organic compounds
2,6-Dideoxy-2,6-imino-L-glycero-D-ido-heptitol
aDepartment of Organic Chemistry, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, England, bRare Sugar Research Centre, Kagawa University, 2393 Miki-cho, Kita-gun, Kagawa 761-0795, Japan, cSummit PLC, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, Wales, and dDepartment of Chemical Crystallography, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, England
*Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk
The title molecule, C7H15NO5, the major product from selective enzymatic oxidation followed by hydrogenolysis of the corresponding azidoheptitol, was found by X-ray crystallography to exisit in a chair conformation with three axial hydroxyl groups. One of the hydroxymethyl groups is disordered over two sets of sites in a 0.590 (3):0.410 (3) ratio. In the crystal, O—H⋯O, O—H⋯(O,O), O—H⋯N and N—H⋯O hydrogen bonding occurs.
Related literature
For the synthesis of homonojirimycin derivatives, see: Compain et al. (2009); Asano et al. (2000); Watson et al. (2001); Ikeda et al. (2000); Asano et al. (1998); Kite et al. (1988); Dondoni & Nuzzi (2006). For the biological applications of homonojirimycin derivatives, see: Compain et al. (2006). For related literature on Izumoring technology, see: Izumori et al. (2002, 2006); Yoshihara et al. (2008); Rao et al. (2008); Jones et al. (2008). For related crystallography literature, see: Görbitz (1999).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 2001); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
10.1107/S1600536809025045/lh2854sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809025045/lh2854Isup2.hkl
The title compound was recrystallized from mixture of 95% ethanol and 5% water layered with acetone: m.p. 442–445 K (free base); [α]D25 0.0 (c, 1.27 in MeOH) (HCl salt). All other data was consistent with the literature data for the HCl salt (Dondoni & Nuzzi, 2006).
The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.21) reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997).
The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.
Data collection: COLLECT (Nonius, 2001).; cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).Fig. 1. Synthetic Scheme. | |
Fig. 2. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius. | |
Fig. 3. Packing diagram for the title compound. The compound exists as an extensively hydrogen bonded network (dotted lines). |
C7H15NO5 | F(000) = 416 |
Mr = 193.20 | Dx = 1.491 Mg m−3 |
Monoclinic, P21/c | Melting point = 442–445 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 10.2907 (3) Å | Cell parameters from 1957 reflections |
b = 7.6035 (3) Å | θ = 5–27° |
c = 11.0057 (3) Å | µ = 0.13 mm−1 |
β = 91.8668 (16)° | T = 150 K |
V = 860.69 (5) Å3 | Block, colourless |
Z = 4 | 0.50 × 0.50 × 0.20 mm |
Area diffractometer | 1609 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
ω scans | θmax = 27.5°, θmin = 5.2° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −13→13 |
Tmin = 0.81, Tmax = 0.98 | k = −9→9 |
7892 measured reflections | l = −14→14 |
1944 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.097 | w = 1/[σ2(F2) + (0.04P)2 + 0.51P], where P = [max(Fo2,0) + 2Fc2]/3 |
S = 1.00 | (Δ/σ)max = 0.000337 |
1944 reflections | Δρmax = 0.33 e Å−3 |
137 parameters | Δρmin = −0.32 e Å−3 |
0 restraints |
C7H15NO5 | V = 860.69 (5) Å3 |
Mr = 193.20 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.2907 (3) Å | µ = 0.13 mm−1 |
b = 7.6035 (3) Å | T = 150 K |
c = 11.0057 (3) Å | 0.50 × 0.50 × 0.20 mm |
β = 91.8668 (16)° |
Area diffractometer | 1944 independent reflections |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | 1609 reflections with I > 2σ(I) |
Tmin = 0.81, Tmax = 0.98 | Rint = 0.030 |
7892 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.33 e Å−3 |
1944 reflections | Δρmin = −0.32 e Å−3 |
137 parameters |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.80811 (11) | 0.66935 (14) | 0.76944 (10) | 0.0174 | |
C2 | 0.82099 (13) | 0.48495 (17) | 0.72876 (11) | 0.0140 | |
C3 | 0.81825 (12) | 0.36103 (16) | 0.83746 (11) | 0.0123 | |
C4 | 0.69637 (12) | 0.38977 (18) | 0.91183 (12) | 0.0165 | |
C5 | 0.68068 (13) | 0.5840 (2) | 0.94446 (13) | 0.0224 | |
C6 | 0.68515 (14) | 0.69847 (18) | 0.83143 (14) | 0.0233 | 0.590 (3) |
C7 | 0.6593 (4) | 0.8833 (5) | 0.8777 (4) | 0.0176 | 0.590 (3) |
O8 | 0.63068 (17) | 0.9958 (2) | 0.77658 (16) | 0.0216 | 0.590 (3) |
C9 | 0.68515 (14) | 0.69847 (18) | 0.83143 (14) | 0.0233 | 0.410 (3) |
C10 | 0.6878 (5) | 0.9060 (7) | 0.8365 (5) | 0.0181 | 0.410 (3) |
O11 | 0.5595 (2) | 0.9664 (3) | 0.8625 (2) | 0.0216 | 0.410 (3) |
O12 | 0.77676 (10) | 0.63650 (15) | 1.03344 (9) | 0.0255 | |
O13 | 0.58223 (9) | 0.33556 (13) | 0.84432 (9) | 0.0203 | |
O14 | 0.93148 (8) | 0.39490 (12) | 0.91177 (8) | 0.0165 | |
C15 | 0.94645 (14) | 0.46860 (18) | 0.66037 (12) | 0.0197 | |
O16 | 0.96317 (10) | 0.29326 (13) | 0.61694 (8) | 0.0198 | |
H21 | 0.7458 | 0.4528 | 0.6738 | 0.0157* | |
H31 | 0.8191 | 0.2378 | 0.8090 | 0.0130* | |
H41 | 0.7061 | 0.3208 | 0.9884 | 0.0187* | |
H61 | 0.6119 | 0.6629 | 0.7752 | 0.0259* | 0.590 (3) |
H72 | 0.7376 | 0.9276 | 0.9206 | 0.0197* | 0.590 (3) |
H71 | 0.5868 | 0.8832 | 0.9358 | 0.0206* | 0.590 (3) |
H91 | 0.6128 | 0.6622 | 0.7753 | 0.0259* | 0.410 (3) |
H101 | 0.7493 | 0.9437 | 0.9007 | 0.0210* | 0.410 (3) |
H102 | 0.7164 | 0.9563 | 0.7589 | 0.0216* | 0.410 (3) |
H152 | 1.0213 | 0.4990 | 0.7155 | 0.0218* | |
H151 | 0.9433 | 0.5524 | 0.5897 | 0.0228* | |
H141 | 0.9354 | 0.3293 | 0.9687 | 0.0234* | |
H161 | 1.0333 | 0.2501 | 0.6444 | 0.0297* | |
H51 | 0.5938 | 0.5992 | 0.9815 | 0.0254* | |
H11 | 0.8100 | 0.7367 | 0.7086 | 0.0211* | |
H131 | 0.5842 | 0.2333 | 0.8312 | 0.0306* | |
H121 | 0.8487 | 0.5930 | 1.0131 | 0.0367* | |
H81 | 0.5752 | 0.9542 | 0.7287 | 0.0322* | 0.590 (3) |
H111 | 0.5126 | 0.9323 | 0.8051 | 0.0290* | 0.410 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0274 (6) | 0.0091 (5) | 0.0154 (5) | 0.0007 (4) | −0.0047 (5) | 0.0028 (4) |
C2 | 0.0195 (6) | 0.0112 (6) | 0.0112 (6) | −0.0011 (5) | −0.0025 (5) | −0.0008 (5) |
C3 | 0.0128 (6) | 0.0108 (6) | 0.0131 (6) | 0.0006 (5) | −0.0020 (5) | 0.0003 (5) |
C4 | 0.0124 (6) | 0.0209 (7) | 0.0162 (6) | −0.0015 (5) | −0.0006 (5) | −0.0015 (5) |
C5 | 0.0140 (6) | 0.0270 (8) | 0.0261 (7) | −0.0001 (5) | 0.0015 (5) | −0.0142 (6) |
C6 | 0.0182 (7) | 0.0147 (7) | 0.0360 (8) | 0.0060 (5) | −0.0121 (6) | −0.0108 (6) |
C7 | 0.0178 (18) | 0.0121 (15) | 0.0228 (19) | 0.0025 (12) | −0.0007 (13) | −0.0022 (14) |
O8 | 0.0237 (10) | 0.0108 (8) | 0.0296 (10) | 0.0017 (7) | −0.0075 (8) | 0.0001 (7) |
C9 | 0.0182 (7) | 0.0147 (7) | 0.0360 (8) | 0.0060 (5) | −0.0121 (6) | −0.0108 (6) |
C10 | 0.016 (2) | 0.011 (2) | 0.027 (3) | 0.0000 (17) | 0.0016 (19) | −0.003 (2) |
O11 | 0.0181 (13) | 0.0185 (13) | 0.0281 (14) | 0.0063 (9) | −0.0002 (10) | −0.0055 (10) |
O12 | 0.0200 (5) | 0.0358 (6) | 0.0207 (5) | −0.0033 (4) | 0.0012 (4) | −0.0153 (4) |
O13 | 0.0139 (5) | 0.0153 (5) | 0.0313 (5) | −0.0006 (4) | −0.0040 (4) | −0.0058 (4) |
O14 | 0.0143 (5) | 0.0191 (5) | 0.0158 (4) | −0.0021 (4) | −0.0047 (3) | 0.0067 (4) |
C15 | 0.0268 (7) | 0.0179 (7) | 0.0147 (6) | −0.0055 (5) | 0.0042 (5) | −0.0021 (5) |
O16 | 0.0218 (5) | 0.0215 (5) | 0.0159 (4) | 0.0025 (4) | −0.0009 (4) | −0.0073 (4) |
N1—C2 | 1.4791 (16) | C7—O8 | 1.427 (4) |
N1—C6 | 1.4738 (19) | C7—H72 | 0.981 |
N1—H11 | 0.844 | C7—H71 | 0.998 |
C2—C3 | 1.5238 (17) | O8—H81 | 0.827 |
C2—C15 | 1.5206 (19) | C9—C10 | 1.579 (6) |
C2—H21 | 0.997 | C9—H91 | 0.991 |
C3—C4 | 1.5355 (17) | C10—O11 | 1.435 (6) |
C3—O14 | 1.4251 (14) | C10—H101 | 0.976 |
C3—H31 | 0.988 | C10—H102 | 0.989 |
C4—C5 | 1.5295 (19) | O11—H111 | 0.824 |
C4—O13 | 1.4300 (15) | O12—H121 | 0.847 |
C4—H41 | 0.995 | O13—H131 | 0.791 |
C5—C6 | 1.520 (2) | O14—H141 | 0.801 |
C5—O12 | 1.4258 (16) | C15—O16 | 1.4286 (16) |
C5—H51 | 1.002 | C15—H152 | 0.992 |
C6—C7 | 1.521 (4) | C15—H151 | 1.005 |
C6—H61 | 0.997 | O16—H161 | 0.840 |
C2—N1—C6 | 111.67 (10) | C7—C6—H61 | 108.8 |
C2—N1—H11 | 109.3 | C6—C7—O8 | 109.1 (3) |
C6—N1—H11 | 108.6 | C6—C7—H72 | 109.2 |
N1—C2—C3 | 110.14 (10) | O8—C7—H72 | 108.4 |
N1—C2—C15 | 108.25 (10) | C6—C7—H71 | 110.9 |
C3—C2—C15 | 112.07 (11) | O8—C7—H71 | 111.1 |
N1—C2—H21 | 109.9 | H72—C7—H71 | 108.1 |
C3—C2—H21 | 106.9 | C7—O8—H81 | 112.8 |
C15—C2—H21 | 109.6 | C5—C9—N1 | 110.01 (11) |
C2—C3—C4 | 111.52 (10) | C5—C9—C10 | 123.0 (2) |
C2—C3—O14 | 107.64 (10) | N1—C9—C10 | 98.8 (2) |
C4—C3—O14 | 109.59 (10) | C5—C9—H91 | 108.0 |
C2—C3—H31 | 109.7 | N1—C9—H91 | 108.0 |
C4—C3—H31 | 108.6 | C10—C9—H91 | 108.2 |
O14—C3—H31 | 109.8 | C9—C10—O11 | 108.2 (4) |
C3—C4—C5 | 110.91 (11) | C9—C10—H101 | 109.2 |
C3—C4—O13 | 110.69 (10) | O11—C10—H101 | 110.0 |
C5—C4—O13 | 108.00 (11) | C9—C10—H102 | 111.2 |
C3—C4—H41 | 108.4 | O11—C10—H102 | 110.4 |
C5—C4—H41 | 108.6 | H101—C10—H102 | 107.9 |
O13—C4—H41 | 110.3 | C10—O11—H111 | 105.5 |
C4—C5—C6 | 110.76 (11) | C5—O12—H121 | 107.5 |
C4—C5—O12 | 110.82 (12) | C4—O13—H131 | 110.7 |
C6—C5—O12 | 111.27 (12) | C3—O14—H141 | 110.9 |
C4—C5—H51 | 108.0 | C2—C15—O16 | 110.82 (11) |
C6—C5—H51 | 108.6 | C2—C15—H152 | 109.5 |
O12—C5—H51 | 107.2 | O16—C15—H152 | 108.8 |
C5—C6—N1 | 110.01 (11) | C2—C15—H151 | 108.9 |
C5—C6—C7 | 104.18 (18) | O16—C15—H151 | 109.5 |
N1—C6—C7 | 117.11 (18) | H152—C15—H151 | 109.3 |
C5—C6—H61 | 108.1 | C15—O16—H161 | 110.8 |
N1—C6—H61 | 108.3 |
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H71···C5 | 1.06 | 2.47 | 3.279 (3) | 132 |
O8—H102···N1 | 0.96 | 2.38 | 3.084 (3) | 130 |
O14—H141···O16i | 0.80 | 1.89 | 2.684 (3) | 170 |
O16—H161···N1ii | 0.84 | 1.96 | 2.793 (3) | 171 |
N1—H11···O12iii | 0.84 | 2.17 | 2.996 (3) | 165 |
O13—H131···O8iv | 0.79 | 1.97 | 2.739 (3) | 165 |
O13—H131···O11iv | 0.79 | 2.08 | 2.824 (3) | 158 |
O12—H121···O14 | 0.85 | 2.07 | 2.800 (3) | 143 |
O12—H121···O14v | 0.85 | 2.39 | 3.052 (3) | 136 |
O8—H81···O13vi | 0.83 | 2.00 | 2.805 (3) | 164 |
O11—H111···O13vi | 0.82 | 2.02 | 2.843 (3) | 173 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+2, y−1/2, −z+3/2; (iii) x, −y+3/2, z−1/2; (iv) x, y−1, z; (v) −x+2, −y+1, −z+2; (vi) −x+1, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C7H15NO5 |
Mr | 193.20 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 10.2907 (3), 7.6035 (3), 11.0057 (3) |
β (°) | 91.8668 (16) |
V (Å3) | 860.69 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.50 × 0.50 × 0.20 |
Data collection | |
Diffractometer | Area diffractometer |
Absorption correction | Multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.81, 0.98 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7892, 1944, 1609 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.097, 1.00 |
No. of reflections | 1944 |
No. of parameters | 137 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.32 |
Computer programs: COLLECT (Nonius, 2001)., DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
O14—H141···O16i | 0.80 | 1.89 | 2.684 (3) | 170 |
O16—H161···N1ii | 0.84 | 1.96 | 2.793 (3) | 171 |
N1—H11···O12iii | 0.84 | 2.17 | 2.996 (3) | 165 |
O13—H131···O8iv | 0.79 | 1.97 | 2.739 (3) | 165 |
O13—H131···O11iv | 0.79 | 2.08 | 2.824 (3) | 158 |
O12—H121···O14v | 0.85 | 2.39 | 3.052 (3) | 136 |
O8—H81···O13vi | 0.83 | 2.00 | 2.805 (3) | 164 |
O11—H111···O13vi | 0.82 | 2.02 | 2.843 (3) | 173 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+2, y−1/2, −z+3/2; (iii) x, −y+3/2, z−1/2; (iv) x, y−1, z; (v) −x+2, −y+1, −z+2; (vi) −x+1, y+1/2, −z+3/2. |
Acknowledgements
This work was supported in part by the Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN).
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680. Web of Science CrossRef CAS Google Scholar
Asano, N., Nishida, M., Kato, A., Kizu, H., Matsui, K., Shimada, Y., Itoh, T., Baba, M., Watson, A. A., Nash, R. J., Lilley, P. M. D., Watkin, D. J. & Fleet, G. W. J. (1998). J. Med. Chem. 41, 2565–2571. Web of Science CSD CrossRef CAS PubMed Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Compain, P., Chagnault, V. & Martin, O. R. (2009). Tetrahedron Asymmetry, 20, 672–711. Web of Science CrossRef CAS Google Scholar
Compain, P., Martin, O. R., Boucheron, C., Godin, G., Yu, L. & Asano, N. (2006). Chem. Biol. Chem. 7, 1356–1359. CrossRef CAS Google Scholar
Dondoni, A. & Nuzzi, A. (2006). J. Org. Chem. 71, 7574–7582. Web of Science CrossRef PubMed CAS Google Scholar
Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ikeda, K., Takahashi, M., Nishida, M., Miyauchi, M., Kizu, H., Kameda, Y., Arisawa, M., Watson, A. A., Nash, R. J., Fleet, G. W. J. & Asano, N. (2000). Carbohydr. Res. 323, 73–80. CrossRef PubMed CAS Google Scholar
Izumori, K. J. (2002). Naturwissenschaften, 89, 120–124. Web of Science CrossRef PubMed CAS Google Scholar
Izumori, K. J. (2006). Biotechnology, 124, 717–722. CAS Google Scholar
Jones, N. A., Rao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., Hunter, S. J., Wormald, M. R., Dwek, R. A., Izumori, K. & Fleet, G. W. J. (2008). Tetrahedron Asymmetry, 19, 1904–1918. Web of Science CrossRef CAS Google Scholar
Kite, G. C., Fellows, L. E., Fleet, G. W. J., Liu, P. S., Scofield, A. M. & Smith, N. G. (1988). Tetrahedron Lett. 29, 6483–6486. CrossRef CAS Web of Science Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Rao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., da Cruz, F. P., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Lett. 49, 3316–3121. Web of Science CrossRef CAS Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295. Web of Science CrossRef PubMed CAS Google Scholar
Yoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 739–745. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The methodology developed by Izumori (2002, 2006) for the interconversion of tetroses, pentoses and hexoses by enzymatic oxidation, inversion at C3 with a single epimerase, and reduction to the aldose has been seen to be generally applicable for the 1-deoxy ketohexoses (Yoshihara et al., 2008) and branched sugars (Rao et al., 2008; Jones et al., 2008). This methodology has now also been applied to azido heptitols and thus to the synthesis of 2,6-dideoxy-2,6-iminoheptitols (homonojirimycins); these seven carbon imino sugars (Compain et al., 2009; Asano et al., 2000; Watson et al., 2001), are a family of glycosidase inhibitors. A number of homonojrimycins have been isolated as natural products from medicinal plants (Ikeda et al., 2000; Asano et al., 1998; Kite et al., 1988). Other piperidines with all the ring hydroxyl groups axial have been shown to be very powerful glycosidase inhibitors (Compain et al., 2006).
The azido heptitol 1 was synthesized from readily available D-glycero-D-gulo-heptono-1,4-lactone and underwent selective enzymatic oxidation to the ketose 2 followed by hydrogenation with closure on either face of the ketone to generate the imino sugars 3 and 4 (Fig. 1). The major product was found to be the symmetrical homonorjirimycin 3 and its structure was confirmed by X-ray crystallography.
The X-ray structure shows that the compound adopts a chair conformation with 3 axial hydroxyl substituents (Fig. 2). There is significant disorder in the structure with one of the equatorial hydroxymethyl groups occupying two possible sites each of which is able to form a hydrogen bond.The crystal exists as an extensively hydrogen bonded lattice with each molecule acting as a donor and an acceptor for 8 hydrogen bonds (Fig. 3).