metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-14,29-Di-tert-butyl-3,10,18,25-tetra­azatpenta­cyclo­[25.3.1.112,16.04,9.019,24]dotriaconta-1(31),4,6,8,12(32),14,16,19,21,23,27,29-dodeca­ene-31,32-diol­ato]bis­­[(nitrato-κ2O,O′)zinc(II)]

aDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
*Correspondence e-mail: majf247nenu@yahoo.com.cn

(Received 10 July 2009; accepted 20 July 2009; online 25 July 2009)

In the title centrosymmetric dinuclear zinc(II) complex, [Zn2(C36H42N4O2)(NO3)2], the ZnII atom has a distorted octa­hedral geometry, defined by two N atoms and two O atoms from the macrocyclic ligand and two O atoms from a chelating nitrate anion and are bridged by two phenolate O atoms, forming a four-membered Zn2O2 ring.

Related literature

For general background to the biochemistry of zinc(II) compounds, see: Bazzicalupi et al. (1997[Bazzicalupi, C., Bencini, A., Bianchi, A., Fusi, V., Giorgi, C., Paoletti, P., Valtancoli, B. & Zanchi, D. (1997). Inorg. Chem. 36, 2784-2790.]); Burley et al. (1990[Burley, S. K., David, P. R., Taylor, A. & Lipscomb, W. N. (1990). Proc. Natl. Acad. Sci. USA, 87, 6878-6882.]); Lipscomb & Straeter (1996[Lipscomb, W. N. & Straeter, N. (1996). Chem. Rev. 96, 2375-2434.]); Roderick & Mathews (1993[Roderick, S. & Mathews, B. W. (1993). Biochemistry, 32, 3907-3912.]). For related structures, see: Dutta et al. (2005[Dutta, B., Bag, P., Flörke, U. & Nag, K. (2005). Inorg. Chem. 44,147-157.]). For further synthetic details, see: Fan et al. (2009[Fan, L.-J., Ma, J.-F. & Liu, J. (2009). Acta Cryst. E65, m777-m778.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C36H42N4O2)(NO3)2]

  • Mr = 817.20

  • Monoclinic, P 21 /c

  • a = 13.7149 (8) Å

  • b = 18.0691 (10) Å

  • c = 7.3523 (3) Å

  • β = 101.110 (5)°

  • V = 1787.87 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.40 mm−1

  • T = 293 K

  • 0.45 × 0.25 × 0.20 mm

Data collection
  • Oxford Diffraction Gemini R Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.661, Tmax = 0.752

  • 15034 measured reflections

  • 4340 independent reflections

  • 1698 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.065

  • S = 0.91

  • 4340 reflections

  • 241 parameters

  • 357 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N1 2.081 (4)
Zn1—N2 2.102 (3)
Zn1—O1 2.264 (3)
Zn1—O2 2.243 (3)
Zn1—O4 2.019 (2)
Zn1—O4i 2.043 (2)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dinuclear zinc(II) compounds have attracted much interest as a result of their significance in biological systems (Burley et al., 1990; Roderick & Mathews, 1993). In addition, some synthetic dinuclear zinc(II) compounds are found to have functions in dephosphorylation (Bazzicalupi et al., 1997). As part of our studies in this area, the title compound, a new dinuclear zinc(II) compound, has been synthesized and its structure is reported here (Fig. 1).

In the title centrosymmetric dinuclear zinc(II) compound, each of the two ZnII atoms has a distorted octahedral geometry, defined by two N atoms and two O atoms from the macrocyclic (C36H42N4O2) ligand and two O atoms from a chelating nitrate anion. The two Zn atoms are bridged by two phenolate O atoms, forming a four-membered Zn2O2 ring. The Zn—O and Zn—N distances are normal (Table 1) (Dutta et al., 2005).

Related literature top

For general background to the biochemistry of zinc(II) compounds, see: Bazzicalupi et al. (1997); Burley et al. (1990); Lipscomb & Straeter (1996); Roderick & Mathews (1993). For related structures, see: Dutta et al. (2005). For further synthetic details, see: Fan et al. (2009).

Experimental top

The title compound was prepared by a reaction between the macrocyclic ligand C36H44N4O2 (H2L), which was synthesized according to the published procedure (Fan et al., 2009), and zinc nitrate. A mixture of H2L (0.135 g, 0.25 mmol) and Zn(NO3)2.6H2O (0.149 g, 0.5 mmol) in ethanol (20 ml) was heated with stirring to yield a clear pale yellow solution. Filtration and cooling to room temperature resulted in the formation of a crystalline precipitate. Recrystallization by slow evaporation of an ethanol solution of the compound resulted in well formed yellow blocks of the title compound (yield 52%).

Refinement top

N-bonded H atoms were located in a difference map and their coordinates were freely refined, with Uiso fixed. C-bonded H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93–0.96 Å and with Uiso(H) = 1.2(or 1.5 for methyl)Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displaceement ellipsoids are draw at the 30% probability level. H atoms have been omitted for clarity.
[µ-14,29-Di-tert-butyl-3,10,18,25- tetraazatpentacyclo[25.3.1.112,16.04,9.019,24]dotriaconta- 1(31),4,6,8,12 (32),14,16,19,21,23,27,29-dodecaene-31,32-diolato]bis[(nitrato- κ2O,O')zinc(II)] top
Crystal data top
[Zn2(C36H42N4O2)(NO3)2]F(000) = 848
Mr = 817.20Dx = 1.518 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2682 reflections
a = 13.7149 (8) Åθ = 1.9–29.2°
b = 18.0691 (10) ŵ = 1.40 mm1
c = 7.3523 (3) ÅT = 293 K
β = 101.110 (5)°Block, yellow
V = 1787.87 (16) Å30.45 × 0.25 × 0.20 mm
Z = 2
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
4340 independent reflections
Radiation source: fine-focus sealed tube1698 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
Detector resolution: 10.0 pixels mm-1θmax = 29.3°, θmin = 1.9°
ω scansh = 1617
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 2424
Tmin = 0.661, Tmax = 0.752l = 810
15034 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 0.91 w = 1/[σ2(Fo2) + (0.01P)2]
where P = (Fo2 + 2Fc2)/3
4340 reflections(Δ/σ)max = 0.001
241 parametersΔρmax = 0.66 e Å3
357 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Zn2(C36H42N4O2)(NO3)2]V = 1787.87 (16) Å3
Mr = 817.20Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.7149 (8) ŵ = 1.40 mm1
b = 18.0691 (10) ÅT = 293 K
c = 7.3523 (3) Å0.45 × 0.25 × 0.20 mm
β = 101.110 (5)°
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
4340 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
1698 reflections with I > 2σ(I)
Tmin = 0.661, Tmax = 0.752Rint = 0.099
15034 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049357 restraints
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 0.91Δρmax = 0.66 e Å3
4340 reflectionsΔρmin = 0.45 e Å3
241 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2727 (3)0.6078 (2)0.1435 (5)0.0401 (11)
C20.1724 (3)0.6150 (2)0.1476 (5)0.0486 (12)
H20.12540.58970.06210.058*
C30.1424 (3)0.6598 (2)0.2783 (5)0.0506 (12)
H30.07530.66510.28070.061*
C40.2122 (4)0.6965 (2)0.4047 (5)0.0469 (12)
H40.19200.72660.49310.056*
C50.3108 (3)0.6893 (2)0.4022 (5)0.0404 (11)
H50.35720.71410.49000.048*
C60.3426 (3)0.6460 (2)0.2723 (5)0.0332 (10)
C70.5006 (3)0.4041 (2)0.4386 (4)0.0334 (11)
H7A0.49970.37310.54670.040*
H7B0.53820.44840.45370.040*
C80.3954 (3)0.4258 (2)0.4294 (4)0.0296 (9)
C90.3152 (3)0.3961 (2)0.5486 (5)0.0386 (10)
H90.32680.36000.63200.046*
C100.2177 (3)0.4175 (3)0.5504 (5)0.0427 (10)
C110.2043 (3)0.4716 (2)0.4249 (5)0.0464 (11)
H110.14000.48790.42430.056*
C120.2823 (3)0.5029 (2)0.2995 (5)0.0375 (11)
C130.3800 (3)0.4796 (2)0.3002 (5)0.0322 (10)
C140.2598 (3)0.5610 (3)0.1703 (5)0.0584 (12)
H14A0.27070.60850.22440.070*
H14B0.18940.55780.16840.070*
C150.1319 (3)0.3808 (3)0.6848 (6)0.0525 (12)
C160.1355 (4)0.2980 (3)0.6507 (6)0.0896 (16)
H16A0.19870.27910.66680.134*
H16B0.08350.27440.73720.134*
H16C0.12670.28820.52660.134*
C170.1414 (3)0.3929 (2)0.8848 (5)0.0749 (14)
H17A0.20440.37450.90310.112*
H17B0.13670.44480.91280.112*
H17C0.08890.36700.96530.112*
C180.0325 (3)0.4077 (3)0.6600 (6)0.0918 (16)
H18A0.02530.39930.53440.138*
H18B0.01850.38130.74270.138*
H18C0.02680.45960.68690.138*
N10.3096 (3)0.5622 (2)0.0108 (5)0.0479 (11)
N20.4476 (3)0.63682 (17)0.2695 (4)0.0315 (9)
N30.5574 (4)0.6847 (2)0.1030 (5)0.0470 (12)
O10.6025 (2)0.63223 (18)0.0177 (4)0.0545 (8)
O20.4639 (3)0.68288 (18)0.1261 (4)0.0575 (10)
O30.5992 (3)0.73463 (18)0.1672 (4)0.0714 (11)
O40.4592 (2)0.50597 (14)0.1821 (3)0.0309 (7)
Zn10.46177 (4)0.57671 (3)0.03129 (6)0.03462 (15)
H1N0.296 (3)0.5176 (13)0.031 (5)0.052*
H2N0.475 (3)0.6800 (13)0.282 (5)0.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.034 (3)0.050 (3)0.040 (2)0.006 (2)0.017 (2)0.011 (2)
C20.037 (3)0.065 (3)0.045 (2)0.003 (2)0.012 (2)0.008 (2)
C30.038 (3)0.063 (3)0.055 (3)0.006 (2)0.019 (2)0.010 (2)
C40.046 (3)0.052 (3)0.045 (2)0.011 (3)0.014 (2)0.014 (2)
C50.038 (3)0.045 (3)0.039 (2)0.003 (2)0.010 (2)0.010 (2)
C60.029 (3)0.041 (3)0.032 (2)0.009 (2)0.012 (2)0.0007 (19)
C70.036 (3)0.039 (3)0.026 (2)0.004 (2)0.0078 (19)0.0020 (19)
C80.030 (2)0.033 (2)0.0254 (19)0.003 (2)0.0060 (18)0.003 (2)
C90.041 (2)0.044 (2)0.0300 (19)0.001 (2)0.0052 (19)0.0112 (18)
C100.033 (2)0.052 (2)0.041 (2)0.005 (2)0.0022 (18)0.013 (2)
C110.031 (2)0.063 (3)0.043 (2)0.003 (2)0.004 (2)0.010 (2)
C120.035 (2)0.042 (2)0.034 (2)0.004 (2)0.003 (2)0.0104 (19)
C130.031 (2)0.038 (2)0.028 (2)0.001 (2)0.007 (2)0.0019 (19)
C140.043 (3)0.078 (3)0.051 (2)0.020 (2)0.001 (2)0.018 (2)
C150.034 (3)0.061 (3)0.061 (2)0.001 (2)0.006 (2)0.019 (2)
C160.083 (3)0.087 (3)0.088 (3)0.027 (3)0.011 (3)0.007 (3)
C170.064 (3)0.089 (3)0.062 (3)0.011 (3)0.013 (2)0.013 (3)
C180.048 (3)0.120 (4)0.101 (3)0.012 (3)0.002 (3)0.055 (3)
N10.032 (2)0.065 (3)0.046 (2)0.000 (3)0.0058 (19)0.017 (3)
N20.037 (3)0.028 (2)0.0292 (18)0.004 (2)0.0064 (18)0.0054 (17)
N30.071 (4)0.031 (3)0.041 (2)0.005 (3)0.018 (3)0.005 (2)
O10.058 (2)0.046 (2)0.062 (2)0.0080 (17)0.0188 (18)0.0047 (17)
O20.055 (3)0.063 (3)0.0534 (19)0.003 (2)0.007 (2)0.0025 (17)
O30.098 (3)0.038 (2)0.090 (2)0.012 (2)0.046 (2)0.0090 (19)
O40.032 (2)0.0326 (18)0.0283 (15)0.0044 (15)0.0067 (14)0.0065 (13)
Zn10.0343 (3)0.0372 (3)0.0319 (2)0.0038 (4)0.0052 (2)0.0047 (3)
Geometric parameters (Å, º) top
C1—C21.388 (5)C14—H14A0.9700
C1—C61.393 (5)C14—H14B0.9700
C1—N11.441 (5)C15—C181.490 (5)
C2—C31.378 (5)C15—C161.516 (6)
C2—H20.9300C15—C171.517 (5)
C3—C41.369 (5)C16—H16A0.9600
C3—H30.9300C16—H16B0.9600
C4—C51.363 (5)C16—H16C0.9600
C4—H40.9300C17—H17A0.9600
C5—C61.368 (5)C17—H17B0.9600
C5—H50.9300C17—H17C0.9600
C6—N21.453 (5)C18—H18A0.9600
C7—N2i1.502 (4)C18—H18B0.9600
C7—C81.510 (5)C18—H18C0.9600
C7—H7A0.9700Zn1—N12.081 (4)
C7—H7B0.9700N1—H1N0.845 (19)
C8—C91.376 (5)N2—C7i1.502 (4)
C8—C131.404 (5)Zn1—N22.102 (3)
C9—C101.390 (5)N2—H2N0.863 (19)
C9—H90.9300N3—O31.212 (4)
C10—C111.380 (5)N3—O11.234 (4)
C10—C151.534 (5)N3—O21.262 (5)
C11—C121.391 (5)Zn1—O12.264 (3)
C11—H110.9300Zn1—O22.243 (3)
C12—C131.405 (5)Zn1—O42.019 (2)
C12—C141.487 (5)Zn1—O4i2.043 (2)
C13—O41.341 (4)Zn1—Zn1i3.0302 (10)
C14—N11.375 (4)
C2—C1—C6119.6 (4)C15—C16—H16C109.5
C2—C1—N1123.1 (4)H16A—C16—H16C109.5
C6—C1—N1117.3 (4)H16B—C16—H16C109.5
C3—C2—C1120.0 (4)C15—C17—H17A109.5
C3—C2—H2120.0C15—C17—H17B109.5
C1—C2—H2120.0H17A—C17—H17B109.5
C4—C3—C2119.6 (4)C15—C17—H17C109.5
C4—C3—H3120.2H17A—C17—H17C109.5
C2—C3—H3120.2H17B—C17—H17C109.5
C3—C4—C5120.7 (4)C15—C18—H18A109.5
C3—C4—H4119.7C15—C18—H18B109.5
C5—C4—H4119.7H18A—C18—H18B109.5
C4—C5—C6120.9 (4)C15—C18—H18C109.5
C4—C5—H5119.5H18A—C18—H18C109.5
C6—C5—H5119.5H18B—C18—H18C109.5
C5—C6—C1119.2 (4)C14—N1—C1119.5 (4)
C5—C6—N2121.6 (4)C14—N1—Zn1112.1 (3)
C1—C6—N2119.1 (4)C1—N1—Zn1110.9 (3)
N2i—C7—C8113.3 (3)C14—N1—H1N94 (3)
N2i—C7—H7A108.9C1—N1—H1N108 (3)
C8—C7—H7A108.9Zn1—N1—H1N111 (3)
N2i—C7—H7B108.9C6—N2—C7i110.9 (3)
C8—C7—H7B108.9C6—N2—Zn1108.8 (2)
H7A—C7—H7B107.7C7i—N2—Zn1109.3 (2)
C9—C8—C13119.6 (4)C6—N2—H2N108 (3)
C9—C8—C7121.6 (4)C7i—N2—H2N103 (3)
C13—C8—C7118.7 (4)Zn1—N2—H2N116 (3)
C8—C9—C10123.2 (4)O3—N3—O1122.8 (5)
C8—C9—H9118.4O3—N3—O2120.7 (5)
C10—C9—H9118.4O1—N3—O2116.4 (5)
C11—C10—C9116.3 (4)N3—O1—Zn193.6 (3)
C11—C10—C15123.5 (4)N3—O2—Zn193.8 (3)
C9—C10—C15120.2 (4)C13—O4—Zn1128.2 (2)
C10—C11—C12123.1 (4)C13—O4—Zn1i111.8 (2)
C10—C11—H11118.5Zn1—O4—Zn1i96.50 (9)
C12—C11—H11118.5O4—Zn1—O4i83.50 (9)
C11—C12—C13119.2 (4)O4—Zn1—N189.82 (13)
C11—C12—C14118.9 (4)O4i—Zn1—N1111.54 (13)
C13—C12—C14121.9 (4)O4—Zn1—N2169.86 (13)
O4—C13—C12123.1 (4)O4i—Zn1—N292.88 (11)
O4—C13—C8118.4 (4)N1—Zn1—N282.68 (14)
C12—C13—C8118.6 (4)O4—Zn1—O298.08 (11)
N1—C14—C12120.3 (4)O4i—Zn1—O2147.90 (13)
N1—C14—H14A107.2N1—Zn1—O2100.54 (14)
C12—C14—H14A107.2N2—Zn1—O290.02 (12)
N1—C14—H14B107.2O4—Zn1—O192.56 (11)
C12—C14—H14B107.2O4i—Zn1—O191.78 (11)
H14A—C14—H14B106.9N1—Zn1—O1156.68 (13)
C18—C15—C16107.6 (4)N2—Zn1—O197.03 (12)
C18—C15—C17108.8 (4)O2—Zn1—O156.16 (11)
C16—C15—C17107.2 (4)O4—Zn1—Zn1i42.06 (7)
C18—C15—C10112.8 (4)O4i—Zn1—Zn1i41.45 (6)
C16—C15—C10108.9 (4)N1—Zn1—Zn1i104.20 (11)
C17—C15—C10111.4 (4)N2—Zn1—Zn1i133.61 (9)
C15—C16—H16A109.5O2—Zn1—Zn1i131.67 (9)
C15—C16—H16B109.5O1—Zn1—Zn1i92.91 (9)
H16A—C16—H16B109.5
C6—C1—C2—C30.1 (6)C12—C13—O4—Zn14.7 (5)
N1—C1—C2—C3179.9 (4)C8—C13—O4—Zn1174.7 (2)
C1—C2—C3—C40.6 (6)C12—C13—O4—Zn1i122.7 (4)
C2—C3—C4—C50.2 (7)C8—C13—O4—Zn1i56.6 (4)
C3—C4—C5—C60.8 (7)C13—O4—Zn1—O4i124.4 (3)
C4—C5—C6—C11.2 (6)Zn1i—O4—Zn1—O4i0.0
C4—C5—C6—N2179.0 (4)C13—O4—Zn1—N112.7 (3)
C2—C1—C6—C50.8 (6)Zn1i—O4—Zn1—N1111.71 (13)
N1—C1—C6—C5179.2 (4)C13—O4—Zn1—N254.8 (8)
C2—C1—C6—N2178.7 (4)Zn1i—O4—Zn1—N269.6 (7)
N1—C1—C6—N21.4 (6)C13—O4—Zn1—O287.9 (3)
N2i—C7—C8—C9114.2 (4)Zn1i—O4—Zn1—O2147.67 (13)
N2i—C7—C8—C1368.2 (5)C13—O4—Zn1—O1144.1 (3)
C13—C8—C9—C100.9 (6)Zn1i—O4—Zn1—O191.50 (12)
C7—C8—C9—C10176.7 (4)C13—O4—Zn1—Zn1i124.4 (3)
C8—C9—C10—C110.4 (6)C14—N1—Zn1—O441.6 (3)
C8—C9—C10—C15178.8 (4)C1—N1—Zn1—O4177.9 (3)
C9—C10—C11—C121.3 (6)C14—N1—Zn1—O4i124.5 (3)
C15—C10—C11—C12177.8 (4)C1—N1—Zn1—O4i99.2 (3)
C10—C11—C12—C130.9 (6)C14—N1—Zn1—N2145.2 (3)
C10—C11—C12—C14179.8 (4)C1—N1—Zn1—N28.9 (3)
C11—C12—C13—O4178.9 (3)C14—N1—Zn1—O256.6 (3)
C14—C12—C13—O42.2 (6)C1—N1—Zn1—O279.7 (3)
C11—C12—C13—C80.5 (6)C14—N1—Zn1—O154.5 (5)
C14—C12—C13—C8178.4 (4)C1—N1—Zn1—O181.8 (4)
C9—C8—C13—O4178.1 (3)C14—N1—Zn1—Zn1i81.5 (3)
C7—C8—C13—O44.3 (5)C1—N1—Zn1—Zn1i142.2 (2)
C9—C8—C13—C121.3 (6)C6—N2—Zn1—O451.9 (8)
C7—C8—C13—C12176.3 (3)C7i—N2—Zn1—O469.3 (8)
C11—C12—C14—N1140.1 (4)C6—N2—Zn1—O4i120.7 (2)
C13—C12—C14—N140.9 (7)C7i—N2—Zn1—O4i0.5 (2)
C11—C10—C15—C182.3 (6)C6—N2—Zn1—N19.4 (2)
C9—C10—C15—C18176.8 (4)C7i—N2—Zn1—N1111.8 (3)
C11—C10—C15—C16121.6 (5)C6—N2—Zn1—O291.3 (3)
C9—C10—C15—C1657.5 (5)C7i—N2—Zn1—O2147.6 (2)
C11—C10—C15—C17120.4 (4)C6—N2—Zn1—O1147.1 (2)
C9—C10—C15—C1760.5 (6)C7i—N2—Zn1—O191.7 (2)
C12—C14—N1—C1166.4 (4)C6—N2—Zn1—Zn1i112.0 (2)
C12—C14—N1—Zn161.4 (5)C7i—N2—Zn1—Zn1i9.2 (3)
C2—C1—N1—C1440.4 (6)N3—O2—Zn1—O488.6 (2)
C6—C1—N1—C14139.5 (4)N3—O2—Zn1—O4i2.0 (3)
C2—C1—N1—Zn1173.0 (3)N3—O2—Zn1—N1180.0 (2)
C6—C1—N1—Zn16.9 (5)N3—O2—Zn1—N297.5 (2)
C5—C6—N2—C7i66.3 (5)N3—O2—Zn1—O11.0 (2)
C1—C6—N2—C7i111.5 (4)N3—O2—Zn1—Zn1i60.0 (3)
C5—C6—N2—Zn1173.5 (3)N3—O1—Zn1—O499.0 (2)
C1—C6—N2—Zn18.7 (4)N3—O1—Zn1—O4i177.4 (2)
O3—N3—O1—Zn1179.5 (4)N3—O1—Zn1—N13.5 (5)
O2—N3—O1—Zn11.7 (4)N3—O1—Zn1—N284.3 (2)
O3—N3—O2—Zn1179.5 (3)N3—O1—Zn1—O21.0 (2)
O1—N3—O2—Zn11.7 (4)N3—O1—Zn1—Zn1i141.1 (2)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn2(C36H42N4O2)(NO3)2]
Mr817.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.7149 (8), 18.0691 (10), 7.3523 (3)
β (°) 101.110 (5)
V3)1787.87 (16)
Z2
Radiation typeMo Kα
µ (mm1)1.40
Crystal size (mm)0.45 × 0.25 × 0.20
Data collection
DiffractometerOxford Diffraction Gemini R Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.661, 0.752
No. of measured, independent and
observed [I > 2σ(I)] reflections
15034, 4340, 1698
Rint0.099
(sin θ/λ)max1)0.688
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.065, 0.91
No. of reflections4340
No. of parameters241
No. of restraints357
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.45

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—N12.081 (4)Zn1—O22.243 (3)
Zn1—N22.102 (3)Zn1—O42.019 (2)
Zn1—O12.264 (3)Zn1—O4i2.043 (2)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

We thank the National Natural Science Foundation of China (grant No. 20471014), the Program for New Century Excellent Talents in Chinese Universities (grant No. NCET-05–0320), the Fok Ying Tung Education Foundation and the Analysis and Testing Foundation of Northeast Normal University for support.

References

First citationBazzicalupi, C., Bencini, A., Bianchi, A., Fusi, V., Giorgi, C., Paoletti, P., Valtancoli, B. & Zanchi, D. (1997). Inorg. Chem. 36, 2784–2790.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationBurley, S. K., David, P. R., Taylor, A. & Lipscomb, W. N. (1990). Proc. Natl. Acad. Sci. USA, 87, 6878–6882.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDutta, B., Bag, P., Flörke, U. & Nag, K. (2005). Inorg. Chem. 44,147–157.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFan, L.-J., Ma, J.-F. & Liu, J. (2009). Acta Cryst. E65, m777–m778.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLipscomb, W. N. & Straeter, N. (1996). Chem. Rev. 96, 2375–2434.  CrossRef PubMed CAS Web of Science Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRoderick, S. & Mathews, B. W. (1993). Biochemistry, 32, 3907–3912.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds