metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1H-imidazole-κN3)bis­­(2-oxidopyridinium-3-carboxyl­ato-κ2O2,O3)nickel(II)

aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 14 July 2009; accepted 17 July 2009; online 22 July 2009)

In the crystal structure of the title NiII complex, [Ni(C6H4NO3)2(C3H4N2)2], the NiII atom is located on a twofold rotation axis and is chelated by two oxidopyridiniumcarboxyl­ate anions and further cis-coordinated by two imidazole ligands in a distorted cis-N2O4 octa­hedral geometry. The C—O bond distance of 1.2573 (19) Å found for the non-coordinating O atom of the carboxyl­ate group indicates significant delocalization of π-electron density over this residue. Similarly, the C—O bond distance of 1.260 (2) Å in the heteroaromatic ring indicates delocalization between the deprotonated hydr­oxy group and the pyridinium ring. The uncoordinated carboxyl­ate O atom links with the imidazole and pyridinium rings of adjacent mol­ecules via N—H⋯O and C—H⋯O hydrogen bonding, leading to a two-dimensional array parallel to (100).

Related literature

For the nature of π-π stacking, see: Deisenhofer & Michel (1989[Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149-2170.]); Xu et al. (2007[Xu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622-m624.]); Li et al. (2005[Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.]). For the short C—O bond distance between a pyridine ring and hydr­oxy-O atom in metal complexes of 2-oxidopyridinium-3-carboxyl­ate, see: Yao et al. (2004[Yao, Y., Cai, Q., Kou, H., Li, H., Wang, D., Yu, R., Chen, Y. & Xing, X. (2004). Chem. Lett. 33, 1270-1271.]); Yan & Hu (2007a[Yan, H.-Y. & Hu, T.-Q. (2007a). Acta Cryst. E63, m2325.],b[Yan, H.-Y. & Hu, T.-Q. (2007b). Acta Cryst. E63, m2326.]); Wen & Liu (2007[Wen, D.-C. & Liu, S.-X. (2007). Chin. J. Struct. Chem. 26, 1281-1284.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C6H4NO3)2(C3H4N2)2]

  • Mr = 471.08

  • Monoclinic, C 2/c

  • a = 16.5603 (12) Å

  • b = 9.9687 (7) Å

  • c = 12.7981 (9) Å

  • β = 111.203 (2)°

  • V = 1969.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 294 K

  • 0.28 × 0.22 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.730, Tmax = 0.830

  • 10787 measured reflections

  • 1934 independent reflections

  • 1690 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.067

  • S = 1.09

  • 1934 reflections

  • 141 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 1.93 2.7848 (19) 177
N3—H3⋯O2ii 0.86 2.03 2.796 (2) 148
C3—H3A⋯O3iii 0.93 2.41 3.323 (2) 167
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [x, -y, z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As π-π stacking between aromatic rings is correlated with electron transfer process in some biological systems (Deisenhofer & Michel, 1989), metal complexes incorporating aromatic ligands have attracted much attention. As a part of an on-going investigation of π-π stacking (Xu et al., 2007a, b; Li et al., 2005), the title complex, (I), has been prepared and its crystal structure reported herein.

The analysis of (I) shows the Ni atom to be located on a 2-fold axis and to be chelated by two oxidopyridinium-carboxylate anions and two cis-orientated imidazole ligands to complete a distorted octahedral coordination geometry (Fig. 1). The carboxylate group is twisted with respect to the benzene ring with a dihedral angle of 22.09 (11)°. The C1—O3 bond distance of 1.260 (2) Å is much shorter than a normal single C—O bond, indicating delocalization of π-electron density over the deprotonated hydroxy group and the pyridinium ring, an observation which agrees with similiar features found in the other transition metal complexes of oxidopyridinium-carboxylate (Yao et al., 2004; Yan & Hu, 2007a,b; Wen & Liu, 2007).

The uncoordinated carboxyl-O atom simutaneously links the imidazole and pyridinium rings via N—H···O hydrogen bonding leading to a 2-D array (Table 2). Weak C—H···O hydrogen bonding is also present in the crystal structure but no π-π stacking is evident.

Related literature top

For the nature of π-π stacking, see: Deisenhofer & Michel (1989); Xu et al. (2007); Li et al. (2005). For the short C—O bond distance between a pyridine ring and hydroxy-O atom in metal complexes of 2-oxidopyridinium-3-carboxylate, see: Yao et al. (2004); Yan & Hu (2007a,b); Wen & Liu (2007).

Experimental top

2-Hydroxy-pyridine-3-carboxylic acid (0.13 g, 1 mmol), NaOH (0.04 g, 1 mmol), imidazole (0.14 g, 2 mmol) and NiCl2.6H2O (0.24 g, 1 mmol) were dissolved in water (15 ml). The solution was refluxed for 4.5 h. After cooling to room temperature, the solution was filtered. Single crystals of (I) were obtained from the filtrate after one week.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 and N—H = 0.86 Å, and refined in riding model approximation with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 40% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry code: (i) 1 - x, y, 1/2 - z].
Bis(1H-imidazole-κN3)bis(2-oxidopyridinium-3-carboxylato- κ2O2,O3)nickel(II) top
Crystal data top
[Ni(C6H4NO3)2(C3H4N2)2]F(000) = 968
Mr = 471.08Dx = 1.589 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3268 reflections
a = 16.5603 (12) Åθ = 2.5–25.0°
b = 9.9687 (7) ŵ = 1.04 mm1
c = 12.7981 (9) ÅT = 294 K
β = 111.203 (2)°Block, green
V = 1969.7 (2) Å30.28 × 0.22 × 0.18 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1934 independent reflections
Radiation source: fine-focus sealed tube1690 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.00 pixels mm-1θmax = 26.0°, θmin = 2.4°
ω scansh = 2020
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1112
Tmin = 0.730, Tmax = 0.830l = 1515
10787 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0299P)2 + 1.5451P]
where P = (Fo2 + 2Fc2)/3
1934 reflections(Δ/σ)max = 0.001
141 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Ni(C6H4NO3)2(C3H4N2)2]V = 1969.7 (2) Å3
Mr = 471.08Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.5603 (12) ŵ = 1.04 mm1
b = 9.9687 (7) ÅT = 294 K
c = 12.7981 (9) Å0.28 × 0.22 × 0.18 mm
β = 111.203 (2)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1934 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1690 reflections with I > 2σ(I)
Tmin = 0.730, Tmax = 0.830Rint = 0.026
10787 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.09Δρmax = 0.26 e Å3
1934 reflectionsΔρmin = 0.23 e Å3
141 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.50000.24819 (3)0.25000.02609 (11)
N10.61183 (10)0.12600 (15)0.30054 (12)0.0340 (4)
H10.61300.13890.23460.041*
N20.58315 (9)0.39012 (14)0.22850 (12)0.0307 (3)
N30.62487 (11)0.55962 (16)0.15138 (14)0.0413 (4)
H30.62240.62750.10880.050*
O10.55981 (9)0.25034 (11)0.42031 (10)0.0345 (3)
O20.62229 (8)0.17047 (12)0.59099 (9)0.0370 (3)
O30.58766 (8)0.09254 (12)0.25646 (9)0.0320 (3)
C10.59865 (11)0.00219 (17)0.32922 (13)0.0269 (4)
C20.60022 (10)0.01871 (17)0.44182 (13)0.0270 (4)
C30.61083 (12)0.09161 (18)0.50917 (14)0.0347 (4)
H3A0.61080.08060.58130.042*
C40.62173 (15)0.22061 (19)0.47285 (16)0.0429 (5)
H40.62780.29470.51920.051*
C50.62318 (15)0.23420 (18)0.36860 (17)0.0418 (5)
H50.63200.31840.34330.050*
C60.59302 (11)0.15609 (17)0.48631 (13)0.0273 (4)
C70.55757 (13)0.48832 (18)0.15514 (15)0.0362 (4)
H70.50010.50590.11150.043*
C80.67175 (12)0.4006 (2)0.27398 (16)0.0404 (4)
H80.70820.34420.32870.049*
C90.69804 (13)0.5053 (2)0.22712 (18)0.0456 (5)
H90.75470.53430.24340.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.03550 (19)0.02420 (17)0.01909 (17)0.0000.01048 (13)0.000
N10.0520 (9)0.0317 (8)0.0228 (7)0.0040 (7)0.0192 (7)0.0015 (6)
N20.0348 (8)0.0290 (8)0.0276 (7)0.0003 (6)0.0106 (6)0.0026 (6)
N30.0577 (11)0.0309 (8)0.0428 (9)0.0040 (7)0.0272 (8)0.0049 (7)
O10.0514 (8)0.0281 (6)0.0213 (6)0.0057 (5)0.0098 (6)0.0002 (5)
O20.0551 (8)0.0371 (7)0.0175 (6)0.0040 (6)0.0117 (5)0.0025 (5)
O30.0475 (7)0.0306 (6)0.0229 (6)0.0056 (5)0.0190 (5)0.0040 (5)
C10.0297 (8)0.0290 (9)0.0234 (8)0.0004 (7)0.0114 (7)0.0011 (7)
C20.0313 (9)0.0301 (9)0.0207 (8)0.0008 (7)0.0109 (7)0.0010 (7)
C30.0479 (11)0.0357 (10)0.0230 (9)0.0020 (8)0.0156 (8)0.0016 (7)
C40.0682 (14)0.0303 (10)0.0339 (10)0.0057 (9)0.0229 (10)0.0069 (8)
C50.0647 (14)0.0268 (10)0.0370 (11)0.0057 (9)0.0222 (10)0.0012 (8)
C60.0309 (9)0.0317 (9)0.0220 (8)0.0007 (7)0.0127 (7)0.0021 (7)
C70.0415 (10)0.0335 (10)0.0335 (10)0.0003 (8)0.0134 (8)0.0034 (8)
C80.0371 (10)0.0394 (11)0.0419 (11)0.0031 (8)0.0108 (8)0.0026 (8)
C90.0393 (11)0.0432 (11)0.0589 (13)0.0039 (9)0.0233 (10)0.0059 (10)
Geometric parameters (Å, º) top
Ni—O1i2.0422 (12)O2—C61.2573 (19)
Ni—O12.0422 (12)O3—C11.260 (2)
Ni—O3i2.1059 (12)C1—C21.441 (2)
Ni—O32.1058 (12)C2—C31.369 (2)
Ni—N22.0610 (14)C2—C61.504 (2)
Ni—N2i2.0610 (14)C3—C41.401 (3)
N1—C51.356 (2)C3—H3A0.9300
N1—C11.369 (2)C4—C51.350 (3)
N1—H10.8600C4—H40.9300
N2—C71.316 (2)C5—H50.9300
N2—C81.373 (2)C7—H70.9300
N3—C71.337 (2)C8—C91.352 (3)
N3—C91.361 (3)C8—H80.9300
N3—H30.8600C9—H90.9300
O1—C61.250 (2)
O1i—Ni—O1178.80 (6)O3—C1—C2127.05 (15)
O1i—Ni—N286.55 (5)N1—C1—C2115.33 (14)
O1—Ni—N292.62 (5)C3—C2—C1119.31 (15)
O1i—Ni—N2i92.62 (5)C3—C2—C6120.19 (14)
O1—Ni—N2i86.55 (5)C1—C2—C6120.47 (14)
N2—Ni—N2i93.29 (8)C2—C3—C4122.08 (16)
O1i—Ni—O3i84.52 (5)C2—C3—H3A119.0
O1—Ni—O3i96.37 (5)C4—C3—H3A119.0
N2—Ni—O3i170.03 (5)C5—C4—C3118.07 (17)
N2i—Ni—O3i91.53 (5)C5—C4—H4121.0
O1i—Ni—O396.37 (5)C3—C4—H4121.0
O1—Ni—O384.52 (5)C4—C5—N1120.47 (17)
N2—Ni—O391.53 (5)C4—C5—H5119.8
N2i—Ni—O3170.03 (5)N1—C5—H5119.8
O3i—Ni—O385.08 (7)O1—C6—O2122.70 (15)
C5—N1—C1124.68 (15)O1—C6—C2120.28 (14)
C5—N1—H1117.7O2—C6—C2117.02 (15)
C1—N1—H1117.7N2—C7—N3111.32 (17)
C7—N2—C8105.36 (15)N2—C7—H7124.3
C7—N2—Ni123.21 (12)N3—C7—H7124.3
C8—N2—Ni131.20 (12)C9—C8—N2109.68 (17)
C7—N3—C9107.57 (16)C9—C8—H8125.2
C7—N3—H3126.2N2—C8—H8125.2
C9—N3—H3126.2C8—C9—N3106.06 (17)
C6—O1—Ni129.67 (11)C8—C9—H9127.0
C1—O3—Ni117.96 (10)N3—C9—H9127.0
O3—C1—N1117.62 (14)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii0.861.932.7848 (19)177
N3—H3···O2iii0.862.032.796 (2)148
C3—H3A···O3iv0.932.413.323 (2)167
Symmetry codes: (ii) x, y, z1/2; (iii) x, y+1, z1/2; (iv) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C6H4NO3)2(C3H4N2)2]
Mr471.08
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)16.5603 (12), 9.9687 (7), 12.7981 (9)
β (°) 111.203 (2)
V3)1969.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.28 × 0.22 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.730, 0.830
No. of measured, independent and
observed [I > 2σ(I)] reflections
10787, 1934, 1690
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.067, 1.09
No. of reflections1934
No. of parameters141
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.23

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.932.7848 (19)177
N3—H3···O2ii0.862.032.796 (2)148
C3—H3A···O3iii0.932.413.323 (2)167
Symmetry codes: (i) x, y, z1/2; (ii) x, y+1, z1/2; (iii) x, y, z+1/2.
 

Acknowledgements

The project was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDeisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149–2170.  CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, D.-C. & Liu, S.-X. (2007). Chin. J. Struct. Chem. 26, 1281–1284.  CAS Google Scholar
First citationXu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622–m624.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYan, H.-Y. & Hu, T.-Q. (2007a). Acta Cryst. E63, m2325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYan, H.-Y. & Hu, T.-Q. (2007b). Acta Cryst. E63, m2326.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYao, Y., Cai, Q., Kou, H., Li, H., Wang, D., Yu, R., Chen, Y. & Xing, X. (2004). Chem. Lett. 33, 1270–1271.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds