0.184 (3)
H5A0.20450.16640.67390.276*
H5B0.23030.21720.71110.276*
O6W0.23851 (10)0.1545 (6)0.7469 (3)0.176 (2)
H6A0.21590.17640.73530.264*
H6B0.24450.10760.79030.264*
O7W0.2369 (2)0.4673 (9)0.7033 (5)0.304 (5)
H7A0.21830.43410.67140.456*
H7B0.24180.42930.74720.456*
O8W0.00000.2607 (10)0.25000.248 (5)
H8A0.01600.20640.27370.371*
C10.07441 (9)0.6011 (4)0.19136 (18)0.0611 (10)
H10.07830.60770.24130.073*
C20.04520 (9)0.6413 (4)0.14079 (18)0.0620 (10)
H20.03020.67360.15740.074*
C30.03820 (7)0.6338 (3)0.06573 (16)0.0399 (7)
C40.06260 (8)0.5909 (3)0.04616 (18)0.0530 (9)
H40.06000.58810.00320.064*
C50.09091 (8)0.5522 (3)0.10067 (18)0.0543 (9)
H50.10680.52300.08600.065*
C60.03092 (9)0.6860 (4)0.11693 (19)0.0635 (10)
H60.03450.68190.16680.076*
C70.00038 (9)0.6614 (4)0.06589 (19)0.0623 (10)
H70.01580.64220.08200.075*
C80.00604 (7)0.6654 (3)0.00895 (16)0.0402 (7)
C90.01918 (8)0.6976 (3)0.02817 (18)0.0525 (8)
H90.01630.70320.07760.063*
C100.04883 (8)0.7212 (4)0.0266 (2)0.0589 (9)
H100.06540.74300.01220.071*
C110.20872 (7)0.3379 (3)0.34306 (16)0.0423 (7)
H110.21030.36280.29930.051*
C120.23632 (7)0.3028 (3)0.40062 (16)0.0425 (7)
H120.25570.30380.39470.051*
C130.23533 (7)0.2660 (3)0.46751 (15)0.0350 (6)
C140.20507 (7)0.2620 (3)0.47004 (17)0.0495 (8)
H140.20270.23520.51260.059*
C150.17869 (7)0.2977 (3)0.40957 (17)0.0477 (8)
H150.15880.29350.41280.057*
C160.13366 (8)0.8674 (4)0.3250 (2)0.0559 (9)
H160.11640.81950.32300.067*
C170.16217 (8)0.8577 (3)0.38458 (18)0.0500 (8)
H170.16420.80320.42240.060*
C180.18801 (7)0.9292 (3)0.38830 (16)0.0406 (7)
C190.18382 (8)1.0080 (3)0.32978 (17)0.0478 (8)
H190.20081.05600.33010.057*
C200.15476 (8)1.0156 (3)0.27148 (18)0.0531 (8)
H200.15191.06960.23290.064*
C210.27635 (8)0.9214 (3)0.5038 (2)0.0579 (9)
H210.29530.92960.49640.069*
C220.24774 (8)0.9335 (3)0.44329 (19)0.0513 (8)
H220.24780.95010.39690.062*
C230.21924 (7)0.9207 (3)0.45215 (17)0.0420 (7)
C240.22095 (9)0.8982 (3)0.52304 (18)0.0562 (9)
H240.20240.88970.53210.067*
C250.25060 (10)0.8885 (4)0.5803 (2)0.0650 (10)
H250.25120.87400.62750.078*
C260.07059 (8)0.9386 (3)0.08743 (18)0.0535 (9)
H260.08880.91200.08110.064*
C270.04305 (8)0.9528 (3)0.02553 (18)0.0511 (8)
H270.04310.93650.02090.061*
C280.01528 (7)0.9915 (3)0.03266 (15)0.0375 (6)
C290.01739 (8)1.0117 (4)0.10414 (18)0.0573 (9)
H290.00061.03580.11230.069*
C300.04590 (8)0.9965 (4)0.16272 (19)0.0641 (10)
H300.04661.01180.20990.077*
C310.10688 (7)0.1346 (3)0.45289 (15)0.0353 (6)
C320.12452 (7)0.2216 (2)0.50320 (15)0.0357 (6)
H320.12100.30420.49190.043*
C330.14755 (7)0.1851 (2)0.57097 (15)0.0351 (6)
C340.15267 (7)0.0610 (3)0.58662 (16)0.0370 (6)
H340.16800.03650.63170.044*
C350.13527 (7)0.0271 (2)0.53592 (15)0.0350 (6)
C360.11214 (7)0.0109 (3)0.46826 (15)0.0377 (6)
H360.10030.04670.43370.045*
C370.16561 (7)0.2811 (3)0.62790 (17)0.0413 (7)
C380.14015 (8)0.1624 (3)0.55409 (17)0.0418 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0311 (3)0.0407 (3)0.0270 (2)0.00423 (18)0.00411 (19)0.00406 (17)
S10.0453 (5)0.0417 (4)0.0313 (4)0.0020 (3)0.0092 (3)0.0049 (3)
N10.0369 (14)0.0462 (15)0.0363 (14)0.0040 (11)0.0020 (11)0.0056 (11)
N20.0395 (16)0.0569 (17)0.0469 (17)0.0001 (13)0.0020 (13)0.0070 (13)
N30.0332 (13)0.0431 (14)0.0318 (13)0.0051 (10)0.0042 (11)0.0060 (10)
N40.0392 (16)0.071 (2)0.0411 (16)0.0109 (14)0.0028 (13)0.0122 (14)
N50.0526 (19)0.0516 (17)0.0507 (18)0.0002 (14)0.0053 (15)0.0014 (14)
N60.0371 (15)0.0639 (18)0.0423 (15)0.0018 (13)0.0047 (13)0.0041 (13)
O10.0510 (13)0.0471 (12)0.0346 (11)0.0066 (10)0.0011 (10)0.0019 (9)
O20.0596 (14)0.0369 (11)0.0387 (11)0.0034 (10)0.0218 (10)0.0017 (9)
O30.0364 (12)0.0540 (13)0.0362 (11)0.0062 (9)0.0025 (9)0.0061 (9)
O40.0464 (13)0.0640 (14)0.0360 (11)0.0061 (11)0.0170 (10)0.0026 (10)
O50.0730 (16)0.0342 (12)0.0452 (13)0.0066 (11)0.0140 (12)0.0056 (10)
O60.0799 (18)0.0473 (13)0.0360 (13)0.0062 (12)0.0025 (12)0.0052 (10)
O70.0805 (18)0.0325 (12)0.0585 (15)0.0010 (11)0.0095 (13)0.0051 (11)
O80.0707 (17)0.0367 (12)0.0575 (15)0.0002 (11)0.0028 (13)0.0124 (11)
O90.0461 (14)0.0736 (17)0.0518 (14)0.0143 (12)0.0051 (11)0.0143 (12)
O100.0767 (17)0.0676 (16)0.0357 (12)0.0012 (13)0.0242 (12)0.0035 (11)
O110.0618 (15)0.0436 (13)0.0531 (14)0.0059 (11)0.0098 (12)0.0089 (10)
O1W0.093 (2)0.0526 (14)0.0434 (13)0.0145 (13)0.0225 (13)0.0021 (11)
O2W0.099 (2)0.102 (2)0.081 (2)0.014 (2)0.0209 (19)0.0076 (18)
O3W0.120 (3)0.082 (2)0.138 (3)0.006 (2)0.024 (3)0.013 (2)
O4W0.127 (3)0.082 (2)0.181 (4)0.018 (2)0.073 (3)0.013 (3)
O5W0.078 (3)0.310 (8)0.134 (4)0.028 (4)0.007 (3)0.086 (5)
O6W0.075 (3)0.310 (8)0.136 (4)0.028 (4)0.032 (3)0.044 (4)
O7W0.242 (8)0.326 (11)0.304 (10)0.131 (8)0.061 (8)0.011 (9)
O8W0.200 (9)0.213 (10)0.249 (12)0.0000.003 (8)0.000
C10.060 (2)0.078 (3)0.0308 (17)0.0277 (19)0.0012 (16)0.0017 (16)
C20.051 (2)0.085 (3)0.0391 (18)0.0325 (19)0.0055 (16)0.0021 (17)
C30.0355 (16)0.0371 (16)0.0384 (16)0.0034 (12)0.0046 (13)0.0047 (12)
C40.0399 (19)0.077 (2)0.0371 (17)0.0061 (16)0.0096 (15)0.0162 (16)
C50.0356 (18)0.081 (3)0.0416 (18)0.0125 (16)0.0102 (15)0.0181 (17)
C60.054 (2)0.085 (3)0.0347 (18)0.010 (2)0.0013 (16)0.0057 (17)
C70.049 (2)0.087 (3)0.0408 (19)0.0163 (19)0.0059 (16)0.0024 (18)
C80.0339 (16)0.0402 (16)0.0353 (16)0.0029 (12)0.0010 (13)0.0039 (12)
C90.0409 (19)0.069 (2)0.0393 (18)0.0041 (16)0.0064 (15)0.0067 (16)
C100.0368 (19)0.077 (3)0.055 (2)0.0055 (17)0.0086 (16)0.0080 (18)
C110.0365 (17)0.0562 (19)0.0313 (15)0.0081 (14)0.0096 (13)0.0088 (13)
C120.0342 (16)0.0576 (19)0.0346 (15)0.0096 (14)0.0118 (13)0.0078 (13)
C130.0338 (15)0.0343 (14)0.0324 (14)0.0055 (12)0.0077 (12)0.0052 (11)
C140.0361 (17)0.071 (2)0.0382 (17)0.0099 (15)0.0106 (14)0.0234 (15)
C150.0283 (16)0.067 (2)0.0424 (17)0.0057 (14)0.0074 (14)0.0182 (15)
C160.0390 (19)0.070 (2)0.052 (2)0.0057 (16)0.0105 (16)0.0099 (18)
C170.0428 (19)0.058 (2)0.0432 (18)0.0046 (15)0.0096 (15)0.0019 (15)
C180.0375 (17)0.0429 (17)0.0349 (16)0.0026 (13)0.0066 (13)0.0059 (12)
C190.0437 (19)0.0511 (19)0.0413 (17)0.0028 (15)0.0082 (15)0.0007 (14)
C200.051 (2)0.060 (2)0.0385 (18)0.0099 (17)0.0057 (16)0.0009 (15)
C210.0384 (19)0.062 (2)0.060 (2)0.0014 (16)0.0045 (17)0.0070 (17)
C220.0433 (19)0.059 (2)0.0431 (18)0.0006 (15)0.0078 (16)0.0035 (15)
C230.0374 (17)0.0406 (16)0.0375 (16)0.0017 (13)0.0029 (14)0.0038 (13)
C240.052 (2)0.067 (2)0.0419 (19)0.0088 (17)0.0095 (16)0.0017 (16)
C250.063 (3)0.075 (3)0.0391 (19)0.009 (2)0.0002 (18)0.0062 (17)
C260.0316 (17)0.079 (2)0.0457 (19)0.0073 (16)0.0097 (15)0.0011 (17)
C270.0361 (18)0.076 (2)0.0389 (17)0.0055 (16)0.0121 (15)0.0056 (16)
C280.0312 (15)0.0409 (16)0.0368 (15)0.0032 (12)0.0094 (12)0.0058 (12)
C290.0354 (18)0.094 (3)0.0387 (18)0.0029 (17)0.0100 (15)0.0117 (18)
C300.041 (2)0.109 (3)0.0362 (18)0.004 (2)0.0088 (16)0.0102 (19)
C310.0356 (16)0.0376 (15)0.0325 (15)0.0010 (12)0.0131 (13)0.0007 (12)
C320.0435 (17)0.0283 (14)0.0356 (15)0.0007 (12)0.0154 (13)0.0004 (11)
C330.0378 (16)0.0342 (15)0.0324 (14)0.0007 (12)0.0127 (13)0.0017 (11)
C340.0385 (16)0.0365 (15)0.0335 (15)0.0016 (12)0.0112 (13)0.0020 (12)
C350.0376 (16)0.0293 (14)0.0372 (15)0.0003 (12)0.0134 (13)0.0007 (12)
C360.0441 (17)0.0323 (15)0.0347 (15)0.0042 (12)0.0131 (13)0.0046 (12)
C370.0424 (18)0.0372 (17)0.0394 (17)0.0018 (13)0.0102 (14)0.0057 (13)
C380.0455 (18)0.0336 (16)0.0468 (18)0.0014 (13)0.0183 (16)0.0006 (13)
Geometric parameters (Å, º) top
Mn—N12.323 (2)C4—C51.384 (4)
Mn—N32.311 (2)C4—H40.9300
Mn—O12.158 (2)C5—H50.9300
Mn—O22.156 (2)C6—C71.388 (5)
Mn—O32.178 (2)C6—H60.9300
Mn—O42.192 (2)C7—C81.384 (4)
S1—O91.449 (2)C7—H70.9300
S1—O101.454 (2)C8—C91.382 (4)
S1—O111.455 (2)C9—C101.385 (5)
S1—C311.784 (3)C9—H90.9300
N1—C11.324 (4)C10—H100.9300
N1—C51.331 (4)C11—C121.379 (4)
N2—C61.321 (5)C11—H110.9300
N2—C101.331 (5)C12—C131.391 (4)
N3—C111.330 (4)C12—H120.9300
N3—C151.341 (4)C13—C141.395 (4)
N4—C161.323 (5)C13—C13i1.487 (5)
N4—C201.348 (5)C14—C151.378 (4)
N4—H4N0.9591C14—H140.9300
N5—C251.323 (5)C15—H150.9300
N5—C211.338 (5)C16—C171.373 (5)
N6—C261.329 (4)C16—H160.9300
N6—C301.334 (4)C17—C181.388 (4)
O1—H1C0.9498C17—H170.9300
O1—H1D0.9449C18—C191.391 (4)
O2—H2C0.8083C18—C231.489 (4)
O2—H2D0.8864C19—C201.376 (5)
O3—H3C0.8966C19—H190.9300
O3—H3D0.9540C20—H200.9300
O4—H4C0.9492C21—C221.387 (5)
O4—H4D0.8713C21—H210.9300
O5—C371.253 (4)C22—C231.378 (5)
O6—C371.256 (4)C22—H220.9300
O7—C381.253 (4)C23—C241.386 (5)
O8—C381.248 (4)C24—C251.385 (5)
O1W—H1A0.9430C24—H240.9300
O1W—H1B0.9721C25—H250.9300
O2W—H2A0.9482C26—C271.375 (5)
O2W—H2B0.9176C26—H260.9300
O3W—H3A0.9515C27—C281.387 (4)
O3W—H3B0.9647C27—H270.9300
O4W—H4A0.8889C28—C291.388 (4)
O4W—H4B10.9379C28—C28ii1.494 (6)
O4W—H4B20.8595C29—C301.370 (5)
O5W—H5A0.9434C29—H290.9300
O5W—H5B0.9357C30—H300.9300
O6W—H6A0.9924C31—C321.383 (4)
O6W—H6B0.9409C31—C361.388 (4)
O7W—H7A0.9119C32—C331.396 (4)
O7W—H7B0.9034C32—H320.9300
O8W—H8A0.9147C33—C341.392 (4)
C1—C21.387 (5)C33—C371.522 (4)
C1—H10.9300C34—C351.392 (4)
C2—C31.385 (4)C34—H340.9300
C2—H20.9300C35—C361.402 (4)
C3—C41.387 (4)C35—C381.520 (4)
C3—C81.496 (4)C36—H360.9300
O2—Mn—O190.39 (8)N3—C11—C12123.9 (3)
O2—Mn—O389.06 (8)N3—C11—H11118.0
O1—Mn—O3178.12 (9)C12—C11—H11118.0
O2—Mn—O4177.57 (8)C11—C12—C13120.3 (3)
O1—Mn—O491.31 (9)C11—C12—H12119.8
O3—Mn—O489.19 (9)C13—C12—H12119.8
O2—Mn—N390.52 (8)C12—C13—C14115.7 (3)
O1—Mn—N386.50 (9)C12—C13—C13i122.3 (3)
O3—Mn—N391.70 (8)C14—C13—C13i122.0 (3)
O4—Mn—N387.85 (8)C15—C14—C13120.0 (3)
O2—Mn—N191.81 (9)C15—C14—H14120.0
O1—Mn—N191.94 (9)C13—C14—H14120.0
O3—Mn—N189.87 (9)N3—C15—C14123.9 (3)
O4—Mn—N189.87 (9)N3—C15—H15118.1
N3—Mn—N1177.21 (9)C14—C15—H15118.1
O9—S1—O10112.96 (16)N4—C16—C17120.8 (3)
O9—S1—O11112.59 (16)N4—C16—H16119.6
O10—S1—O11112.72 (14)C17—C16—H16119.6
O9—S1—C31106.63 (13)C16—C17—C18120.1 (3)
O10—S1—C31104.74 (14)C16—C17—H17120.0
O11—S1—C31106.46 (14)C18—C17—H17120.0
C1—N1—C5115.6 (3)C17—C18—C19117.6 (3)
C1—N1—Mn120.7 (2)C17—C18—C23121.3 (3)
C5—N1—Mn122.3 (2)C19—C18—C23121.1 (3)
C6—N2—C10116.2 (3)C20—C19—C18120.4 (3)
C11—N3—C15116.0 (2)C20—C19—H19119.8
C11—N3—Mn119.27 (18)C18—C19—H19119.8
C15—N3—Mn123.37 (19)N4—C20—C19119.6 (3)
C16—N4—C20121.5 (3)N4—C20—H20120.2
C16—N4—H4N126.9C19—C20—H20120.2
C20—N4—H4N111.2N5—C21—C22123.4 (4)
C25—N5—C21116.3 (3)N5—C21—H21118.3
C26—N6—C30116.3 (3)C22—C21—H21118.3
Mn—O1—H1C122.4C23—C22—C21119.8 (3)
Mn—O1—H1D116.8C23—C22—H22120.1
H1C—O1—H1D107.6C21—C22—H22120.1
Mn—O2—H2C120.7C22—C23—C24117.0 (3)
Mn—O2—H2D126.1C22—C23—C18121.5 (3)
H2C—O2—H2D111.3C24—C23—C18121.5 (3)
Mn—O3—H3C125.6C25—C24—C23119.3 (3)
Mn—O3—H3D115.5C25—C24—H24120.4
H3C—O3—H3D99.0C23—C24—H24120.4
Mn—O4—H4C125.8N5—C25—C24124.2 (3)
Mn—O4—H4D133.2N5—C25—H25117.9
H4C—O4—H4D99.3C24—C25—H25117.9
H1A—O1W—H1B108.1N6—C26—C27123.9 (3)
H2A—O2W—H2B102.8N6—C26—H26118.0
H3A—O3W—H3B114.7C27—C26—H26118.0
H4A—O4W—H4B1118.4C26—C27—C28119.8 (3)
H4A—O4W—H4B2112.1C26—C27—H27120.1
H4B1—O4W—H4B270.4C28—C27—H27120.1
H5A—O5W—H5B83.2C27—C28—C29116.1 (3)
H6A—O6W—H6B104.5C27—C28—C28ii122.0 (3)
H7A—O7W—H7B107.1C29—C28—C28ii121.8 (3)
H8A—O8W—H8Aiii98.91C30—C29—C28120.3 (3)
N1—C1—C2123.8 (3)C30—C29—H29119.9
N1—C1—H1118.1C28—C29—H29119.9
C2—C1—H1118.1N6—C30—C29123.5 (3)
C3—C2—C1120.4 (3)N6—C30—H30118.2
C3—C2—H2119.8C29—C30—H30118.2
C1—C2—H2119.8C32—C31—C36120.8 (3)
C2—C3—C4115.8 (3)C32—C31—S1120.8 (2)
C2—C3—C8122.4 (3)C36—C31—S1118.3 (2)
C4—C3—C8121.7 (3)C31—C32—C33119.9 (3)
C5—C4—C3119.4 (3)C31—C32—H32120.1
C5—C4—H4120.3C33—C32—H32120.1
C3—C4—H4120.3C34—C33—C32119.3 (3)
N1—C5—C4124.7 (3)C34—C33—C37121.0 (3)
N1—C5—H5117.7C32—C33—C37119.7 (3)
C4—C5—H5117.7C35—C34—C33121.2 (3)
N2—C6—C7123.6 (3)C35—C34—H34119.4
N2—C6—H6118.2C33—C34—H34119.4
C7—C6—H6118.2C34—C35—C36118.9 (3)
C8—C7—C6120.2 (3)C34—C35—C38121.1 (3)
C8—C7—H7119.9C36—C35—C38120.0 (3)
C6—C7—H7119.9C31—C36—C35119.9 (3)
C9—C8—C7116.2 (3)C31—C36—H36120.0
C9—C8—C3121.9 (3)C35—C36—H36120.0
C7—C8—C3121.9 (3)O5—C37—O6125.7 (3)
C8—C9—C10119.6 (3)O5—C37—C33117.6 (3)
C8—C9—H9120.2O6—C37—C33116.7 (3)
C10—C9—H9120.2O8—C38—O7125.4 (3)
N2—C10—C9124.1 (3)O8—C38—C35117.3 (3)
N2—C10—H10117.9O7—C38—C35117.4 (3)
C9—C10—H10117.9
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+2, z; (iii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···N60.961.792.725 (4)163
O1—H1C···N5iv0.951.862.809 (4)173
O1—H1D···O6v0.951.812.731 (3)165
O2—H2C···O5v0.811.952.735 (3)163
O2—H2D···O8vi0.891.812.691 (3)169
O3—H3C···N2vii0.901.862.742 (4)168
O3—H3D···O100.951.812.754 (3)169
O4—H4C···O110.951.882.805 (4)164
O4—H4D···O1W0.871.852.706 (3)166
O1W—H1A···O50.941.872.815 (3)177
O1W—H1B···O7viii0.971.772.719 (3)166
O2W—H2A···O4Wix0.952.072.822 (6)135
O2W—H2B···O70.921.992.903 (4)175
O3W—H3A···O2W0.951.792.694 (5)157
O3W—H3B···O90.961.882.831 (4)170
O4W—H4A···O110.892.152.946 (5)148
O4W—H4B1···O4Wiii0.942.022.900 (8)156
O5W—H5A···O80.941.922.772 (6)149
O5W—H5B···O6Wx0.931.942.771 (9)147
O6W—H6A···O60.991.812.768 (6)162
O6W—H6B···O7Wx0.941.732.358 (12)121
O7W—H7A···O50.912.233.124 (10)166
O7W—H7B···O5Wxi0.901.762.291 (11)115
O8W—H8A···O90.912.002.871 (7)159
Symmetry codes: (iii) x, y, z+1/2; (iv) x+1/2, y+3/2, z+1; (v) x, y+1, z1/2; (vi) x, y, z1/2; (vii) x, y+1, z; (viii) x, y+1, z; (ix) x, y1, z; (x) x+1/2, y1/2, z+3/2; (xi) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula(C10H9N2)2[Mn2(C10H8N2)3(H2O)8](C8H3O7S)2·C10H8N2·15H2O
Mr1949.70
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)45.393 (13), 10.946 (3), 19.641 (6)
β (°) 112.704 (9)
V3)9003 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.30 × 0.22 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.84, 0.92
No. of measured, independent and
observed [I > 2σ(I)] reflections
50211, 8729, 6521
Rint0.054
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.157, 1.03
No. of reflections8729
No. of parameters582
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0798P)2 + 12.578P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.41, 0.70

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Mn—N12.323 (2)Mn—O22.156 (2)
Mn—N32.311 (2)Mn—O32.178 (2)
Mn—O12.158 (2)Mn—O42.192 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···N60.961.792.725 (4)163
O1—H1C···N5i0.951.862.809 (4)173
O1—H1D···O6ii0.951.812.731 (3)165
O2—H2C···O5ii0.811.952.735 (3)163
O2—H2D···O8iii0.891.812.691 (3)169
O3—H3C···N2iv0.901.862.742 (4)168
O3—H3D···O100.951.812.754 (3)169
O4—H4C···O110.951.882.805 (4)164
O4—H4D···O1W0.871.852.706 (3)166
O1W—H1A···O50.941.872.815 (3)177
O1W—H1B···O7v0.971.772.719 (3)166
O2W—H2A···O4Wvi0.952.072.822 (6)135
O2W—H2B···O70.921.992.903 (4)175
O3W—H3A···O2W0.951.792.694 (5)157
O3W—H3B···O90.961.882.831 (4)170
O4W—H4A···O110.892.152.946 (5)148
O4W—H4B1···O4Wvii0.942.022.900 (8)156
O5W—H5A···O80.941.922.772 (6)149
O5W—H5B···O6Wviii0.931.942.771 (9)147
O6W—H6A···O60.991.812.768 (6)162
O6W—H6B···O7Wviii0.941.732.358 (12)121
O7W—H7A···O50.912.233.124 (10)166
O7W—H7B···O5Wix0.901.762.291 (11)115
O8W—H8A···O90.912.002.871 (7)159
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1, z1/2; (iii) x, y, z1/2; (iv) x, y+1, z; (v) x, y+1, z; (vi) x, y1, z; (vii) x, y, z+1/2; (viii) x+1/2, y1/2, z+3/2; (ix) x+1/2, y+1/2, z+3/2.
Table 3. A summar of the distances and angles between partially overlapped pyridine rings (Å, °) top
Ring (I)Ring (J)AnglePerp (I)Perp (J)Cg–Cg
N1-pyridineN2i-pyridine8.293.4043.4913.691 (2)
N2-pyridineN6ii-pyridine5.333.4033.3913.794 (2)
N3-pyridineN5iii-pyridine10.913.2603.4773.751 (2)
N5-pyridineN5i-pyridine0.003.5443.5443.547 (2)
Symmetry codes: (i) -x, 1-y, -z; (ii) -x, 2-y, -z; (iii) 1/2-x, 3/2-y, 1-z. Notes: Angle: dihedral angle between ring (I) and ring (J). Perp(I) is the perpendicular distance of centroid of ring (I) on ring (J). Perp(J) is the perpendicular distance of centroid of ring (J) on ring (I). Cg–Cg is the distance between centroids of ring (I) and ring (J).
 

Acknowledgements

The work was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 277–286.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCharmant, J. P. H., Norman, N. C., Orpen, A. G. & Starbuck, J. (2003). Acta Cryst. E59, m1000–m1001.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDeisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149–2170.  CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMadhu, V. & Das, S. K. (2004). Polyhedron, 23, 1235–1242.  Web of Science CSD CrossRef CAS Google Scholar
First citationPedireddi, V. R. & PrakashaReddy, J. (2003). Tetrahedron Lett. 44, 6679–6681.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, D.-J., Yang, Q., Ma, L.-J. & Nie, J.-J. (2007). Acta Cryst. C63, m476–m478.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m975-m976
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds